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ABSTRACT. Due to the fact that time-varying factors will affect the prediction perfor-
mance of a soft sensor for the distillation processes, a dynamic soft sensor modeling
method based on the moving window least squares support vector machine algorithm is
proposed in this paper. By using a moving window, a least squares support vector ma-
chine (LS-SVM) regression with the incremental and decremental algorithm is developed
to implement on-line dynamic soft sensing of distillation compositions. In this approach,
the LS-SVM regression algorithm is used to build the composition soft sensor and the
moving window strateqgy is used to update the dynamic model. A sensitivity matriz anal-
ysis method is presented to select the most suitable secondary variables to be used as
the soft sensors inputs. Simulation results demonstrate the effectiveness of the proposed
method.

Keywords: Soft sensor, Distillation column, Dynamic modelling, Time-varying, Moving
window

1. Introduction. The composition of distillation products is a key quality specification
in various oil refineries, whereas not many hardware sensors can be used for on-line mea-
surement of distillation compositions. Since hardware sensors such as gas chromatographs
and NIR (Near-InfraRed) typically have significant time lags and require high investment
and maintenance cost, the use of economic temperature measurement on the column trays
to infer distillation compositions is widely practiced in industrial applications [1,2]. Gen-
erally, the tray temperature control is based on the assumption that each of the product
compositions can meet the desired specification when the corresponding tray temperature
is kept the set-point value. However, in a multi-component column it is often difficult to
keep a product composition at the desired value by using temperature control, because
the tray temperature does not correspond exactly to the composition [3-5]. An alternative
solution is to construct soft sensors to circumvent this issue.

Many approaches have been proposed to build the soft sensor models. We may sum-
marize these methods into two categories. One method is to build the soft sensors from
the mechanism model of the distillation column on-line. However, it is often difficult
in refineries, due to the complexity of industrial distillation processes. Physical modeling
can be very time-consuming and significant parameters are generally unknown. The other
method is to adopt the empirical model or the data-driven soft sensor.
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The first generation of data-driven soft sensors relied on offline modeling using the
recorded historical data. There are many algorithms which have been proposed to build
the soft sensor in this way, including using multivariate regression analysis [6-8], artificial
neural networks [9], support vector machine regression [10-12]. Due to the strong cor-
relation among tray temperature measurements of the distillation column, composition
soft sensors based on principal component analysis (PCA) and partial least squares (PLS)
regression have been widely used. However, large samples are needed in these methods
and the composition soft sensors are insensitive to measurement errors. Moreover, due
to the nonlinear model of composition soft sensors, many composition soft sensors based
on artificial neural networks have been proposed and successfully applied in industrial
processes [10]. However, there are no guarantees of avoidance of local minima, and the
overfitting phenomenon and the number of hidden units in general neural networks are
usually difficult to choose. As the industrial distillation column always has the charac-
teristic of nonlinear and time-varying, the second generation of data-driven soft sensors
relied on online modeling or dynamic modeling methods which use the new data to update
the offline model. These dynamic modeling methods have been proposed to build the soft
sensor in this way, including the moving window method, the recursive method, and the
distance-based just-in-time method [13-20]. There are no dynamic model methods having
high-predictive ability in all process states, and the prediction accuracy of each dynamic
model method depends on a process state. Kaneko and Funatsu discussed characteristics
of dynamic models and confirmed the discussion results through the numerical simulation
data and real industrial data analyses [16].

Due to the fact that time-varying factors will affect the prediction performance of a soft
sensor for the distillation processes, we present an LS-SVM with moving window method
(MWLS-SVM) as a dynamic version of the LS-SVM in this paper, which allows the use
of moving window to update the LS-SVM model. LS-SVM is a classical machine learning
algorithm which has good performance of generalization for the nonlinear regression. By
using the moving window to update the LS-SVM soft sensor model, the time-varying
factors which affect a soft sensor to quality prediction can be overcome directly. In this
paper, the sensitivity matrix analysis method is used to select the most suitable secondary
variables as the soft sensors inputs. The simulation results demonstrate the effectiveness
of the proposed method.

