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ABSTRACT. This paper is an ongoing study of weak convergence properties of local col-
oring strategies which is a fundamental question about local coloring processes on large
networks. Consider a piece of information spreading on a social network. Suppose 90%
of the nodes receive the information. Is it possible that the consequence is by accident?
i.e., is it possible that the next time the same information is only received by less than
10% of the nodes? The classic result of Sullivan says no. However, another question
remains. Is the consequence determined by the local structure of the graph? The question
can be phrased as whether the empirical process induced by an independent jump finite
range process (local coloring process) converges if the graph structure converges. Here the
local structure of a graph, G, refers to the limit of the empirical distribution of all sub-
graphs of G. An independent jump finite range process (local coloring process) refers to
a jump process with each node jumping independently of each other (independent jump),
and the intensity measure of a node, ¢, depends on the current state of modes within
a fized distance to ¢ (finite range). We give a condition for the local structure of the
graph that garantees the independent jump finite range process (local coloring process)
converges provided the local graph structure converges. The result improves our previous
result.

Keywords: Weak convergence, Graph coloring, Interacting particle system, Local struc-
ture of a graph

1. Introduction. Consider a piece of information spreading on a social network. Each
node of the network represents a person and jumps among three states “receive, retweet”,
“receive, does not retweet” and “does not receive”. FEach node jumps independently
of each other’s jump. The intensity measure of the jump of a node ¢ depends on the
current states of nodes within certain distance to ¢. Say the more his/her friends retweet
the information, the more likely he/she retweets the information. Such a process is, in
general, an independent jump finite range process (see Definition 2.2). A natural question
is whether the phenomenon about such a process is by accident. For N independent
random variables, where N is large, the shape of the empirical measure of them is not
by accident. Say tossing a fair coin a billion times with 0.50002 portion of positive sides
is not an accident, i.e., the next time you toss it a billion times the consequence would
be close to 0.50002. However, for a mean field model, synergetic effect does exist, i.e., it
is possible that in one trial 90% of nodes receive the information while in another trial
only 10% of nodes receive it. Sullivan’s classic result [11] says no, the consequence is not
by accident if the graph (social network) is sparse in the sense that every node is only
connected to a small portion of the other nodes. Actually, Sullivan’s result says that for
the independent jump finite range process, two nodes’ correlation decays away as their
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distance is large. Note that the graph of the mean field model is a complete graph which
clearly fails under the condition that each node is connected with only a small portion of
the other nodes. By calculating the variance of the integration of a given function wrt
the empirical distribution, Sullivan’s result clearly implies that the distribution of the
empirical process of subgraphs with states (see 2.4) concentrate weakly as the graph size
tends to infinity while the local structure of the graph (see Definition 2.1) converges.
However, a fundamental question still remains in whether the empirical process con-
verges weakly provided the local structure of the graph converges and the graph size tends
to infinity'; or, equivalently whether the limit point is determined by the local structure
of the graph sequence. It is the same to ask whether the local structure of a graph deter-
mines the empirical process induced by an independent jump finite range process on that
graph. In [8] the authors provide a condition of the local graph structure that garantees
= ddo ;

the weak convergence of the empirical process, namely > = 00, where D

1
=1 (Dz,dO)Q
the maximum number of nodes within a distance less than dy + (k + 1)d + 1 and larger
than dy + kd to some node (see Section 3 for more details). In this paper we improve the

result by showing that the condition Z VR — 7
=

structure with D"k =< vk logk the Condltlon in [8] fails while the condition in this
paper holds. Here for two sequences of reals a,,b,,n € N, a, < b, means there exists
¢,C' > 0 such that ¢b, < a, < Cb, for all n. Considering the unfamiliarity of the readers
to jump process, we only give the result for local coloring process.

Research on graph coloring process also arises in ecology study. [5, 7] study the limit
behavior (with respect to time) of various contact processes. The contact process sim-
ulating the survival of a species is a 2-colored graph process. The state of each node
evolves according to the states of its neighbors. [2, 4, 10] study the limit behaviors of
the multitype contact process. The central problem is this: when can two species coexist.
However, to our knowledge, there is no research on the relation of convergence of general
graph coloring process with graph structure. [8] proved that weak convergence holds if
the graph is not so interactive. This improved the known result that on a single chain the
weak convergence of finite range (local coloring) holds.

