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ABSTRACT. Blind source separation (BSS) is known to be an efficient and powerful pro-
cess to separate and estimate individual mutually independent signals acquired by various
types of monitoring sensors. This paper proposes an algorithm to identify and reduce noise
in monitoring sensor signals using blind source separation. This algorithm can be applied
in any area of monitoring. It can identify noise without any kind of previous informa-
tion of the signal analyzed. Initially, the algorithm makes the separation of the signals
that were acquired by the sensors. These signals may have suffered influence from several
noise sources. Different from the standard BSS, which requires at least two sources, this
algorithm removes the noise from each signal separately applying the mazimum signal-to-
noise ratio and temporal predictability algorithms. The proposed algorithm also produces
two outputs for each signal, the estimated original signal and the estimated noise. The
results satisfy all the proposed objectives of this work. The proposed algorithm is a great
solution for other types of applications, such as thermal profiling of wells.

Keywords: Blind source separation, Statistical analysis, Sensors, Independent compo-
nent analysis, Noise, Temporal predictability, Maximum signal noise ratio

1. Introduction. During the past years, there has been a major growth in the areas
of construction [1], biomedicine [2] among other areas, both in Brazil and the world.
With that, there has also been a very large demand on studies and researches to perform
monitoring and/or signal acquisition in these areas. There are several types of sensors
that perform these activities, for example, gauges [3] and accelerometers [4].

The resistive strain gauge has been the most used tool in experimental analysis of
stress and deformation, since this instrument is one of the most accurate mechanisms in
existence [5,6]. This type of sensor was chosen because it is very accurate. Since accurate
sensor has low noise levels, it presents a great challenge for noise analysis. This device has
wide applications in several areas, such as construction, aerospace, biomedicine, among
others [7-10]. However, as this is a very sensitive device, it also captures multiple levels
of noise, as temperature noise, Gaussian noise, among others [10-12].

The present research focuses on the problem of the noise present in the monitored
signals. It aims to develop an algorithm that can be applied in general situations, detecting
and reducing noise levels in the monitored signals. Such noise can be generated by different
types of sources, both internal and external.

With so many areas of application for this type of algorithm, it was best to develop it
in a generic way. In this way it can be applied in any area without the need to establish
parameters for the input data. This makes it extremely practical.
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To develop this algorithm, some technologies associated with this problem (noise) were
analyzed. Since current active noise canceling technology itself produces noise, the ideal
was to develop a different technology for noise reduction.

The BSS was used as a basis for being passive (no noise generation) and because of its
ample applications. The BSS only uses statistical analysis, requires no parameters of the
input variables, and does not need any kind of prior knowledge of the monitored signal
[13,14].

Zarzoso and Nandi [15] performed comparative tests between noise reduction tech-
niques. BSS and adaptive noise cancellation techniques were used in this comparison.
Their experimental results demonstrated the more robust performance of the BSS tech-
nique, which confirms the validity of this technique as a great solution for noise reduction.
Thus, the proposed algorithm is using a well-established technology for this type of ap-
plication.

The statistical analysis carried out by the BSS is based on the independent component
technique, which performs the separation of independent variables very effectively [16].
According to He et al. [17], independent component analysis is very efficient in the treat-
ment of noise. The technology chosen by the proposed algorithm is based on this feature,
because the signal analyzed is made of random variables (noise).

Ferdjallah and Barr [18] presented a solution for noise reduction on monitored signals
that also uses active filters. They reported that this type of technique is not a universal
solution for such problems. The proposed algorithm performs noise reduction, both cap-
tured by sensors as well as those generated by the monitoring equipment. This process of
noise reduction is done statistically, i.e., without using any electronic equipment, avoid-
ing the generation of more noise. It also presents itself as a universal solution for any
application in noise reduction, since it does not need any input parameter of the analyzed
signal.

Clansy et al. [19] mentioned that in EMG monitoring equipment (electromyography)
there are problems in the acquisition of the signals. These problems may be present in
the materials used in the sensors, which may not present the same characteristics, or
in possible calibration problems of the equipment. Therefore, they would acquire signals
with small distortions. To solve such problems, he suggests the use of digital filters and
adaptive filters as techniques for reduction of these noises. Once again we have the problem
of the presence of noise. However, the technology applied still uses electronic components,
which themselves produce noise.

Many researchers are interested in the area of reduction of noise. Therefore, there is
a very large amount of research proposing several solutions. These solutions increasingly
tend to use techniques that do not make use of electronic circuits [15-17,20]. The proposed
algorithm also follows this technological evolution.

The problem of noise also occurs in the monitoring of structures, as it also uses electronic
equipment that uses sensors. However, this work presents a noise reduction technique that
does not insert other types of noise generated by the use of electronic components.

There is a growing demand for techniques that monitor structures, as most existing
ones are not effective in the early stages of damage [21]. Thus, the proposed algorithm
is justified in that it presents a new technique to perform noise reduction of signals in
monitored structures. With more accurate signals it is possible to detect damage in early
stages. At this stage the signals have small amplitude (small variations); thus, any level
of noise removed is of great importance for the efficiency of the signal analyzed.

The technique chosen for the proposed algorithm is also justified by the growing study
of noise reduction in the process of acquisition of signals in real time [19,22], since it has
low computational complexity [13].
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The proposed algorithm, being validated using precise sensors that are less sensitive to
noise, such as gauges [3], can be used in applications whose sensors are more sensitive to
noise, as in probes for monitoring wells, of small or great depth.

The big problem and one of the biggest constraints of signal acquisition, as in all types
of sensors, is the inherent noise level derived from various sources, such as Gaussian and
temperature noise, and even the mixing of signals between sensors. This problem has been
researched for a long time by specialists of the area [23].