The remainder of this paper is organized as follows. In Section 2, the first-principles
dynamic model of distillation column and data collection are discussed. In Section 3, the
LS-SVM regression algorithm with moving window method is described. In Section 4, the
performances of the MWLS-SVM method are discussed. Finally, summary and discussion
are given in Section 5.

2. Distillation Process Description.

2.1. First-principles model of distillation column. A continuous distillation column
is chosen as the research object which is well known for being used in composition soft
sensor performance studies [4,5,21]. The distillation column consists of 41 theoretical
stages including a total condenser and a reboiler. The components in the feed flow are
set as N, = 2, where N, is the number of components [4,5,21]. The schematic diagram of
the continuous distillation column is shown in Figure 1.

A first-principles dynamic model is considered as the representation of the continuous
distillation column.

Overall material balance:

dM;/dt = d (M;g, + M) /dt = Ly +Viey — L =V (1)
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where i is the index for stages and M; is the liquid holdup on stage i, L; [kmol/min] is
the values for the liquid flow, and V; [kmol/min] is the values for the vapor flow.
Component material balances:

dNyj/dt = L1215 + Vicwyioy — Liziy — Vivig (2)
where N;; = Mp;x;; + My;y;; and j is the index for components. z, y are the liquid and
vapor phase mole fractions, respectively.

Vapor-liquid equilibria:
yi=axx;/ (14 (o —1)*x;) (3)

where « is the relative volatility between light and heavy component.
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FIGURE 1. Schematic control configuration of distillation column

b

Unlike other models used for similar studies, this model considers varying molar holdups
on each tray, that is, it includes liquid flow dynamics.

L; = Lo; + (M; — M)/ + (Vicr — Vo,i1) A (4)

where Ly; [kmol/min] and My; [kmol] are the nominal values for the liquid flow and holdup
on stage. The energy balances are not included in the dynamic model; therefore, the vapor
flow rate is constant inside the column. Other assumptions are ideal trays, well-mixed
capacities, boiling feed, total condensation with no subcooling, negligible heat losses and
constant pressure operation.

2.2. Dynamic simulation conditions and process data collection. In order to get
more various data from the dynamic simulation experiment, we use the LV-configuration
in Figure 1 and the indirect temperature control loop is not included in this experiment.
The data sets needed to develop the composition soft sensors of the distillation column
were generated by running the first-principles dynamic model under these operating con-
ditions.

Random perturbations within +5% of the steady-state value were added to the feed
composition during simulations. In addition to these random disturbances, the total
feed flow rate changes stepwise by +1%, while the fluctuation of the total flow rate is
restricted within +2% of its steady-state value. Measurement noises of the distribution
N(0°C,0.1°C) were added to the tray temperatures measurements. Simulated data for
validating composition soft sensors are obtained under almost the same conditions as
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described above. The differences are the seeds of the random signals. The sampling
period of tray temperature variables is set at 1 s. As the composition sampling time is
often longer than the sampling time of inputs, the sampling period of the compositions is
set at 30 s. The total simulation time is set at 5 h. By this way, we collected 601 sampling
data altogether.

3. Moving Window LS-SVM Algorithm.

3.1. LS-SVM algorithm. LS-SVM regression algorithm is an improved SVM algorithm
based on structural risk minimization principle and has shown powerful ability in modeling
with nonlinear, limited samples, high dimension and so on. The LS-SVM regression
algorithm is described as follows [11,12].

Let training sample data:

where x; is input data, and y; is output data. The optimization problem in weight w
space can be described as:

: L 7 1 o
g};gJ(w,e)—iw w—l-i'ykz_;ei

(6)

sty = wl o(x;) + b+ e

in which ¢(-) : R, — R™ is kernel space mapping function, weight vector w € R™, error
variable e; € R, b is the bias, losing J is the sum of SSE error and regularized variable, and
v is adjusted constant. The kernel mapping function is to extract characters from origin
space, and map the sample in origin space to a vector in the high dimension characters
space.