In Section 2, we present definitions such as the local structure of a graph, the indepen-
dent jump finite range process, local coloring, and the empirical distribution of subgraphs.
We also introduce some notations. In Section 3 we briefly point out the application of
the result in large deviation theory of probability model induced by the graph. We give
the main result in Section 3 and its proof in Section 4. Finally, an application on large
deviation theory is given in Section 5.

= oo suffices. Therefore, for a local graph

2. Preliminaries. A centered graph G = (V| E,x) is a directed graph (V, E) with a
specified center x € V. (We write G, to indicate x as its center.) For a directed graph
G = (V,E) and a node i € V, let ;4 denote a subgraph consisting of vertices within
distance d to i, specifying i as its center. Let S be a set. A stated (or colored) directed
graph G° = (V E, f) is a graph G = (V, E) together with a partial function f:V — S
and for i € V' f(7) represents the state of node 7. An isomorphism between two centered
directed graph G, Gy, is an isomorphism between G, G which preserves the center.
An isomorphism between two stated directed graph G*, G is an isomorphism between

!The distribution of a sequence of random variable X,,n € N, concentrate if lim Var(X,) = 0.
n—o0

However, this does not imply that X, converges in probability to a constant since their mean may not
converge.
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G, G which preserves states (colors). For a directed graph, a centered directed graph,
and a centered directed graph with state G, G, G2, denote by [G], [G,] and [G?] their
isomorphism classes respectively. Denote the set of isomorphism class of centered directed
graphs of radius d, centered directed graphs with states of radius d by

Gis = {[G]: G = (V,E, center = ), (Vi € V)d(x,i) < d} (1)
G; =1{[G°]: G° = (V,E, f,center = z), (Vi € V)d“(z,4) < d}

respectively. Here, d“(z,i) denotes the distance between x and i on the graph G. i.e.,
inf{d: (Fz1,--- 24 € V)r1 =0 Nzg=1A(2j,2;41) € E}. As far as we know, the local
structure of a graph is proposed by [1].

Definition 2.1 (Local structure of a graph [1]). The local structure of a directed graph
G refers to the empirical distribution of all subgraphs namely

1
G _
Li = [y 2% dEN
i€V

Here § denotes the Dirac measure. The pattern of a stated directed graph G° refers to
the empirical distribution of all stated directed subgraphs

) k deN
i > e
eV
A directed graph sequence GV, N € N (a stated directed graph sequence GN°, N € N)
is said to be convergent locally if and only if for every d € N there exists LY € P(Gq)
(LY° € P(GS)) such that
lim LG = L ( lim LG = L 5)
N—oo N—oo
For equivalent definitions, see also [9]. Examples of a convergent sequence of graphs
include a sequence of increasingly longer single chains, a sequence of increasingly larger
d-dimension grids, or a sequence of increasingly higher binary trees, among others.
Let G, t € [0,T] be a stochastic process with state space SIVl. For a stated directed
graph G° = (V,E, f), x € V, let G°(z,s) = (V, E, f.s) denote the stated directed graph
with identical graph structure as G° and f, ((z) = s, fo..(i) = f(i) if i # 2.

Definition 2.2. An independent jump finite range process on G is a Markov process
whose generator is of form

Qf (G%) =323 (s, [GL]) (£ (G°G,9) = £(G9))

i€V seS

where d € N is the “range”.

From the definition of independent jump finite range process, it is clear that the proba-
bility of two nodes jumping simultaneously is zero. And, the intensity measure of node 1,
(-, Gf:d), depends only on a subgraph centered at ¢ with radials d and time ¢. Examples
of finite range process (not necessarily independent jump) include contact process, Ising
process, voter model, and exclusion process, etc. [6]. Considering the unfamiliarity of the
jump process to readers, we instead study the so called local coloring process.