In addition to noise that can be inserted in the signals by the acquisition equipment,
there is also the lack of efficiency of noise reduction from signals obtained from sensors.
This raises the possibility that the signals used as monitoring parameters may not be com-
pletely free of noise, in spite of the fact that most equipment uses active noise reduction
systems (filters) [24].

The proposed algorithm only uses techniques purely based on the statistical analysis of
signals, which do not generate noise, as is desired [25-28]. Blind source separation (BSS),
has recently received attention in the fields of signal processing and neural networks
because of its potential in various applications, such as wireless communication, speech
recognition, and biomedical signal processing [29].

BSS processes and analyzes the data, in order to recover, acknowledge or separate
unknown sources solely from the signals obtained by a set of sensors [13]. It does not need
the input of parameters or data modeling, thus making it a very powerful tool for such
activities [14].

This technique is based on some statistical theories, such as independent component
analysis (ICA) and principal component analysis (PCA), performing a purely statistical
separation of signals [25,30-32].

The proposed algorithm used two sets of signals for analysis and validation. The first
set consists of two signals generated through the readings of gauges 1 and 2, monitoring
the same point in a practical experiment. The second was also composed of two signals.
One signal was acquired by a strain gauge on a practical experiment. The other was a
signal generated through a mathematical model using finite elements [33], simulating the
behavior of the practical experiment conducted [34].

To analyze the results, we used the signal-to-interference model (SIR) [35], the signal-
distortion ratio (SDR) and signal-to-noise ratio (SNR) [36] and the convergence of signals
(experimental signal, mathematical signal and BSS signal).

For the process of acquisition of signals in any kind of monitoring various sensors
are positioned in different locations, with the purpose of obtaining the behavior of the
structure. When sensors are positioned close to each other, part of the signals acquired
by each sensor suffers interference from neighboring sensors, thus causing interference in
the signals.

The BSS performs the separation of the signals monitored, which could have been mixed
in the acquisition process. When performing the statistical recovery of each signal, the
parts of the signal of neighboring sensors, which are considered noise, are removed and
relocated to the correct sensors. In this way, it ceases to be considered noise, and becomes
a part that completes the monitored signal in each sensor [13,14].

The problem that can occur is that the BSS needs at least two sensors to perform the
separation of interference between them [30-32]. This is a very important problem. It
becomes impossible to perform the analysis of some signals in specific applications, as for
example, the monitoring of a single probe temperature, moisture, and PH.

The proposed algorithm solved this problem, operating with only one input signal and
poducing two output signals. The first output signal is the monitored signal with con-
siderably reduced noise and the second is the noise removed from the monitored signal.
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Thus, the proposed algorithm can be implemented using only one input signal and pro-
ducing two signals after processing. The proposed algorithm identifies and removes levels
noise from the signals analyzed. The BSS only performs the separation of mixed signals
[30-32].

The traditional noise filtering systems also have the problem of not being able to char-
acterize noise signals. They only can, at most, determine the average energy of the signal
[37]. Since the proposed algorithm produces separate signal and noise outputs, it is ca-
pable of detecting and characterizing the behavior of the noise levels present in signals
monitored.

With all these functionalities, the proposed algorithm achieved its goal of having a wide
and simple application in virtually all areas that require monitoring.

In the following sections we will present, with details, the methods used, the experi-
mental conditions, the tests and the results.

The following presents all the symbols and notations used in this work.

BSS: Blind source separation;

ICA: Independent component analysis;

PCA: Principal component analysis;

STR: Signal-to-interference ratio;

STR™: Signal-to-interference ratio before application of the algorithm;
STR“: Signal-to-interference ratio after application of the algorithm:;
STRI: Signal-to-interference ratio average;

SDR: Signal-distortion ratio;

SN R: Signal-to-noise ratio;

S: BSS Input signals;

A: BSS Mixture matrix;

X: Mixed input signals with noise added;

V: Noise signals used in the BSS;

W: BSS unmixing matrix;

Y: Input signals estimated by BSS;

X;: Proposed algorithm input signals;

Xi Displaced: Input signals of the proposed algorithm with time delay;
Short cable: 5-meter long cable used in practical monitoring;

Long cable: 30-meter long cable used in practical monitoring;
Staright cable: cable laid in rectilinear form used in practical monitoring;
Curled cable: cable laid in coiled form used in practical monitoring;
F: Cost function used by BSS;

y-: Short term moving average of temporal predictability algorithm;
y-: Long term moving average of temporal predictability algorithm;
hy: Term half-life;

Ar: Lambda of long term moving average;

Ag: Lambda of short term moving average;

C : Matrix of long-term covariances;

C' : Matrix of short-term covariances;

Sj: Original signals adopted by the performance algorithm;

5’ : Estimated signs adopted by the performance algorithm;

Starget Modified version of the original signals used by the performance algorithm;
Cinterf: Interference error;

€noise: [NOISe error;

eqrif: Artifact error;
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Ps;, Ps, Psy: Orthogonal projectors;

H: Hermitian transpose;

Rgs: Gram matrix;

PDF': Gaussian probability density function;

pn: The fundamental structure of the electronic components commonly called semicon-
ductors;

1: Instantaneous current;

ip: Current average value;

15 Shot noise;

ef: Thermal noise;

e2.: Flicker noise;

d: Standard deviation (shows how much dispersion exists relative to the mean);

§2: Variance (shows the distance, in general, between the values and the expected values);
RMS: A statistical measure of the magnitude of a variable amount.

