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ABSTRACT. The aim of this paper is to investigate information aggregation methods un-
der trapezoidal interval type-2 fuzzy environment. Some Einstein operational laws on
trapezoidal interval type-2 fuzzy numbers are defined based on FEinstein sum and Ein-
stein product. Then, we present some trapezoidal interval type-2 fuzzy aggregation op-
erators based on the Einstein operations: the trapezoidal interval type-2 fuzzy FEinstein
weighted averaging (TIT2FEWA) operator and the trapezoidal interval type-2 fuzzy Fin-
stein weighted geometric (TIT2FEWG) operator. Based on the TIT2FEWA operator,
TIT2FEWG operator and the fuzzy mean possibility degree, a new method of multi-
attribute decision making with trapezoidal interval type-2 fuzzy information is proposed.
Finally, an illustrative example is given to verify the developed approaches and to demon-
strate its practicality and effectiveness.

Keywords: Fuzzy multi-attributes decision making, Interval type-2 fuzzy sets, Einstein
operator, Fuzzy mean possibility degree

1. Introduction. The concept of type-2 fuzzy sets (T2 FSs), initially introduced by
Zadeh [1], can be regarded as an extension of the concept of type-1 fuzzy sets (T1 FSs).
The main difference between the two kinds of fuzzy sets is that the memberships of T1
F'Ss are crisp numbers whereas the memberships of T2 FSs are T1 FSs [2]; hence, T2
F'Ss involve more uncertainties than T1 FSs. Since its introduction, T2 FSs are receiving
more and more attention. Because the computational complexity of using general T2 FSs
is very high, to date, interval type-2 fuzzy sets (IT2 FSs) [3] are the most widely used T2
FSs and have been successfully applied to many practical fields [4-7].

In recent years, some authors have applied IT2 FSs theory to the field of fuzzy multi-
attributes decision making (FMADM). For example, Chen and Lee [8,9] presented TOP-
SIS method and ranking values method to handle FMADM problems based on IT2 FSs.
Wang and Liu [19] developed an approach to handling the situations where the attribute
values are characterized by IT2 FSs, and the information about attribute weights is par-
tially known. Chen [10-14] presented some methods: ELECTRE method, LINMAP
method, PROMETHEE method, Likelihoods method and TOPSIS method, to handle
FMADM problems under IT2 fuzzy environment. Qin and Liu [15] presented an interval
type-2 fuzzy decision making approach based on the combined ranking value. Gong et
al. [16] presented a method based on geometric Bonferroni mean operator of trapezoidal
interval type-2 fuzzy numbers.

However, it must be noticed that the above aggregation operations are all based on the
arithmetic operations laws [8,9] of IT2 FSs for carrying the combination process. Up till
now, only a small number of studies [17] have focused on the operations laws of IT2 FSs.

2011



2012 Y. GONG, L. DAI AND N. HU

And it is well known that Einstein t-norms and Einstein t-conorms are two prototypi-
cal examples of the class of strict Archimedean t-norms and t-conorms [18]. Moreover,
in literature there is still little research on aggregation operators using the Einstein op-
erations for aggregating a collection of IT2 FSs. Wang and Liu [19,20] brought forward
the intuitionistic fuzzy Einstein weighted geometric (IFEWG) operator, the intuitionistic
fuzzy Einstein ordered weighted geometric (IFEOWG) operator, the intuitionistic fuzzy
Einstein weighted averaging (IFEWA) operator and the intuitionistic fuzzy Einstein or-
dered weighted averaging (IFEOWA) operator successively. Zhao and Wei [21] developed
the intuitionistic fuzzy Einstein hybrid averaging (IFEHA) operator and intuitionistic
fuzzy Einstein hybrid geometric (IFEHG) operator. Zhang and Yu [22] proposed the Ein-
stein based intuitionistic fuzzy Choquet geometric (EIFCG) operator and Einstein based
interval-valued intuitionistic fuzzy Choquet geometric (EITFCG) operator. Zhao et al. [23]
also propose some intuitionistic trapezoidal fuzzy aggregation operators based on Einstein
operations to aggregate the intuitionistic trapezoidal fuzzy numbers.

Therefore, the aim of this paper is to enrich trapezoidal T2 FSs theory by investigat-
ing information aggregation methods utilizing Einstein t-conorm and t-norm when the
decision information takes the forms of trapezoidal interval type-2 fuzzy numbers (TTT2
FNs), and developing Einstein operations based on the operators. The Einstein operator
laws have been extended to the interval type-2 fuzzy sets to organize and model the uncer-
tainties better within multi-attribute decision analysis. The Einstein operations laws and
some properties on TIT2 FNs are presented. Then a new method to deal with FMADM
problems is presented based on Einstein operators and the fuzzy mean possibility degree
of TIT2 FNs.