Definition 2.3. A coloring strategy is a function with input of a stated centered directed
graph and time c;(-|G?) : t x G¥ — c(/|G?)P(S). Denote by C the set of coloring
strategies.
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The coloring process we study is induced by a directed graph G and a coloring strategy
¢, denoted by G°<(t), t € [0,1] as follows. Let 7 : N — N be a uniformly random
permutation of {1,2,--- N}. At time ¢ € [0,1], a random node that has not yet been
colored is picked up, namely 7 ([t|V]]) (here, for a real r [r] denote the largest integer that

does not exceed r) and colored randomly according to distribution ¢; ('|Gi’(it|v|})(t))'

Definition 2.4 (Graph coloring process).

G*¢(0) = (V. E, fo), dom(fo) = 0. (2)
Fori=1,2,--- |V]

Xa(i) ~ Cijv] ('IGi’é)(i/lVD)
let fi(m(i)) = Xagy, filk) = fici(k) if k # 7(0);
The coloring process is G*(t) = (V, E, fupv),  t€[0,1]

The empirical process of subgraphs with states (or empirical process of subgraphs for
S,c
short) refers to the stochastic process Lg (t), t €[0,1] for some d € N.

When no ambiguity is made, we write 7(¢) for m([tN]). A local coloring process is
induced by a local coloring strategy.

Definition 2.5 (Local coloring strategy). A coloring strategy c is a local coloring strategy
iff there ezists d € N such that for all t € [0,1], any stated centered directed graph GY, it
holds that ¢,(-|G}) = ¢,(:|G},). We call d the range of c. Let C4 denote the set of coloring
strategy with range d.

3. Main Result. Now we can phrase our problem as follows. For a sequence of directed

graph GV let GNV>¢(t), t € [0,1] denote the graph coloring process as defined in 2.4 induced

by coloring strategy c. Does local convergence of GV imply that for all ¢y, € Cqr, d" € N,

there exist function Ly, (¢) : [0,1] 2 ¢ — L3, (t) € P (G3) such that the sequence
N,S,c S 00,C 41

of empirical process (Lg, 0t e [0, 1]) converges in probability to L, (t), t €

N

[0,1]?7 We give a partial positive answer in this section. If the local convergence of
N,S,c ;1 . . . . . .
G implies convergence of Lg, ! (), then it clearly means that the limit point L}, is

determined by the local structure LY, d € N. Otherwise, there exist two sequences GV,
GV, N € N converging to the same limit Ly, d € N while Lg,N’S’Cd’('), Lg,N’S’Cd’(') converge
to different limits. However, simply merging the two sequences into one, we obtain a
locally convergent directed graph sequence such that the empirical process induced by cg
fails to converge, a contradiction.

Before we introduce the main result we specify the following notations. For a directed
graph G, a set of nodes A, let Oy A = {i € G : d°(i, A) < k} (that is, the neighbor of A
that is of distance less than k to A), and let O, 4, A = {i € G : ky < d%(i, A) < ko}. For
a sequence of graph, GV, let

Ny

N, = Nl;lg&(]vﬂak{ffﬂ} 3)
Dy = N{gg‘)/(N {|Ok{c} — Ok _1{z}|}

N,S,c
2Note that the set of sample paths of Lg, ! (t), t € [0, 1] is uniformly continuous in ¢ so there is no
need to specify the manner in which it converges.
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Diys = max {104} = 0, {a}}

D& —  max 0 x}—0 x
= Jnax {100 +1)d+a0 {7} — Okarao {73}

Fast growing Ny, Dy with respect to k clearly means more interactive. Our main result
is as follows.

Theorem 3.1. Let GV be a sequence of locally convergent uniformly bounded degree di-

rected graph, i.e., for every d' there exists Ly s.t., lim Lfl’: =Ly and N, < oo.
N—00
Let cq. € Cq, c € C be such that,
(Vt € [O, 1],G§) HCt (|G§ — Cdt |G Hl S € (4)

% , GN-Se(t) GN-Siea (t) . o
or every d € N, let L, , Ly , t € [0,1] be two independent empirical
processes induced by c, cq. respectively.