2. General Configuration of the BSS. Blind source separation (BSS) aims to esti-
mate individual mutually independent signals by observing signals acquired by sensors.
This separation is essential when working with sources that are mixed by an unknown
model and only mixed signals are available from the sensors. This technique is called blind
because the estimate is performed without any prior knowledge of the original sources, or
of the model used in the mixture [38].

The lack of prior information of the sources should not be understood as something
negative for the model. On the contrary, it is a big advantage in this case, since it makes
it a versatile tool in the exploration of diversity generated by the number of sensors used
[39].

To define the problem of BSS, consider, initially, the template for the solution to the
problem of blind signal processing shown in Figure 1, where it admits that a certain
number of signals, determined by the equation S = [S;,Ss,...,S,]T, is being sent, or
transmitted by any physical source through a channel A.

The signals, determined by the equation X = [X}, Xs,..., X,,]7, in addition to being
mixed with signals from different sources, suffer the influence of noise and interference
V (k).
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1994 D. M. SANTOS AND A. C. P. VEIGA

The problem of blind signal processing is finding the original signals S from the sensor
measurements X. The solution is to extract the original signals from the mixture through
a system T to provide an estimate of these signals given by V = [V}, Y5, ..., V,]7.

In the most general case handled by blind signal processing, we consider m mixed X
signals. These signals are combined linearly from n source signals S, and from channel A,
which is an m by n matrix. In general, we have that m > n, and the presence of noise
is given by V = [V, V5,...,V,]T. The mathematical formulation of the system shown in
Figure 1 is characterized by X = AS+V and Y = W X.

A consideration regarding the mixing system is given to the presence or absence of
noise. The definition of noise is always problematic. Therefore, there are basically two
ways to consider its presence in the system [13]. The first deals with noise as a source to
be separated from the others. It is picked up by the sensors in the same way of the other
sources [25,40]. The other approach treats noise as an element that decays and mixes
and, therefore, cannot be recovered [41-43]. Figure 1 describes this last consideration.

3. Proposed Algorithm. Initially, we apply the BSS to signals sampled by standard
sensors for monitoring civil structures, identified by vector X, being composed by the mix-
ture of parts of the signals from each sensor plus a noise level, given by V =V}, V5, ..., V,]".

Most of the equipment currently used to perform the monitoring of signals cannot
eliminate noise levels present in the reading of the sensors. In fact, this equipment may
even add some type of noise to the signals, since most of it uses noise reduction systems
based on active filters (electronic noise).

In this first stage, it is assumed that the noise is inherent to the signal as mentioned
previously [41-43], and cannot be separated from the signal. Thus we obtain only the
number of signals corresponding to the same amount of sensors used in monitoring, that
is, the vector size S is the same as the vector Y as shown in Figure 1.

In the second stage of the proposed algorithm, the application of the BSS is different
from standard applications, as in the first stage. The BSS is applied to each input signal,
to each individual sensor (first to X; only, then to X, only, and so on, and not to the
whole vector X)), of a monitoring system. In this stage, the outputs from the first stage
are considered as inputs to the BSS, which are signals estimated to have noise.

Unlike the standard BSS, the algorithm proposed uses a single input signal mentioned
above. This signal is shifted in time n units; thus, the second input signal. The BSS
algorithm is applied to these two input signals, thus generating two outputs, Y and V.
The first is the estimated signal with considerably reduced noise and the second is the
noise present in the signal X shown in Figure 2.

Input of the i i
I Shift Block Mixin, BSS |

second stage | R 1Blockg Block Estimated output |
‘ ‘ without noise i
X—i I

X — |

i =} - [ "] L > Y[ I

X, —— Mixing "| BSS ‘ !

. o 1 Lhsplace \_‘_4 I
X, N i
Noise |

|

Run up i=m i

FIGURE 2. Architecture of the proposed algorithm based on BSS technology
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As stated earlier, the analysis is done on separate signals, which can be applied when
the monitoring system has only a single sensor, or several sensors far apart, resulting in
almost zero interference between sensors. Then we may consider that in each signal there
is only the desired signal and unwanted noise, and discard the first stage of the proposed
architecture.

Figure 2 identifies the proposed algorithm input signals as “second-stage input”. It is
considered that the monitored signals were processed by the BSS algorithm. However,
these monitored signals may be completely independent from one another.

As an initial step the proposed algorithm analyzes the first signal (X;). n samples are
delayed in time, creating a second signal (X pjspiaced), having as reference the analyzed
signal (X7).

After this step, the two signals (X) and (X pispiacea) are mixed using a random mixing
matrix (A). This step is necessary because the BSS can only be applied to a mixed signal.
In the third step the BSS algorithms (temporal predictability and maximum signal noise
ratio) are applied to the two mixed signals. The number of outputs of the BSS is exactly
equal to the number of inputs. The two input signals are practically the same, (X;) and
(X1 Displaced) With a temporal offset of n samples. One output is the signal X; with reduced
noise and the other is the noise removed from the output signal Xj.

In the last step, the probability density function of the noise is determined by the
proposed algorithm. This is done to verify if the noise signal has a Gaussian density.

These steps are repeated until all monitored signals are analyzed, i.e., until ¢ = m.

We used the data acquisition system [44] with half-bridge configuration [6] for conduct-
ing the tests. The comparison parameter used was the signal-to-noise ratio of the same
equipment [44], but from its most current version [45] that features an SNR of 7 dB.

4. Theoretical Noise Level. Currently there are several definitions of noise. The rel-
evant noise definition for this work is: any unintentional fluctuation that appears at the
top of the signals to be measured. In electronic circuits there are voltage and current
noise caused by thermal fluctuations of the components [46]. There are several types of
noises that interfere with signals analyzed when electrical equipment is used to perform
monitoring [10-12].