The remainder of this paper is organized as follows. Section 2 reviews basic concepts
and arithmetic operations related to the trapezoidal interval type-2 fuzzy sets (TIT2 FSs).
Some FEinstein operations laws on TIT2 FSs are given in Section 3. Section 4 presents
a new method for calculating the possibility degree of two TIT2 FSs based on the fuzzy
possibility mean values. Section 5 introduces a procedure for FMADM problems based
on TIT2FEWA operator, TIT2FEWG operator and the fuzzy mean possibility degree of
two IT2 FSs. Section 6 uses global supplier selection problem to illustrate the proposed
method. The conclusions are discussed in Section 7.

2. The Basic Concepts and Arithmetic Operations of IT2 FSs. In this section,
the basic concepts of I'T2 FSs are introduced below to facilitate future discussions.

Definition 2.1. [4] For a type-2 fuzzy set fl, if all pi(z,u) = 1, then A is called an

interval type-2 fuzzy set, i.e.,
i- / / 1, ) 1)
rzeX JueJx

Definition 2.2. [4] The upper membership function (UMF) and the lower membership
function (LMF) of an IT2 FS are type-1 membership functions, respectively.

Definition 2.3. [24] An IT2 FS is called trapezoidal interval type-2 fuzzy numbers (TIT2
FSs) where the UMF and LMF are both trapezoidal fuzzy numbers, i.e., A= (AU, AL> =

((a?, af, a¥, a¥; H, (AU) , Hy (AU» , (af, ak, o, al; H, (AL> , Hy (AL»), where

H; <AU) and H; <AL> (7 = 1,2) denote membership values of the corresponding elements

where Jx C [0, 1].

U L :
ajyy and aj,, respectively.
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FIGURE 1. The trapezoidal interval type-2 fuzzy set A

In this paper, we briefly describe some basic operational laws related to trapezoidal
interval type-2 fuzzy numbers, where the reference points and the heights of the upper
and the lower membership functions of I'T2 FSs are used to characterize T1 FSs. A TIT2
FS A, is shown in Figure 1.

Definition 2.4. [8] Suppose that A, and Ay are two TIT2 FSs, where A} = (AIU,/LLL) =
((alUl, ath, alh, by By (AV) Hy (A7), (o, aby, ok, aby By () H (AF))) and
= (A8, 48) = ((abi, % o, abis 1 (A)  Ha (A7), (abi, aby, ok, akis B0 (AF),
( ))) The arithmetic operations between TIT2 FSs are defined as follows:
1) Aed = (A 4t) e (4, Af)
= <(a1U1 + ab), a¥, + a5, oy + a%;, aY, + af;

min (H1 (Ag’) JH, (Ag )) ,min (H2 (Ag’)  Ho (Agf ) )) , 2)

L L L L L L L L.
(an + gy, ayy + Ay, A3 + Gy, Ay + gy

min (Hy (Af), Hy (A%) ) min (H, (4F) 5, (45))))

A A AU AL AU AL

2) A ®A = (AI,A1> ® (AZ,A2>
_ U U U U U U U U.
= ((an X Gy, A1g X Gog, A1z X Qoz, A1y X Ggy;

min (H1 (Af{) JH, (Ag )) ,min (H2 (Ag’)  Ho (Ag ))) (3)

(afl X a%p an X a%m a1Lg X GJ%S) af4 X a§4;
min (H1 (Af) H, (Ag)) . min (H2 (Af) H, (Ag))))

—k (AIU,AL>
((kau,kau,kam,kau,f-ll (A ) H, (A?)) : (4)
(kau, kal,, kals, kaly; Hy (Af) , Hy (flf)))
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(afh)" . ()" (o) (aty) s Hy (A7) Ha (AY) ). ()
(ah)", (ah)" (ah)", (ahy)" (ah) " H (AF) By (AF))

3. The Einstein Operations Laws and Aggregation Operators of TIT2 FSs.
In fact, the theory of aggregation operators has an important role since the beginning
of fuzzy set theory. All types of the particular operators were included in the general
concepts of the t-norms and t-conorms, which satisfy the requirements of the conjunction
and disjunction operators, respectively. Various t-norms and t-conorms families can be
used to perform the corresponding intersections and unions of fuzzy numbers. Einstein
operations include the Einstein sum®, and Einstein product®,, which are examples of t-
norms and t-conorms, respectively. They are defined as follows [18]: The Einstein sumé,
use a t-conorm and Einstein product®, is a t-norm, where

a-+b B a-b

Trad “®P=Traoaasyy "edebrr (6)

a®. b=

3.1. The Einstein operations laws of TIT2 FSs. Hu et al. [17] pointed that some
drawbacks in Definition 2.4 about arithmetic operations of TIT2 FSs. Thus, for an inter-
section of IT2 FSs, a good alternative to the algebraic product and sum is the Einstein
product and Einstein sum, which typically gives the same smooth approximations as the
algebraic product and sum. Moreover, the Einstein operations have been used in some
application fields. Therefore, motivated by the operations on the I'T2 FSs, the generalized
intersection and union on two TIT2 FSs fil and /~12 become the Einstein product (denoted
by A; ®. 1212) and Einstein sum (denoted by A @, 1212) of two TIT2 FSs, respectively, as
follows.