We have for all dy, K € N, any € > 0, there exists function fy(t) : t — R", k < K
such that

NSc N,S,c
o (Vt<1-¢) lim Pr| ‘L,?M0 O -l < f] =1
o fi(t)=2. And for allk <K —-1,t<1-—¢
2 1 .
dfi(t) _ { gDZ’doka(t) + ZeNsnard, fu(t) <2 (5)
dat 0 if fu(t) =
fr(0)=0

Intuitively, Theorem 3.1 says that deviation of Lkd+d 0+ e0,1] to Lkd+d ‘0t eo,1]
is governed by fi(t), t € [0,1], ¥ < K which satisfy hnear differential Equation (5). Note
that f,(0) = 0 is guaranteed by the convergence of local law of G¥. From Theorem 3.1 it
is obvious that the following conditions guarantee weak convergence.

Corollary 3.1. Let GV be a sequence of convergent directed graph, i.e., for any d' there
exists some Ly € P (G3)
(Vd' € w) lim LG =LY
N—oo
Let Dy, Ny, DZ’dO be defined as 3 for GN. Suppose for all d,dy € N, any ¢ > 0, there

exists K € N and a group offunctions fr, k < K satisfying differential Equation (5) with
e =0 such that (Yt < 1—¢)fo(t) <

N,S,c
Then we have for all local stmtegy cd, € Ca, the empirical process sequence Ly *0)
converges, i.e., there exists Looscd (1), s.t.,
N,S,c
lim LG d(-) D LZE,S,Cd(_) (6)

N—oo

By analyzing differential Equation (5), we give the following conditions on local graph
law to guarantee weak convergence.

Corollary 3.2. For a convergent graph sequence G, suppose N, < oo for all k € N

(see Definition 2.1) and let ﬁi’do = max {D;-i’do}. If for all d,dy, M, ko € N there exists
7<

K € N and a sequence kg = a1 < ap < -+ - < ay,, = K such that

KZI ido {1 (ﬁ%) i1~y H D?,dO} > M (7)

1=1 D fe Tt a;<j<ajt+1
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pihdo

And suppose for all i € N, € > 0 there exists j with 2 ddo <E.

Then weak convergence holds for the local structure A}lm LG ,deN
— 00

Proof: To derive weak convergence for a local strategy, we let ¢ = ¢4.; thus € = 0.

Suppose g, k < K satisfy Equation (5) with D,‘f’d" replaced by EZ’dO. Clearly, by induction
fr(t) < gi(t) for all t € [0,1], ¥ < K. We will prove that (V¢ € [0,1])gx, () < 2
dd

—d,dg
and go(t) < gd 9k (1) < 2fd - Since kg is arbitrary, we can choose ko such that
ko k‘O
—d,dy
% < ¢ for any € > 0. Therefore, we can show that for any £ > 0 there exists K
ko

and a group of functions g, £ < K such that gr, k¥ < K satisfy Equation (5) and
(Vt € [0,1])go(t) < . Thus, the condition of Corollary 3.1 is verified. It remains to prove

) —=d,dg d,dg
the assertion (V¢ € [0,1])gx, (t) < 2 and go(t) < gd =0k (1) < 2% -
Denote by 7, = 1nf{t gr(t) = 2}. Note that for t < 7x, gK 1(t) < gk(t). Since

for t < 7, g’;,*(lt()t) = D’““gk”g;, we can show by induction that (V¢ < 7%, k < K — 2),
k Jk+1

o K-k g_1
9l _ < Bﬁ,dz. Thus, for all ¢ < 7, 20 < (ﬁ) H Dddo- So gr(Tx) <

gr+1(t) — DR gr-1(t) DR

K—k g B
2 (%) H D =% Since g.(t) < QDZ’dO for all k,t, we can conclude that 7, >
K—-1

K—k g_1

—d,d .
d2d0 1-— <Dd1d0 ) H D 0). In another words, the existence of a sequence «; sat-

isfying condition (7) imphes that (V¢ € [0,1])gk, () < 2. Thus, the proof is accomplished.
Using Corollary 3.2, a more simple form of conditions can be derived as follows.