For example, shot noise is always associated with a current flow. It appears whenever a
load is going through a potential barrier, such as a pn junction. This is a purely random
event. Thus, the instantaneous current ¢ is composed of a large number of random and
independent current pulses, with average value ip. Shot noise is usually specified in terms
of the square of its average variation over its average value [47]. This is described by
Equation (1):

F=T—wy = [ 20 1)

where ¢ is the electron charge and df is the variation in frequency. This type of noise has
a uniform density of energy.

Thermal noise is caused by the thermal agitation of the charge carriers (electrons or
holes) in a conductor. This noise is present in all passive resistive elements. This type
of noise also has a uniform density of energy, but is independent of the current flow [47].
The value of the square of the mean of the noise source of voltage or current is calculated
by Equation (2):

€2 = / AKTRdAf or 12 = / %df (2)
where K is the Boltzmann constant (1.38 x 10723(j/K)), T is the absolute temperature
in Kelvins (K), R is the resistance in Ohms of the physical means and df is the variation
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in frequency. The terms 4KTR and 4KT/R are energy densities of voltage and current,
with units of V?/Hz and A%/H>.

Since the noise sources have amplitudes, which vary randomly over time, they can
only be specified by a probability density function. Thermal noise and shot noise have
Gaussian probability density functions. Be § the standard deviation of the Gaussian
distribution, by definition, §? (variance) is the variation of the square of the average over
the average value. This means that noise signals with Gaussian distribution, the average
square variation over the mean value, i? or e? is the variance 62, and the RMS value is
the standard deviation § [47].

Theoretically, the amplitude of the noise can have values approaching infinity. However,
the probability decreases rapidly with increase in amplitude. An effective limit is £+30,
since the magnitude of the noise is within that limit 99.7% of the time. Figure 3 shows
graphically how the probability amplitude relates to the RMS value [47].
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FI1GURE 3. Behavior of the Gaussian probability density function with vari-
ables: RMS, mean values and standard deviation [38]

With several sources of noise in a circuit, the signal must be properly combined to
get, the signal from the noise. For purposes of analysis, let us consider two noise sources
combined (there may be numerous noise sources). Each has an associated noise generator
as shown in Equation (3) [47]:

e = / AKTR,df and €% = / AKT Rydf (3)

To calculate the square of the average tension, E_tz, through these two sources, let
Ey(t) = e1(t) + ex(t) be the instantaneous value [47]. So,

Ei()2 = [e1(t) + e2(t)]? = e1(t)? + ex(t)? + 2e1(t)ex(t) (4)

Since the noise tensions, e;(t) and ey(t), come from different sources, they are indepen-
dent, and the average of their product is zero [47],

2e1(t)ez(t) = 0 (5)

The result is:
E} = el + €} (6)
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So, as long as the noise sources originate from separate mechanisms and are indepen-
dent, which usually occurs, the square of the mean value of the sum of separate and
independent noise sources is the sum of the squares of the individual average values [47].

For the characterization of noise to be precise a lot of information is necessary, such
as the probability density function of the noise. However, it is not always possible to
know this information in detail. The operation of the proposed algorithm is based on the
Chebyshev inequality [37].

The standard deviation ¢, of a random variable z is a measure of the size of its prob-
ability density function. The higher the ¢,, the wider is the probability density function.
Figure 4 illustrates this effect for a Gaussian probability density function [37].

_ 1 x%2/282
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FIGURE 4. Gaussian PDF with standard deviation § =1 and § = 3 [41]

The Chebyshev inequality is a proof of this fact. This can be verified in Equation (7)
[37],

1 1
PIX —p| <K 21— 5 o Plu— K6 <X <pt+ Ko 21— - (7)

With K = 434 there is a probability of more than 99% that the amplitude of the signal
will be within that range.

The direct calculation of probability involving Gaussian distribution requires capabil-
ities of infinitesimal calculus, and even so, given the shape of the probability density
function, it is not a simple process. So, these calculations were put in a table, allowing
us to obtain the desired probability value directly [48].

The Gaussian density function depends on two parameters, p and § (mean and standard
deviation, respectively), so that, if the probabilities were put in a table directly from
this function, double-entry tables would be necessary, complicating things considerably.

Therefore, a change of variable was made. Random variable X was defined as random

variable Z through [48]:
X -
7 — T“ (8)

This new variable is called normal standardized variable. Its average is zero, and its
standard deviation is 1 [48].

The determination of parameters in relation to noise is confined to the calculation
of average values through probability density functions. The exact specification of the
punctual value of amplitude of the noise cannot be determined theoretically. With this,
the contributions made by the proposed algorithm become even clearer and decisive for
the study. It contributes considerably to the characterization of noise in signals monitored
by electronic equipment. This is because the proposed algorithm can estimate the noise
and separate it from the monitored signal.

The proposed algorithm considers the noise present in this type of monitored signal as
a Gaussian probability density function.
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5. Signals Analyzed. Some experiments and laboratory analyses were performed to
have enough data to develop a thesis about the reduction of noise even after the output
from the acquisition equipment.

The first experiment was performed using two resistive strain gauges of 5 mm each,
monitoring the same point of deformation. They were set side by side so that they could
monitor the same angle of deformation of a specific point of a platform.

For each strain gauge two lengths of cables were used, one with 5 meters and the other
with 30 meters. The way these cables were set was also alternated, straight and curled.
One test was made where we used a moving magnet within the curled 30-meter cable.