Definition 3.1. The Finstein sum and product between the two TIT2 FSs
A = (4, ar)

= ((ath, abh, s, alis Hy (V) H (V) (aby, aty, oy, ab 1o (AF) o (AF))
and
Ay = (Ag,gg)

= ((abi, oty abi ol 1, (A5)  H (), (aky, oy, ady, ok oy (AF)  H, (AF)))
s defined as follows:

U U U U U U U U

/LEB 1212— afy + agy a1y + Qg9 ay3 + Qg3 A1y + Qg
€ - b b ) )
14+al)-dy)" 1+d¥, a8, 1+al5 a5 144l - d)

min (11 (A7) 11 () min (11 (7). 12 (49)) )

L L L L L L L L

( ay; + ag; ayy + Qg Ay + Ggy ayy + gy
L . . L° L . . L° L . L° L . L
]_ + all * CL21 ]. + a/12 * CL22 ]. + a13 M CL23 ]. + a14 M 024

min (11, (4¢) 1 (4F)) min (11 (1) .1 (1)) ) )

(7)
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Al ®5fi2 = alUl.aZUl a%-a%
I1+(1—-d)-(1—-df) 1+ (1 -dY) (1 —ads,)’
afy - aby afy - a3,

T+ (1—alh)-(1—af) T+ (1—af)-(1—aF)’
win (11, (7)1, (32) ) i (1 (36) 1 (32)) ).

< a11 a21 a12 a22
1“‘(1_@%1) (1 _a§1), 1+(1—af2) : (1_‘1%2),
alL3 : 053 aﬁ a§4

T+ (I—ab)-(1—ak) 1T+ (1 —ab)-(1—ak)’

win (11, (38) 11, (45) ) i (12 (A7) 12 (45)) )
Definition 3.2. The FEinstein scalar multiplication operation between the TIT2 FSs

A
(AU,AL) = ((a?,ag,ag,af;hﬁ (AU> , Hy (AU>> , (af,a%,aé,af;]—[l (AL> , Hy (AL)>

and the crisp value k is defined as follows:

kA= (<(1+a?)’“—(1—a’{)’“ (tah) — (- ab) (1+ap)t — (1—a)’

(1+a) + (1 —al)" " (1 +a)" + (1 —ad)" " (1+af)" + (1 —af)"
(1+a4) (1_04). iU iU
(14 o a1 () e >>’

1+a1 — alL)k (1+a§)k—(

( (
(1
(1

1+a1 b 1—a1) " (1+ab) 4

N
+a4 (1—a4) _HI(AL> H2(AL) )
+ab)’ + (1 —af)"

(8)

where k > 0.

Definition 3.3. The Einstein scalar geometric operation between the TIT2 FSs
A= (av,ar)

= <<a?,ag,ag,af;H1 <AU) , Hy <AU)) , (af,a%,a%,af;]—[l (AL> , Hy (AL))>

and the crisp value k is defined as follows:
e ([ 2@ 2 (af)" 2 ()"
2—al)" + (@)" (2 - ad)" + (a))* (2 - af)* + (a])"
2@) (Av) 1 (A7)
(2 —af)" + (af)" ’ ’
( 2 (af)" 2 (af)" 2 (af)"
k

(2-ah)"+ (@f)" (2 - ah)" + (ah)" (2 - af)* + (af)"

2 (af)k ) iL iL
e (1) m () )

(10)

where k > 0.
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Proposition 3.1. Let A, A, and A, be three trapezoidal IT2 FSs, k. ki, ks >0, then we
have B B B

(1) A1 &: Ay = Ay ®. Ay

(2) Al ®E A2 — A2 ®E Al.

i (i 1) - () . (7).

(4) k1 A, k2 k1+k2)

o (i)~ (1) e (1)
0 ()" 6 () = ()"

3.2. The trapezoidal interval type-2 fuzzy Einstein aggregation operators. In
this section, we will develop some aggregation operation for aggregating I'T2 FSs with the
help of the Einstein operations and study their desirable properties.