Corollary 3.3. Let BZ’dO be defined as Corollary 3.2. Suppose for all d, dy € N, there
exists r such that for all function c(k) : k — N with ¢(k) < Vk we have,

—=d,d
D0 k
o lim —4- <1—r%
k_)OODIH—c(k-)
= 1
o E:TZOO
>0
i—o Di"°Vk

Then, conditions of Corollary 3.2 hold.

Proof: For any M > 0, ky € N, we will construct a sequence «;, i < m, K € N
such that inequality (7) holds. Without loss of generahty assume for all k& > ko, ¢ < V&,

—d,dg

ﬁiﬁ“ 1 —r¢. For some M’ sufficiently large, suppose Z ST /7 dof = M’'. By condition
on Dd oo , k € N such K’ exists. Define «; inductively as the following: oy = kg, ap1 =

ap + Jag; am_1 < K' < a,,. Let K = ay,. By condition on Bi’do, k € N, there exists
R > 0 such that for all i <m — 1,

Qi1 —0y
1 —dd J
1_<Ed’do> S | (1_T - )ZR ®

. . (078N}
Qg1 ;i <j<ait1 0<j<ajty1—a;—1 vt



CHARACTERIZING WEAK CONVERGENCE ERROR 1983

Furthermore, R clearly does not depend on K. Therefore, the left-hand side of inequality
(7) becomes,

K— 1 Q41— Q5
Z D <Bd—do) 11 Dy >Z—ddo 9)

Qit1 a;<j<oiy1

However, it is easy to see that there exists R’ depending only on kg such that

m—1 «

R N~ RR
2 g 2 D g e 2 RRM (10)
i=1 D k=ay \/_

Since R, R’ > 0 does not depend on K and thus, does not depend on M’. Therefore, we
can choose M’ sufficiently large such that RR'M' > M. So the proof is completed.

4. Proof of Theorem 3.1. The proof is reduced to the following lemma.

Lemma 4.1. Assume GV satisfies condition of Lemma 3.1. Let cq. € Cy4, ¢ € C be such
that,

(v, G2) llee (1G7) = car (1G20) [ < €

Then we have for all € > 0 there exists 6’ > 0 such that for any § < ', any t € [0,1],
t+d<1—canyd' >d,

. GNSe(t+6 GN>Sed (144
llm L 17 ( + ) - L " ( * ) 11
N—o00 d d 1
<D LGN,S,c(t) LGN,S,cd (t) 6 1 N 5 2 D LGN,S,c(t) LGN,S,cd (t) Nd” 52
~ d" — Legn ) + ge d"+d + g d"+d,d"” d" +d - A 4d 1 62

Here for two sequence of random variable XV, YV we write lim NXV <? YV for
lim NPr[X" < Y¥] = 1. Similarly for =P, >P. Tt is obvious that Theorem 4.1 fol-

lows from Lemma 4.1. By induction from K to 1. For K it is clear (Vt)fx(t) =2 >
HLGN ,S, c ) LGN,S,cd (t)
Kd+do Kd+do

simply note that in Lemma 4.1 § can be arbitrary small; thus the 62 term can be ignored.

. For assuming Theorem 3.1 holds for fx,---, fi, then for £ — 1
1

4.1. Proof of Lemma 4.1. The proof is not hard but tedious. Within time segment
[t,t + 0), for every d, the coloring strategy ¢, cq4, each induce a transition probability on
space Qi To define such transition probability, for t < ¢, G2, | G 0y0 Q1 2> do let,

l‘dl’

Idl/\GldQ G:rd

{ieviavse, =c M -

LG ¢, [t,t+4) (G;p dIJGI d2) _

[V
and let,
GN ,C[t,t+0) . LG eltt+0) (G:I: dy> Gz d2)
L (Gx d2|GQL‘ d1) - GN:Swe(t g (13)
Ldl (Gx d1)
The propagation of deviation between Lg,N ST and Lg,N 29449 g dissolved into

LGN,S,c(t) GN,S,cd (t)
d’+d T Md'+d
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and difference between LG 6 [t:t+0) (G5 441G5 1) and LG carltit+9) (G'541|G5 4v). More spe-
cifically,