All of the settings of these tests were carried out in order to generate different noise levels
at each input of the equipment. If the equipment has an efficient noise reduction system,
the output signals will have practically the same values in all cases, and consequently, the
proposed algorithm will find a null noise level in the output of the signals.

The signals used in the first input set are described in Figure 5, describing the variations
of each strain gauge analyzing the same point of reference.
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FIGURE 5. Deformation signals monitored during the implementation of
the practical experiment using two gauges

6 tests were executed, using the possible configurations with the variations mentioned
previously, as shown in Table 1.

The second set of input signals used by the proposed architecture is described in Figure
6, describing the signal of the practical experiment conducted in the laboratory, and its
corresponding signal, determined by the numerical model [34] built using finite elements
[33].

6. Maximum Signal-to-Noise Ratio Algorithm. The blind source separation algo-
rithm is based on the characteristic that signal-to-noise ratio (SNR) is maximum when
statistically independent source signals are completely separable. Source signals are re-
placed by moving average estimated signals. The function of covariance matrices of the
signals and noise sources is expressed by the widespread problem of eigenvalues, and the
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TABLE 1. Configuration of the physical parameters of the practical exper-

iments versus theoretical noise levels

1999

Test, Equipment Cable Length Cable Layout Theoretical
Number Input Short | Long | Straight | Curled | Noise Level
Test 1 Stra%n Gauge 1 X X Gr?ater
Strain Gauge 2 X X Minor
Test 2 Stra}n Gauge 1 X X Minor
Strain Gauge 2 X X Greater
Test 3 Stra%n Gauge 1 X X Minor
Strain Gauge 2 X X Greater
Test 4 Stra}n Gauge 1 X X Minor
Strain Gauge 2 X X Greater
: T
Test 5 Stral.n Gauge 1 X X Gr?ater
Strain Gauge 2 X X Minor
Test 6 Stra}n Gauge 1 X X Minor
Strain Gauge 2 X X Greater

'Test performed with a magnet moving within the curled cable.
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FIGURE 6. Deformation signals of the experimental and numerical models [36]

unmixing matrix was developed to address the widespread problem of eigenvalues without
any interactivity [49]. Thus, low computational complexity is applied.

Some authors have stated that the temporal predictability of a mixed signal is not
always smaller or equal to its source signals. With that in mind, this work also performed
the maximum signal-to-noise ratio algorithm, which is defined by a signal-to-noise ratio
function [29].

According to the blind source separation model, the error between the original signals
and the estimated signals is considered as noise, so the formula of the signal-to-noise ratio
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is
T T

S-S S-S
——— =101
erer o T T T ©)

The original s signals are unknown. Therefore, a moving average of the y signals is

used instead of the original s signals. Consequently Equation (9) can be rewritten,
s-sT y-y

SNR =10log —— = 10log — =

e-el G —y)-G-y"

?:0 y(n — j) is the moving average of the y signals, p integer is the size

SNR = 10log

(10)
1
P
of the moving average (p less than 100). To simplify the calculation, g in the numerator
is replaced by y. The maximum signal-to-noise ratio cost function is defined as:

T
B A —— (11)
G =y G-y
where y = Wa, y = Wx, where & is the moving average mixture signals x, given by

&) = > yln ) (12)

where g(n) =

F(y)=SNR =10log

Optimizing the cost function, Equation (11) can be rewritten [29],

y- -y’ Wz x2Tw?T

= 10log — —
W@E—z) (2—x)"WT

F(W,x) = 10log — =

( ) G-y - G-y"
WCwWT 1%

— 10log ——=—— = 10log — 13
SWeEwWT U (13)

According to Equation (13), derivative F' in relation to W is,
oF  2W, ., 2W, -
=—C—-—"C 14
ow Vi Ui (14)
The gradient of the derivative F' in function of W is zero, obtaining Equation (15)
[29,43],

W,C = %W’ié (15)

(3
The results presented in this article were obtained using the eigenvalue function of

Matlab, being W = etg (C,é). All the K can be then estimated by y = Wz, where

each line of y corresponds exactly to one estimated y; signal, as in the algorithm of
temporal predictability.

7. Algorithm of Temporal Predictability. The measure of temporal predictability
is defined and used to separate signals from linear mixtures. For any set of signals from
statistically independent sources we have the property: The temporal predictability of
any mixed signal is less than, or equal to any one of its original source signals. This
shows that this property can be used to retrieve the source signals from a set of linear
mixtures of these signals. This property determines an unmixing matrix that maximizes
the value of Temporal Predictability for each recovered signal. This matrix is obtained
as the solution for the problem of eigenvalue [50].

Consider a set K of statistically independent sources signals s = (S, S,,...,S). A
set of M > K linear signal mixtures = (X1, Xs,..., Xy/)? in s may be formed with a
mixing matrix A (M x K):x = As. If the elements in A are linearly independent, then
any signal source s; can be recovered from & with a W, matrix (1 x M) : s; = W;x. The
desired solution here is to find an unmixing W = (W1, W5, ..., W;)T so that each vector
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value W; recovers a different signal y;, where y; is an estimated value of s; source signal
for signals K = M.

The method for recovering source signals is based on the following theory; the tem-
poral predictability of a mixed signal «; is usually lower than any of the source signals
contributing to ;.