Definition 3.4. Let A; = (Ag],fxf) - ((ag, . al, ol H, (Ay)  Hy (Ay)) , (ai@, ak,
ak, al; Hy (AZU) , Hy (AZU))> (1 =1,2,...,n) be a collection of the TIT2 FNs, and weight

vector is w = (wy, wy, . .., wy), which satisfies w; > 0 and Y . w; = 1. Then, we define
the trapezoidal interval type-2 fuzzy Einstein weighted average (TIT2FEWA) operator as
follows:

TIT2FEWA (AI,AQ, .. ;An> = Ggg <w]A]) = W1 '5141 D wo '5142 D - - D Wy, '51471 (11)
j=1

Especially, if w = (1/n,1/n,...,1/n), then TIT2FEWA operator is reduced to a trape-
zoidal interval type-2 fuzzy Einstein averaging (TIT2FEA) operator of dimension n, which
is defined as follows:

- - 1 - - -
IT2TFEA (AI,AQ, o ,An) — (Al ®. Ay ®. - @, An) (12)
n
According to the operations of the TIT2 FNs, we can get the following result.
Theorem 3.1. Let A;= (Y, A%) = ((afl, %, o, alf; Hy (A7), Hy (A7), (ak, by, o,

ab; H, (/LU) , Hy (A?))) (1=1,2,...,n) be a collection of the trapezoidal IT2 FNs, then
their aggregated value by using the TIT2FEWA operator is also a trapezoidal IT2 fuzzy
number, and
TIT2FEWA (A1, Ay, Ay) = & (w;d;) = A= (47, 4F) (13)
7=1

where

o (Tl (L al)™ ~ T (1 )™
L ()™ + T (- af)

Hj:l (1 + a%)wj - H] 1 (1 — a4
H?:l (1+ a%)wj + Hj:l (1- O

i, (11 (1)) i, (1 <Ay>>)

SIS

\_/\_/b
E

:1:1 \

(14)
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and
ﬂ:(m*““ww—mﬂuwmwnnu+@W— v (- ah)”
[ () 7+ T ()™ T ()™ T (1 o)
[T (1)~ T (o)™ Ty ()™ —TT (o)™
H;L:1 (1 + aJL3)wj + HJ 1 ( ) (1 + aJ4)w] + H] 1 (1 - a]L)

i (m (A1) , Jnin (#: (4F)) ) (15)

We use mathematical induction to prove this theorem as follows.
Proof: Firstly, we prove that Equation (13) holds for n = 2.
By the operations of the TIT2 fuzzy variables defined in Equations (7)-(10)

wf&=(CLmﬁw_“””W0+%W—u—%w

(1+a)” +(1=a)™ (1+aly)" + (1 —al))™’

(L+af)” — (1—af}

(1+aly)™ +(1-
(L+af)” —(1—af)™ (1+ah)"™ —(1—ap)”
(1+ak)"™ + (1—ah) )

(1 -+ ap) ,‘(1‘%‘3; | (1+“f4)w“(1‘“{4§wj;ﬂl (48) ., (Af)))

(1+ak)™ + (1 —ak

(a) When n = 2, we can get

. . 14+a%)" (1 +al))” — (1-a¥)"" (1 -4a¥))"?
e A Gewe e e = <<(1 +a1U3w El +a23 4 El —a%’i;wl El —ag;ww
(L+afh)™ (1+a)™ — (1 —als)™ (1 —ab)™
(1+af)™ (14 af)™ + (1 —af3)™ (1-a5)™
(1+afs)™ (1+afs)™ — (1 —afh)™ (1-af)™
(1+afy)™ (14 af)™ + (1—afy)™ (1-a5y)™
(1+af)™ (L+afy)™ — (1 —af))™ (1-af)™
(1+al)" (1+a8)"” + (1 —al))"™" (1 —al,)™’

(1"'6111)1111 (1+a21) " (1_a11 ag "
(1 + alLQ)w1 (1 + a§2)w2 — (1 — a1L2)“’1 (1 — a£2)w2
(1+afs)™ (L+ak)™ + (1-afy)™ (1-ak)™’
(L+afs)™ (L+ag)™ — (L—afy)" (1-af)™
(1 + a13)w1 (1 + a2L3)w2 + (1 - a1L3)w1 ( - a£3)w2 ,
(L+afy)" (L+afy)™ — (1—afy)™ (1—af)™
(L+afy)™ (L+afy)™ + (1= afy)™ (1 —afy)™’
win (11, (4) 1, (38)) min (11, (34) 11, (32)) >>
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i.e., when n = 2, Equation (13) is right.
(b) Suppose when n = k, Equation (13) is right, then, when n =k + 1, we have

TIT2FEWA (Al, Aoyt A, An+1>
n+1 ~
= & (ijj)
J=1 5 5 5
= Wy ¢ Al D wo -, AZ De - - B Wy ¢ An D. Wn+1 e An+1

— TIT2FEWA (AI,AQ, o ,An> D Wnrt w Apis
- A ®D: Wp+1 e An-i—l

From (a), we can see (b) holds for n = k + 1. Therefore, Equation (13) holds for all n,
which completes the proof of Theorem 3.1. 0]