Jrgeewsa _ pgrsesuso
d

dll
/G”S 1S €Yy

- Lng e (dGm @) L% ealts) (dGTw |G )

(14)

1

/ Lg'N,SC (dG3 ) Lol (aa |G an)
G dllegdll

dr

GNSC GN,S,cdt
<HLd,, O _ G

1
N,S,
+/ g LdG,’, C() Id” HLd// ,C tt+6 ( |G$ dll) - LdG,’, ,Cd,tt+6 ( |GI d//)
dllE

‘ 1

It remains to look at the second term of the right hand side of (14) which is the difference
between the transition probability induced by ¢, cq,..

Definition 4.1. For i € VN, let path(i,d, [t,t')) denote the vertex sequence within dis-
tance d' to i, chosen by m during [t,t") with time point recorded, i.e.,

path(i,d',[t,t")) = (n1, 1) X (ng, 72) X -+ x (g, 7) (15)
where {ny,--- ,m}={j € 0gf{i} : I € t,t),n(r) =j,t<m<m<---<7 <t
7 = inf{r : 7(7) = n;}. We write PATH(GS ;) for the path space of G5 4, PATH(Qd,)
for union of path space of Gx,d, €gy.

When no ambiguity is made, we always omit G° »a and write PATH instead. We
write 6(G5 ,) = G'5 , to denote § is an isomorphism between G% ,, G ,. Note that
an 1sorn0rph1sm between two graphs, also induces an 1sorn0rph1sm between path space
between two graphs, i.e., ((ny,7) X -+ x (n;, 7)) = (0(n1),71) X -+ - x (0(ny), 7).

The coloring process on GV within time [¢,#') induces nature random measure on G5 x
PATH(G3) x G5, with d" < d'.

Definition 4.2. For, any Pa C PATH, GS 4, G3 4,

LGl (GS , Pa,GS ) (16)
fievh:30,0 (G54) = GNP (t) N Ot (path(i, d', [t,))) € Pa A Gy (t) = G35 4}
VY]
Similarly,
LGN et (GS 4, Pa) (17)
{z e VN :30,0(GS ;) = Gy (t) A0~ (path(i, d', [t, ') € Pa}
[V

Note that, since 7 is independent from G™:%¢(t), for any path, any coloring strategy ¢,
any d', d", let

LGN,Cla[tvt+6) (Gg,dll_i_d’ ) path)
LGNt (Gid’”rd’)

LGN,CI’[t7t+6) (pa/th|G§,du+d/) = (18)

we have,

LE 0 (path| G o) =P L5 (path|Grarsa) (19)
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i.e., LGV elbt+o) (path|G% 41, 4) depends only on graph structure of G¥ ,, and path and

is independent of ¢, state structure of G A

Now fix G ;» and let us look at Ld, altt+0) ( G5 ) — g, e [t+0) ( G )

/G/S

S
z,d" Egd//

/C;’IS II Egdll ’

+ [
G’ms’dll eg;igll 7|Pa|>1

=I+1I

LG (4GS, |GS ) — LS D) (4GS G ) ‘ (20)

GV ¢,[t,t+0 1S s GN jcq,[tt+0 1S s
Ld” [ ) (dede, Pa|Gm’du) - Ld” d [ ) (dGm’d”a Pa/|Gg;7d”)
|Pal<1

Ls,’, e [t:t+9) (dGm d"s Pa/|Gidu) — Lg/ o[t +9) (dGm d" Pa/|Gidu) ‘

Since 7 is independent from G™-%(t), GN¥<(t), every vertex in G ; has probability
§/(1 —t —§) to be chosen mutually indepenently by 7 during [t,¢ + §). Therefore, as
N — oo

N2, 52 < N3,
(1—t—0)2 — &2

11<P2 / LG (qPa|GS ) <P 52 (21)
|Pa|>2

For the first term I, we further dissolve the path space into two disjoint subsets,