This parameter is used to define the temporal predictability measure F(W;, x), which
is used to estimate the relative predictability of a retrieved signal y; by a matrix W;,
where y; = W;x. If signal sources are more predictable than the linear mixtures y; of
these signals, then the value of W;, which maximizes the predictability of an estimated
signal y;, should produce a source signal [50]. The definition of predictability of an F'
signal is defined as:

V(W; Vi v (U7 —yr)?
F(W;,x) = logFM =log — = log ZT*I({/\/ Y )2 (16)
U(VVU m) UZ 22:1 (y - yr)

where y, = W;x, is the value of a signal y in time 7, and x, is a vector of K values of
signal mixtures in time 7. The term U; reflects the extent to which y, is provided by a
short-term moving average y, of the values in . On the contrary, the term V; is a measure
of the overall variability in y; therefore y, is provided by a long term moving average y,
of the values in y. The predicted values y, and g, of 4, are both exponentially weighted
sums of measured signals until time (7 — 1), in such a way that the recent values have a
coefficient greater than those in the distant past [50]:

Yr = AP+ (1 = Ag)y—1y 0<Ag <1 (17)

Yr = MYy + (1 = A)yer—y 0< A <1 (18)

The half-life Ay, of A, is much greater (typically 100 times greater) than the half-life hy,
of Ag. The relation between half-life h and parameter X is defined as A\ = 27 .

Note that maximizing only V; would result in a high variance signal with no constraints
on its temporal structure. In contrast, minimizing only U would result in a DC signal.
In both cases, trivial solutions would be obtained for W, because V; can be maximized
by setting the norm of W, to be large, and U can be minimized by setting W; = 0. In
contrast, the ratio V;/U; can be maximized only if two constraints are both satisfied: (1)
y has a nonzero range (i.e., high variance) and (2) the values in y change slowly over time.
Note also that the value of F' is independent of the norm of W;, so that only changes in
the direction of W; affect the value of F' [50].

If the value of F' associated with a signal mixture z; is not undefined, then the value
of F' of each mixture is greater than (or equal to) the value of F' of each source signal in
this mixture [50].

The half-life (k) determines the size of the moving averages h; (long term moving
average) and hg (short term moving average). This half-life determines the number of
elements that will be used to calculate the averages. A big half-life (h) determines a big
A, resulting in data with high correlation, but limits the sensitivity of individual or small
variations in the signals. Whereas a small half-life (h) determines a small A, resulting in
data with minor correlation, with greater sensitivity of individual and small variations.
Since the variable \ establishes the proportion that makes up the estimated values y,
and Y. They are the sum of the previous estimated average signals ¥,y and g(>_;) and
previous estimated signals y(-_1) as can be seen this relationship in Equations (17) and
(18).

To estimate an individual signal, we should consider a scalar mixture signal y; formed
by the application of a matrix W;, of 1 x M, to a set of signals x of K = M. Given that
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y; = Wiz, Equation (16) can be rewritten as:

W,CWr
w,Cwr
where C' is a matrix of long-term covariances between signals and mixtures and C is
the matrix of short-term covariances. The long term covariance Cj; and the short-term

F =log (19)

covariance Cj; among the mixtures are defined as:
n

Cij = Z(ww — Zir)(Tjr — Tjr) (20)

Gy =3 @ir — ) (250 — 757) (21)

Note that C and C need to be calculated only once for a given set of mixed signals and
that the terms (x;, — &;;) and (x;; — &;;) can be precalculated by using fast convolution
operations [51].

The upward gradient F' in relation to W; can be used to maximize F', maximizing the
predictability of 3;. The derivative of F' in relation to W; is:

2W,; - 2W; ~

*C - —C 22

7 i (22)

To estimate all sources simultaneously existent, the gradient of F' is zero in the solution
to Equation (22) [29,50]:

VW, F =

wie - Vwe 23)

The extremes in F' correspond to the values of W; that satisfy Equation (23), which
takes the form of the widespread problem of eigenvalues and eigenvectors [49]. The so-

lutions for W; can be obtained as eigenvectors of matrix é_lé>, with corresponding

eigenvalues v; = % The results presented in this article were obtained using the nonsym-

metric eigenvalue function of Matlab, being W = eig (C, C’) All K signals can then be

estimated by y = Wz, where each line of y corresponds to exactly one estimated signal
yi [50].

8. Algorithm Performance Metric: Signal-Distortion Ratio (SDR) and Signal-
to-Noise Ratio (SNR). The method presented will be applied in 2 performance mea-
sures, SDR (signal-distortion rate) and SNR (signal-to-noise ratio) [36]. The algorithms
used as metrics to evaluate the results can be applied to all the BSS problems. The mixing
system and the unmixing technique do not need to be known.

Performance measures are found for each estimated Sj comparing them with a given
original source S;. If necessary, 5}- can be compared with all sources (S;) 1 < j' <n and
the original sources can be selected as those that present the best results.

The calculation of the criteria involves two successive stages. In the first stage, the
estimated signal S'j is decomposed as Equation (24),

Sj = Starget + Cinterf + €noise T €artif (24)
where Syrger = f(S;) is a version of S; modified by a distortion allowed f € F' (where
F' is a set of distortions), and where €jnierf, €noise and eqpir are, respectively, interference,

noise, and artifact errors. These four terms represent the part of Sj perceived as coming
from the desired source S;, from other unwanted sources (Sj) j' # j, and from noise (V;)
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1 <i < m [36]. In the second stage, the energy rates to evaluate each one of these four
terms are calculated.

A performance criterion for the most common case was proposed, when the distortions
allowed in Y,, are invariant in time. First, we show how to decompose Y,, into four terms
as in Equation (24), and then we define the relevant energy rates between those terms.