Definition 3.5. Let A; = (Ag],fxf) - ((ag, al, a%, U H, (Ay)  Hy (Ay)) , (ai@, ak,
ak, aky; H, (AZU) , Hy (A?))) (1=1,2,...,n) be a collection of the trapezoidal IT2 FNs,

and weight vector is w = (wy, wo, . . ., wy,), which satisfies w; > 0 and Y w; = 1. Then,
we define the trapezoidal interval type-2 fuzzy Einstein weighted geometric (TIT2FEGA)
operator as follows:

TIT2FEGA (AI,AQ,...,An) - ®. (Aj)wj

- j@l)w” ®. (AQ)WE ®. - @ (An)w”'e

Especially, if w = (1/n,1/n,...,1/n), then TIT2FEGA operator is reduced to a trape-
zoidal interval type-2 fuzzy Einstein geometric (TIT2FEG) operator of dimension n, which
is defined as follows:

(16)

S|=

‘e

IT2TFEG (Al, A, .., An) - (;11 ®. Ay ®. -+ ®. An) (17)
According to the operations of the TTT2 fuzzy numbers, we can get the following result.
Theorem 3.2. Let A;= (A7, A%) = ((af], ), af, olf; Hy (AV) , Hy (A7), (aki, by o
aly; H, (/LU) , Hy (AZU)>> (1=1,2,...,n) be a collection of the trapezoidal IT2 FNs, then
their aggregated value by using the TIT2FEGA operator is also a trapezoidal IT2 fuzzy
number, and
TIT2FEGA (Al, Ao, ... ,An) - ®. (Aj)“” A= (AU, AL) (18)
7=1
where
i L () ML ()7
H?:l (2 - ayUl) T+ H?:1 (a%) ! H?:1 (2 - a%) T+ H?:l (GJUQ) ’
211 (a5)™ 2[T5= (@)™ |
H?:1 (2 - a%) T+ H?:1 (a%) " H?:1 (2 - a%) T+ H?:1 (a%) ”

i, (11 (4)) i, (12 ()

(19)
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and
. :( oM ()" oM (@)™
[T7-1 (2= af)™ + 117 (afi) ™ T (2= a)™ + TT7- (af2)™
21T}, (afs)™ 2[T5=s (aa)™ .
IT7-1 (2= afs)™ + 1172 (afs)™ " TTioy (2— afa) ™ + T (af)™

i, (1 (42)) i, (12 (22) )

We can also use mathematical induction to prove this theorem.

4. The Fuzzy Mean Possibility Degree of IT2 FSs. In this section, we extended
the concept of Carlsson and Fullér [25] about the possibilistic mean value of type-1 fuzzy
numbers. We first introduce the lower and upper possibility mean value of I'T2 FSs.

Ifan IT2FS A = <AU, AL> is a non-negative generalized trapezoidal fuzzy numbers, let

ht, v denote the heights of the upper membership function A" and the lower membership
function A*. We have pseudo level sets with A7 = [a¥(a),aY ()], @ € [0,hY] and
flg = [al(B),ak(B)], B € [0,h], and then we present the following concepts.

Definition 4.1. [26] The lower possibility mean value of an IT2 FS A = (AU,AL) is
defined as

w.(4)= [ " e ayda+ [ gab(@ds (21)

0

Obviously, M, <A> is nothing else but the level-weight average of the arithmetic means
of all pseudo level sets, that is, the weight of the arithmetic mean of a¥ () and af(83). In

a similar manner, we introduce the upper possibility mean value M* ( A) as follows.

Definition 4.2. [26] The upper possibility mean value of a TIT2 FS A = (AU,AL> is
defined as

M* (A) = /OhU aal ()da + /OhL Bay (B)dp (22)
Let us introduce the notation
w (3) = . (1) e (3) e

That is, M (A) is a closed interval bounded by the lower and upper possibility mean
values of IT2 FS A.

Definition 4.3. [26] Let

and
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be interval-valued possibility mean values of TIT2 FSs A, and A, respectively, then we
define the possibility degree formula of TIT2 FSs as follows:

M (Ay) = M, (4)
() () (1) (1)

p(fl1>-%~12>:min max 01,1

(24)

Theorem 4.1. The possibility degree p (Al - 1212) of TIT2 FSs A, and A, has the fol-
lowing properties:
(UOSp(fL >'1‘~12) <1, 0§p<1412>'z‘i1) <L

(2) If M* (Al) <M, (AQ), then p (Al - AQ) ~0.

(3) If M, (Al) > M* (AQ), then p (Al - A2) ~1.

(4)p (A= A) +p (Ao = A1) =1, specially p (A = 4) =05,

(5) For IT2 FSs Ay, Ay and As, if p (Al - 212) > 0.5 and p (212 - 213) > 0.5 then
p(fil - AQ) +p([12 - A3> Zp(fil - Ag).