{path € PATH (G 4) : |path| =1, path C Gy ar—a},

{path € PATH(GS 4) : |path| =1, path N Gy ar—q = 0}
and calculate the integration (20) respectively.
GN7 bARg) 6
I = / ‘Ld,, S (G 1) |GS 4, Pa) (22)
Pa:(D,G'xS,d,,ng,,
GN: Ll d aN ) (5
- Ldl( Cd [t t+ ) ( x d” |Gm d”, ) ‘ Ldl( ¢ [t t+ (P |Gm d//)
+ / ‘Ld,, G (4GS 1) |GS 4, Pa)
‘Pa‘:lApagGi’d//,danguEg‘fu

_ Lgfv,cd,[t,tw) (ngS: ”|Gid”’ Pa) . ijfv’c’[t’t*‘” (Pa|Gi,d”)

+ / LG8 (4G5 G g, Pa)

|Pa|=1APaNG*S _0,G’ ,,eg

dll d dr

— LdG”/ acd7[tat+6) ( ha d” |Gm & )
- Il + [2 + [3

LG, ) (Pa|GS )

Clearly
I, =P 0

since Pa = () implies

GN ¢, [t,t+0)
LG ettt (dGm d,,

NIRIAZE))
Gi,d”’ Pa) =P Ld” Cd[ +9) (dGI d"

Gid// y PQ)



1986 L. LIU AND Z. HOU

As to I, clearly we have as N — oo,

L<? D sup {Pr[3t" € [t, ¢+ O)w(t") = 2] - ||es (1G24, %) — cas(-|GT D)1} (23)
veGS sE[t,t+9) ’ ’
,d—d

Note that since © € G, a4, Gza C Gm g~ Therefore, ||c,(- |Gm HT) — cd,s(-|G;§’d)||1 <e
Thus,

1
Ig SD 5—6Ndu,d (24)

It remains to analyze I3. Note that the reason Hcs ( |Gm T ) Cd,s ( 5 )H < € does
not hold for z € G, 4 — G av_q is due to unknown information of Gm A d- We write Ld,,,

t aNse()y paNSea(t
LZ% for Ld/l ()7 Ld” () For Gidu g G"E’d”+d’ let

L;;f-i-d (G:}q,dwd)

Lo o (GY 0 dl G ) = =25 (25)
Ld’” (Gg,d”)
We have as N — oo,
L<? 3 sw {PrB e [t + o)) = al} (26)
xEGS SE[t,t+9)
,d' —d
) / ‘Ld”er dG:v d”+d) Ct ( |G§) o LZ7f’id (dGi,d”er) Cd,t ('|G§,d) ‘
GS IIEGS "
z,d z,d""+d
< sup {Pr[3t" € [t,t +0)m(t") = 2] - [[eas (1GTa) — ¢ (1GFa) |,
CL‘EGS SE[t,t+(5)
,d' —d
+ Y Pr[3t" e [tt+0)r(t") =]
T€GS z.d—d
M / ‘LZ;? (dGZ‘ dll+d|Gi’dN) - LZ(;I, (dGI d/l+d|Gi,d”) ‘
Gi,d” gGi,d”+d

1 1
S 5g€Dd”+d,d” -+ 6_Dd”+d,d”

S S cq,t S S
. / ‘Ld"-i-d dGm,d”+d|Gx,d”) — Ld”+d (de,d”-l-d|G1‘,d”) ‘
G «e

S S
z,d ="z,d"+d

Now noting the relation between (14) and (20), and using estimation of I, I, Iy, I,
I3, we have,

GN>Sse(t 46 GN-Sed (t+6
HLd,, ) pGSead)

(27)

1

; 62—|—6_6Nd”7d+6_Dd”+d,d”
9 e e

D GN Sc GN,S,cd t
< HLd// ) Ld// ( )

/GS S €9

- LZ(;/’ (dGI d”+d|Gid”)

1

[ / ‘Lfi’f (dG3 a4l G3 av)
GS ,CGd

dr dll dll +d

} Lo, (dG3 4)

C 30,C N2// 1 1
< LGI’/NS ® _LG,’INS da(t) + d 62+6_6Ndll+d+6_DdN+ddll i
d d 1 g2 € € ’
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/.

dr dll dll +d

Now it remains to analyze

11T = /
Gsdlleg

——L%ﬁd(m?iW+AG§wJ‘]Lgﬁd(dGin.