When A is an instant time invariant matrix and when the mixture is separated using
an instant time invariant matrix W, S'j can be decomposed as,

m
Sj=(WA);S;+ ) (WA)Sy+ > W;iVi (25)
i'#i i=1

Since (WA);; is a time invariant gain, it seems natural to identify the three terms of
this sum as Syarget, €interr AN Engise, respectively (eqmr is zero here). However, Equation
(25) cannot be used as a definition of Syarget, €interf, €noises and €qip since the mixing and
unmixing systems are not known. Also, the first two terms of Equation (25) cannot be
perceived as separate objects when an unwanted source Sy is highly correlated with the
desired source Sj.

With that, the proposed decomposition is based on the orthogonal projection. Let us
denote [[{y1,...,yr} the orthogonal projector onto the subspace generated by vectors
Y1,...,Yk- The projector is a matrix 1" x T, where T is the size of these vectors. We
consider three orthogonal projectors [36]:

Ps; = []{s;} (26)
Py :=[J{(Sy)1 < j' < n} (27)

Poy = [J{(Si1 < j' <n, (V)1 <i <m} (28)

The estimated sources S”j are decomposed as the sums of four terms [36]:

Starget = PSj SA’] (29)
eime,,f = Psgj — st S’j (30)
€noise +— PS,VSj - PSSj (31)

Cartif *= Sj - PS,VSj (32)

The calculation of Sy4,4e; is direct as long as it involves only a simple integer product:
Starget = (S;,57S;/|1S;1|*. The calculation of €4 is a bit more complex. If the sources
are mutually orthogonal, then e = 2j1¢2<5j, Sj/>Sj,/_| |S;7||*. On the other hand, if you
use a vector of coefficients C such that PsS; =377 Cy Sy = C"S (where (.)"" denotes

. . o

a Hermitian transpose), then C' = R} [(Sj, S1)y..,(Sj, Sn)| , where Rgg is the Gram
matrix of sources defined by (Rss);; = (Sj, Sj). The calculation of Pgy proceeds in a
similar way. However, most of the time we can assume that the noise signals are mutually
orthogonal and orthogonal to each source, so that PsyS; & PsS; + > i (S;, Vi)Vi/||Vi| |2
[36].

Starting from the decomposition of S; of Equations (26) to (32), we can define numeric
performance criteria for the calculation of energy rates expressed in decibels. We define
signal-distortion rate as [36]:

||Starget||2

+ €noise + eartif| |2

SDR = 101ogy, Tenms (33)
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the signal-to-noise rate [36]:

| |Starget + einterf| |2

||€noise||2

(34)

9. Algorithm Performance Metric: Signal Interference Ratio (SIR). To evaluate
the algorithm used in this work, we applied signal-interference ratio (SIR) [35], described
below. The input SIR, SIR™, measures the performance of mixed signals before they are
processed by the proposed BSS architecture. Being x; the observation of channel ¢ with
Equation (35),

T; = Z a;,;Sj + U (35)
7=1

where a; ; denotes the coefficients of mixtures, s; is the original source, v; denotes noise,
and m is the number of sources. SIR™ calculates the rate of £’s source signals a; jsj as
observed in Equation (36),

aigllskl”

SIR™(i) = 101og (36)

O i — a skl
When all n samples are considered, the maximum SIR" is defined by Equation (37)

35,
SIRI™ = max;_; ., SIR:" (i) (37)

.....

The same approach is used to set the output SIR, SIR”. Being A, and S,, respectively,
the mixing matrix and the signals fonts derived from the BSS method; and being, A and
S, the real matrix mixing and signal sources, respectively. The order of the signal sources
estimated at S, can be changed to correspond in S to solve the following optimization
problem,

P, = argminp ||S — PTS,||% (38)
where P is a permutation matrix. So, A= AOPO and S = P(TS'O is defined as estimated

mixing matrix and source signals respectively. SIR® calculates the rate of k’s signals
a; xSk derived from the BSS solution as Equation (39) [35],

aigllsk]|”

SIR" (i) = 101og (39)

10 ||az‘,k5k - di,j§k||2

where a, ; and 5, are a; ; and sj estimated in Aand S , respectively. The maximum output
SIR for a source signal k is defined as,

SIR™ = max;_ ., SIR" (i) (40)

Therefore, the SIR for source signal k is,
SIRI, = SIR}™ — SIR}" (41)
and the average SIR for all strong signals is [35],

1 m
SIRI = — > " SIRI, (42)
k=1

For the analysis of this work Equations (37), (40) and (42) are evaluated, since they
establish the maximum signal-interference ratios of inputs before passing by the BSS and
estimated signals after processing of the BSS, and the average rate.
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10. Signal Analysis. Initially, a verification of the signal given by the proposed BSS
was made, then identified as noise and if it has a Gaussian probability density function
(PDF) [52], because this type of function is characteristic of noise. This hypothesis was
confirmed as really being a Gaussian PDF. Figure 7 shows the probability density function
of the error determined by the BSS proposed in Figure 5.

Table 2 shows the convergence rates between the signals of Gauges 1 and 2. This rate
was determined by comparing the original signals, and after the original signals after the
application of the BSS proposed.

Table 3 identifies the values determined by the metrics of performance [35,36] comparing
the original signals with the proposed architecture.

Table 4 describes the results for the measurements of signal-distortion ratio (SNR),
signal-to-noise ratio (SNR) [36] and signal-interference ratio (SIR) [35] of the second set
of signals analyzed [34].

Table 5 shows the result of the convergence between the signals, where the difference
between the points of the signal from the proposed BSS and the numerical model is much
smaller than the difference of the experimental and the numerical signal.

600 T T T T T T

500 a

400 .

300 .

200+ .