Example 4.1. If the trapezoidal IT2 FSs

A= (A%, 2%) = ((aV, ol ol alshY), (ab, ok, o, i 1),
then the lower possibility mean value can be calculated as
hY U U hE L L
~ a; —a ay —a
M*(A>:/ a(a[f+ 2hU1a>da+/ ﬁ<af+%ﬁ>dﬁ
0 0
1

= (o +20) (W) + & (b + 208) ()’

Similarly, the upper possibility mean value can be calculated as

5 RY v _ U RV L __ L
M* <A) :/ a af{+a3 Ua4a da+/ B a4L+a3 La45 dp
0 h 0 h

= (o} +205) ()2 + 1 (af +20) (0"

Let A; = <14LU, fif) be a TIT2 FS, the fuzzy preference matrix P = (p (fL - AJ)>

can be obtained. Then, the ranking value of interval type-2 fuzzy set Rank (/le> is cal-
culated as follows [27]:

Rank (/L) = m (ip (flz - /le> + g — 1) (25)

where 1 < i < n and ., Rank (/le> = 1. The larger ranking value Rank (/le->, the
greater the IT2 FSs A;.
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5. A New Method for Fuzzy Multi-Attributes Group Decision Making under
Interval Type-2 Fuzzy Environment. In this section, we apply the proposed aggre-
gation operators to developing a method for dealing with fuzzy multi-attributes decision
making problems under interval type-2 fuzzy environment. For a decision-making prob-
lem, let X = {x1,2,...,2,} be a finite set of alternatives, and F = {fi, fo,..., fm} be
a finite set of attributes, and w = (w;)1xm is the weighting vector of the attributes, such
that ", w; = 1 and w; € [0,1]. Assume that there are [ decision-makers Dy, D, ...,

and D;. Let R® = (A(’?)) be an IT2 fuzzy decision matrix, where fiff) is an IT2
nxm

ij
F'S, provided by the DM Dy, for the alternative x; with respect to the attribute f;. We

aggregate all individual normalized decision matrices R*) = (AE?) into the collective
nxXm

normalized decision matrix R = (fli]) where flij = 22:1 )\kﬁfj. The attribute set F
nxm
can generally be classified into two sets F7 and F3, where F; denotes the set of benefit

attributes, Iy denotes the set of cost attributes, Fi N Fr = O, and Fy U F, = F.

Suppose the information about attribute weights is completely known, that is, the
weight vector w = (w;)1xm of the attributes f; (j = 1,2,...,m) can be completely de-
termined in advance. Then, we utilize the TIT2FEWA operator and the TIT2FEGA
operator to develop an approach to FMADM problems with interval IT2 fuzzy informa-
tion, which can be described as follows.

Step 1. Utilize the normalized decision matrix R = (fl”) and the weight vector

nxm

w = (w;)1xm, the TIT2FEWA operator and the TIT2FEGA operator are shown as follows:
d}' = TIT2FEWA (Ak,l,fxm, . ,Ak,m)
— @1 (wj;;j> (26)
s Ay 2 Ay @, - s s A

and
d§ = TIT2FEGA (Ak,l,flk,z, = .,fik,m)

= @ (Ak,j)w (27)

= (Ak,1)w” Re (z‘im)w.e Qe -+ B¢ (Ak,m> o

where k£ = (1,2,...,n).
Step 2. Utilize fuzzy possibility degree Equation (24) to calculate the fuzzy preference
matrix P = (pij)nxn-

Step 3. Utilize the ranking Formula (25) to calculate the ranking value Rank (J,f)
and Rank (ci,f) of the TIT2 FSs ci,? and cikG, where 1 < k& < n. The larger the value of

Rank (ci,?) and Rank (ci,?), the more the preference of the alternative x;, 1 < k < n.

6. Numerical Example. In this section, we use an example to illustrate the FMADM
process of the proposed method. Table 1 shows the linguistic terms “Very Low” (VL),
“Low” (L), “Medium Low” (ML), “Medium” (M), “Medium High” (MH), “High” (H),
“Very High” (VH) and their corresponding interval type-2 fuzzy sets, respectively [8,9].
Assume that the problem discussed here is concerned with a manufacturing company,
searching the best global supplier for one of its most critical parts used in assembling
process [19]. There are three potential global suppliers z1, o and x3 to be evaluated
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TABLE 1. Linguistic terms and their corresponding interval type-2 fuzzy sets

Linguistic terms Interval type-2 fuzzy sets

Very Low (VL) ((0,0,0,0.1;1,1),(0,0,0,0.05;0.9,0.9))