L§3f+ ( :Ed”+d|G:r d”)

Note that,

/. L5810 (4GS ) — L (4GS ar10)| (28)

z d”+d d”+d

/ / d//+d (dGS dll+d|GS dll) dll (dGS dll)
GS d” Eg d”

d”+d

L§71,+d (dGCE d”+d|GfE dll) LZ?/, (de dll) ‘

/ dll eg / dll dll +d

— Ly (dGS g 4l G ) {Lgf,t (dG3 ) — L (dGS ) } ‘

Therefore,

11T < /
dlleg

c,t c,t cq,t
Ldll (dGl‘ dll ‘ + HLd’N+d - Ldll’+dH1

|:L2”f—|—d (dGi,dlI+d|G§,d”) - L;?,’_tl_d (dGi,dlI+d|G§,dﬂ)] LZ,{? (dGi,dﬂ)

dr

/ LG (G5 g oGS ) | L5t (065 ,)  (29)
d//

dr’ dll +d

Cd, Cd,
= ||Lg — L"|, + || LG a — Liztall,
c,t cdt
< 2||Lgi g — Lgiiall,

Combining with Equation (27), the proof is finished.

5. Application on Large Deviation Theory. The type of weak convergence result
3.1 is needed for the large deviation theory of a generalized version of Gibbs random field.
The model is usually written as,

NF(LS™) [T p(dX)
Xi, oo, Xy|GN ~ exp{ ( )}KNP (30)

fsN exp {NF(LEN’S>} [T p(dz;)

i<N

where Xi,---, Xy|G" is the joint distribution of Xi,---, Xy given graph GV. And
FeCy(P(G7),R).
Example 5.1 (Ising model). The state space is S = {—1,1}. Fiz p € P(S) to be
p({—1}) = p({1}) = 1/2. For a graph of radius 1, G} = (V, E, f,center = v) € G?,
let ¢(G3,) = {u € V : (z,u) € B, f(x) # f(u)}|. For LY € P(G}), let Fs(L7) =
B [q (Gf’l) L} (de). Ising model on graph G s,

g7

1
X1, Xy|G ~ Eexp{NFﬁ (ij)} (31)
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In order to establish the large deviation principle (LDP) of model (30), by the framework
in [3], the rate function in LDP (if it exists) for LG"" (empirical distribution induced by
model (30)) is related to a control problem’s objective function. The control problem
seeks to minimize the following objective by choosing optimal coloring strategy c,

(6 F.Drn, G — B [ LS Dt (e (16556/M)) 1) + F (ng,s,c<1>)] (32)
i=1

i.e., the performance of ¢ depends on function F', cost function (which is Dy, Kullback-
Leibler divergence, in the control problem derived from LDP), and graph G". Then the
rate function is,
1
S\ 1s. - . N,S,c S
I(L3) = hzvrglogf éIJ\lhfs,c(l)_LS { E {/0 Dkr, <ct (-|G7r(t) (t)) Hp) dt} + F(Ld)} (33)
—d

c: lim L,
N—o0

Provided the strategy ¢ with A}im LfN’S’C(l)
—00

E [fol Dgr (ct(|G7]rv(£C(t))||p> dt] converges.

It is known that the optimal strategy is actually the conditional probability, i.e., the
optimal strategy colors a vertex 7 (i) at time i/N by the conditional (on the current
state of the whole graph GM%¢(i/N)) probability of X . However, it is reasonable to
conjecture that local strategy (recall Definition 2.5) can approximate to an arbitrary
degree of the performance of the optimal strategy. Roughly speaking, Aiffsa strategy
G2 (1) — Lgv

c is “very close” to a local strategy, then obviously both limits Nlim L,
—00

Nlim E [fol Dgy, (ct(|G7]y(gc(t))||p) dt] exist by the weak convergence result of local col-
—00

oring processes (finite range processes).

= L7 in probability exists and the sequence
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