100 .
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-

FIGURE 7. Behavior of the probability density function of the noise shown
in Figure 5

TABLE 2. Convergence rate of signals (Gauges 1 and 2) — analysis between
original signals — analysis between proposed algorithm signals

Signal Convergence (%)
Test Number | Between Original | Between Proposed
Signals Algorithm Signals
Test 1 17 83
Test 2 18 82
Test 3 18 82
Test 4 16 84
Test 5 14 86
Test 6 9 91
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TABLE 3. Metrics between proposed algorithm values and original values
of the first set of signals

Metrics between the Proposed Algorithm Signals
and Original Signals
Test Number Maximum Signal- Temporal

To-Noise Ratio Predictability
SNR | SDR | SIR | SNR | SDR | SIR
Strain Gauge 1 12.3 12.3 | 3.45 | 10.55 | 10.55 | 2.52
Test 1 Strain Gauge 2 | 124 | 12.4 | 351 | 10.56 | 10.56 | 2.58
Strain Gauge 1 | 11.82 | 11.82 | 3.10 | 10.65 | 10.65 | 2.62
Test 2 Strain Gauge 2 | 11.77 | 11.77 | 3.03 | 10.62 | 10.62 | 2.58
Test 3 Stra?n Gauge 1 | 11.08 | 11.08 | 2.96 | 10.55 | 10.55 | 2.53
Strain Gauge 2 | 11.04 | 11.04 | 2.91 | 10.44 | 10.44 | 2.49
Strain Gauge 1 | 11.52 | 11.52 | 3.01 | 10.11 | 10.11 | 2.35
Test 4 Strain Gauge 2 | 11.47 | 11.47 | 2.96 | 10.07 | 10.07 | 2.30
Test 5 Strain Gauge 1 | 10.98 | 10.98 | 2.89 | 10.28 | 10.28 | 2.41
Strain Gauge 2 | 11.12 | 11.12 | 2.93 | 10.31 | 10.31 | 2.48
Test 6 Strain Gauge 1 | 11.72 | 11.72 | 3.08 | 9.58 | 9.58 | 2.25
Strain Gauge 2 | 11.64 | 11.64 | 3.02 | 9.52 9.52 | 2.20
Average 11.57 3.07 10.27 2.44

TABLE 4. Performance measurements: signal distortion ratio, signal noise
ratio and signal interference ratio — signals of the experimental and numer-
ical models

Performance Measurements (dB): SDR and SNR
Maximum Signal-To-Noise Ratio Temporal Predictability
Proposed Proposed Proposed Proposed

Algorithm — Algorithm — Algorithm — | Algorithm —

Experimental Numerical Experimental Numerical
SDR 10.961010 11.032002 5.566444 6.051403
SNR 10.961098 11.032089 5.566497 6.051485
SIR 2.99 3.81 1.78 1.97

TABLE 5. Convergence rate between experimental — numerical signals and
proposed algorithm — numerical signals

Convergence between the Signals (%)
Experimental Signal | Proposed Algorithm Signal
Numerical Signal Numerical Signal
11 89

11. Conclusions. We conclude, analyzing Figure 7, which represents the probability
density function (PDF) of the noise found by proposed algorithm, that this function
really is a Gaussian distribution. Therefore, it is characterized as a noise distribution [52].

We concluded that the proposed algorithm performs as expected. Performance metrics
(Table 3) were compatible with the theoretical noise levels (Table 1) indicated initially in
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the experimental simulations. This proves that the proposed algorithm can detect the dif-
ferent noise levels and establish a true relation with the rates determined by performance
metrics.

Table 2 shows the convergence rates between the original signals and the signals after
being processed by proposed algorithm. We must point out that different noise levels were
inserted in the two sensors used to monitor deformation of the same point. Analyzing
the rates it is possible to confirm that the percentage of convergence between the signals
after the application of the proposed algorithm is much higher. This shows greater noise
reduction in the signals, because without the presence of any kind of noise the signals
would be exactly the same (convergent).

The convergence rate between the signal of the proposed algorithm and the numerical
model was much larger than between the experimental signal and the numerical model.
This shows that there is noise, identified by the proposed algorithm, which came from the
signal acquisition, as shown in Table 5.

When analyzing the SDR and SNR measurements, we realize that there was a significant
difference. Besides this, there was a gain of almost 4 dB in the proposed algorithm signal
in relation to the experimental signal, thus, significantly reducing the level of noise in the
signal, confirming the efficiency of the proposed algorithm. The slight difference between
SNR and SDR is due to the fact that the component for the e,y measure is small. The
final noise level that was 1077 [45], specified by the equipment utilized, went to around
107! after the application of the proposed algorithm.

The SIR metric also accompanies the development of other metrics (SNR and SDR),
determining values between 3 and 4 dBs. This metric performs the calculations between
the SIR™ (input-signal) and SIR* (output - proposed algorithm signal), which represents
the difference between the two levels of noise.

The efficiency of the maximum signal-to-noise ratio algorithm is evident when compared
with the other algorithm used by the proposed algorithm. The temporal predictability
algorithm presented values of metrics of performance below those determined by maximum
signal-to-noise ratio.

The objectives of the proposed algorithm were achieved successfully based on the nu-
merical parameters found in the simulations. With that, this algorithm is a great solution
for noise reduction in signals monitored by electronic equipment. Another advantage of
this algorithm is the fact that it can be used in any application of noise reduction. This
is because it does not rely on prior information from the monitored signals, and works
with one or more input signals.

As a future proposal, it would be interesting to carry out the study of this algorithm
in signals from sensors more sensitive to noise. The characterization of thermal profiling
in wells would be a very interesting application for the algorithm proposed in this work.
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