Low (L) ((0,0.1,0.1,0.3; 1, 1), (O 05,0.1,0.1,0.2;0.9,0.9))
Medium Low (ML) ((0.1,0.3,0.3,0.5; 1, 1), (0. 2 0. 3 0. 3 0. 4 0. 9 0.9))
Medium (M) ((0.3,0.5,0.5,0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9,0.9))
Medium High (MH) ((0.5,0.7,0.7,0.9;1,1),(0.6,0.7,0.7,0.8;0.9,0.9))
High (H) ((0.7,0.9,0.9,1;1,1),(0.8,0.9,0.9,0.95;0.9,0.9))
Very High (VH) ((0.9,1,1,1;1,1),(0.95,1,1,1;0.9,0.9))

TABLE 2. Evaluating values of alternatives with respect to different attributes

Decision-makers

Attributes Alternatives D, D, D;
T MH H MH
Quality of the T H MH H
product (f;) T3 VH H MH
T H VH H
Risk factor (f2) T2 MH — H  VH
T3 VH VH H
T VH H H
Service performance Ty H VH VH
of supplier (f3) T3 M MH MH
T VH H H
Supplier’s profile (f4) T2 H VH H
T3 H VH VH

with four attributes fi: quality of the product, fs: risk factor, f3: service performance
of supplier, f;: supplier’s profile (whose weight vector w = (0.30,0.15,0.20,0.35)). An
expert group is formed which consists of three experts Dy, Dy and D3 (whose weight vector
is A = (0.30,0.45,0.25)) from each strategic decision area. The experts Dy, Dy and D5 use
the linguistic terms shown in Table 1 to represent the characteristics of the potential global
suppliers x1, xo and x3 with respect to different attributes f; (i = 1,2, 3,4), respectively,
listed in Table 2

Considering that the attributes are the benefit attributes except the attribute fy (risk

factor), then based on Table 2, the decision matrices R*) = </~ll(f)) (k=1,2,3) can
3x4
be updated to the following normalized matrices respectively, listed in Table 3.
Based on Table 1 we aggregate all individual normalized IT2 fuzzy decision matrices

R®) = (flgf)) (k = 1,2,3) into a collective normalized IT2 fuzzy decision matrix
3x4

D>z

, where
3x4

((0.590, 0.790, 0.790, 0.945; 1, 1), (0.690, 0.790, 0.790, 0.868; 0.9, 0.9)),
((0,0.055,0.055,0.210; 1, 1), (0.028, 0.055, 0.055, 0.133; 0.9, 0.9)),
((0.760,0.930,0.930, 1; 1, 1), (0.845, 0.930, 0.930, 0.965; 0.9, 0.9)),
((0.760, 0.930,0.930, 1; 1, 1), (0.845, 0.930, 0.930, 0.965; 0.9, 0.9)),
((
((
((

0.610, 0.810, 0.810, 0.955; 1, 1), (0.710, 0.810, 0.810, 0.883; 0.9, 0.9)),
0.030,0.135,0.135,0.31; 1, 1), (0.083,0.135, 0.135, 0.223; 0.9, 0.9)),
0.840,0.970,0.970, 1; 1, 1), (0.905, 0.970, 0.970, 0.985; 0.9, 0.9)),

11
2
3
4
21
2
3
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Ayy = ((0.790,0.945,0.945, 1; 1, 1), (0.868, 0.945, 0.945,0.973; 0.9, 0.9)),
As; = ((0.710,0.880, 0.880, 0.975; 1, 1), (0.795, 0.880, 0.880, 0.928; 0.9, 0.9)),
Az, = ((0,0.025,0.025,0.150; 1, 1), (0.013, 0.025, 0.025, 0.088; 0.9, 0.9)),
Az = ((0.440, 0.640, 0.640, 0.840; 1, 1), (0.540, 0.640, 0.640, 0.740; 0.9, 0.9)),
Asq = ((0.840,0.970,0.970, 1; 1, 1), (0.905, 0.970, 0.970, 0.985; 0.9, 0.9)).

TABLE 3. The normalized evaluating values of alternatives

Decision-makers

Attributes Alternatives D, D, D,
1 MH H MH
Quality of the T H MH H
product (f7) s VH H MH
1 L VL L
Risk factor (f2) To ML L VL
T3 VL VL L
1 VH H H
Service performance o H VH VH
of supplier (f3) 25 M MH MH
1 VH H H
Supplier’s profile (fy) T H VH H
T3 H VH VH

Step 1. By Equation (26), Equation (27) and Matlab software, we can get an overall
performance value based on the two Einstein operators as follows

A = TIT2FEWA (A1), A1y, Ay, Ay
— ((0.636,0.846,0.846, 1; 1, 1), (0.735, 0.846, 0.846, 0.910; 0.9, 0.9)),
A = TIT2FEWA (Ay, sy, sy, A )
— ((0.684,0.886,0.886, 1; 1, 1), (0.779, 0.886, 0.886, 0.934; 0.9, 0.9)),
df = TIT2FEWA (Ay, Asp, Agg, Ay
— ((0.657,0.862,0.862, 1; 1, 1), (0.750, 0.862, 0.862, 0.914; 0.9, 0.9)),
and
A% = TIT2FEGA (Ary, Arp, Avg, vy )
— ((0,0.646,0.646, 0.825; 1, 1), (0.537, 0.646, 0.646, 0.748; 0.9, 0.9)),
0§ = TIT2FEGA (A3, Asp, Aoy, Aoy
— ((0.504,0.727,0.727,0.860; 1, 1), (0.628, 0.727, 0.727, 0.799; 0.9, 0.9)),
0§ = TITOFEGA (Asy, Asp, Agy, Ag)
= ((0,0.578,0.578, 0.776; 1, 1), (0.483, 0.578, 0.578, 0.699; 0.9, 0.9)).
Step 2. Based on Equations (22) and (23), calculate interval-valued possibility mean

values of the weighted decision matrix D = dy, dy, ds3 ), shown as follows:

M (Jf) — [0.716,0.780], M (Jg‘) — [0.753,0.827], M (cig‘) — [0.731,0.810]
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and
M (J?) — [0.462,0.628], M (Jg) — [0.608,0.690], M (dg") — [0.414,0.573]

Based on Equation (23), we can construct the fuzzy possibility degree preference matrix
P, shown as follows:

0.500 0.294 0.423 0.500 0.084 0.660
PA =1 0706 0500 0630 |, P%= 0917 0.500 1.000
0.577 0.370 0.500 0.340 0.000 0.500

Step 3. Based on Equation (25), the ranking values Rank (cZJA) and Rank (Jf) of
the IT2 FS cij can be calculated, shown as follows:

Rank (Jf) —0.286, Rank (J;) —0.380, Rank (dg‘) — 0.325

" () o () o (1) o

Rank all the suppliers in accordance with Rank (Jg‘) > Rank (ci?) > Rank (J{‘) and
Rank (Jg) > Rank <cif) > Rank (Jg), the preference orders of the alternatives x,, x

and z3 are: x5 > x3 > x; and z > 11 > 3.

From the above analysis, it is easily seen that although the overall rating values of the
alternatives are the same by using two operators respectively, the ranking orders of the
alternatives are slightly different. However, the best desirable global supplier among 1,
T and x3 is x9. The proposed method does not require complicated computations in the
implementation procedure for evaluating global supplier. It provides us with a useful way
for dealing with FMADM problems based on IT2 FSs.

A comparative study was conducted to validate the results of the proposed method with
those from another approach. Using Chen and Lee’s fuzzy ranking method [8,9], Hu’s pos-
sibility degree method [17], and Gong’s geometric Bonferroni mean operator method [16],
the ranking order is consistent with the one by ours. (1) Comparing with the existing
fuzzy ranking method, the main advantage of our method is that the values in UMF and
LMF are considered simultaneously, and the possibility degree is calculated only once
instead of twice in Chen’s method, resulting in reduced computing time. Moreover, it is
much easier to obtain the wrong order by Chen’s method when the trapezoidal interval
type-2 fuzzy numbers are closer. (2) Compared with the possibility degree method, first,
the computation in our possibility degree formula is simpler than the possibility degree
formula of Hu’s method. Second, the TIT2FEWA operator and TIT2FEGA operator can
be very good to aggregate TIT2 FS information compared with TIT2-WAA operator.
(3) Compared with the geometric Bonferroni mean operator method, our Einstein oper-
ator method does not require a given parameter value, and Gong’s method requires the
parameter (p, ¢) values of a given Bonferroni mean operator.

7. Conclusions. In this paper, we give some new operations laws of TIT2 FSs based on
Einstein t-norm and t-conorm. The Einstein operator and possibility degree have been
extended to the interval type-2 fuzzy environment to organize and model the uncertainties
better within multi-attribute decision analysis. We have presented a new method for
FMADM based on the TIT2FEWA operator and TIT2FEGA operator and the possibility
degree of I'T2 FS. Compared with trapezoidal type-1 fuzzy numbers, trapezoidal interval
type-2 fuzzy number better represents the uncertainties of decision-maker. We also use
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one example to illustrate the FMADM process of the proposed method. The result shows
that the proposed method provides us with a useful way to deal with FMADM problems
based on IT2 FSs.

In future studies, we will further consider the trapezoidal interval type-2 fuzzy aggre-
gation operators which take account of the various interactions or priority among the
decision criteria based on the Einstein t-conorm and t-norm operation laws. At the same
time, we will apply the developed procedures to some other decision-making problems
where the information about attribute weights is incomplete, such as making investment

choices, hierarchical decision-making and hierarchical and distributed decision making
[28,29].
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