According to optimization (6), it defines Lagrange function as:

n

L(w,b,e,a) = J(w,e) — Zai [w" ¢ (x;) + b+ e; — yi] (7)

=1

in which Lagrange factor (viz. support vector) a; € R. We can do optimization compu-
tation on the above equation:

;

OL ~

o :0—>w:iz:;ai¢(xi)

oL “

— =0 — ai:()

ab 2; (8)
oL 0—

= a; = ye;

aei i

gL :0—>wT¢(xi)+b+ei—yz-:0
\ Ja;

Eliminating w, e, we can get the matrix equation:

ot L= g

where [ = [1;1;--- ;1] € R™; Qi = ¢ ()T d(x;).
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According to Mercer condition, there exists mapping function ¢ and kernel function
K(-,-), satisfying:

K (2, 25) = d(i)" d(x;) (10)
The function approximation of LS-SVM is:

y(@) =Y aK(z,x;)+b (11)
i=1
There are some typical kernel functions:
1) Polynomial kernels:

Kpoiy(x, ;) = (- 2, + 1)1 (12)
2) Radial basis function kernels:
TP
Kypp(z,2;) = exp (—%) (13)
3) Sigmoid kernels:
Kgig(x, 2;) = tanh(v(z, z;) + ¢) (14)

where ¢ is degree of polynomial function; p is the width parameter of the radial basis
function; v is scale, and c is offset.

3.2. MWLS-SVM algorithm. For dynamic modelling of nonlinear and time-varying
processes, whenever a new sample arrives, the trained LS-SVM model is updated by incre-
menting the training set with the new sample and thereby should discard the old sample
in the training set. To decrease the computational complexity, an incremental algorithm
is employed to increment the training set and a decremental algorithm to discard the old
sample in the paper. Unlike other moving window algorithms [14-16], the incremental
and decremental algorithms employed for MWLS-SVM in this paper are discussed in the
following.

Incremental algorithm:

Let (Zp11,Yns1) be a new data pair, if the trained LS-SVM model computation errors
satisfied this condition, we update the trained LS-SVM model.

[Yns1 — Yrssvm(n +1)| > € (15)

where ¢ is the max error which we can accept. If the max error is greater than £, then
the incremental algorithm updates the trained LS-SVM model by adding the new data
(Tna1,Yni1) to the train set. That is to say the moving window is updating the train
set, if the model output is not very accurate. If the LS-SVM model output can predict
very accurately and can overcome the time-varying factors, we do not update the trained
LS-SVM model.

Decremental algorithm:

With the incremental algorithm, the oldest date information is removed from the train-
ing data sets in traditional decremental algorithm [13-15]. The drawback of traditional
decremental algorithm is that the similarity data in the training data is not considered.
Here, a novel decremental algorithm is described. We consider the training data sets
maintain a constant number of data with the moving windows width. The similarity of
the data x, with the data set D in the moving windows is described as [16,17]:

sqi = pllzs = xgl| + (1 = p) cos(B) (16)

where p is the weight parameter and is constrained between 0 and 1, and 6, is the angle.
We calculate the similarity of the data, and exclude the minimal similar data.
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By this way, the minimal similar data information is removed from the training data
pairs. In the decremental algorithm, the training data sets retain more difference and
useful information for training and building the model, and the model discards historical
information as quickly as possible.

The incremental and decremental algorithms for updating the LS-SVM, presented
above, make online learning for the LS-SVM possible. This algorithm is so straight-
forward and decreases the computational complexity.

4. Simulation Experiments. The performances of the proposed method with the other
methods are compared using a simulation case study and a distillation process case study.

4.1. Simulation case study. To verify the effectiveness of the proposed method, we
firstly analyzed various types of simulation time-varying data. The relationships between
and change from moment to moment for one simulation data set and the relationships
have strong nonlinearity for the other simulation data sets. The compared models are as
follows:

PLS: Non-adaptive PLS model;

SVR: Non-adaptive support vector machine regression model;

LS-SVM: Non-adaptive least squares-support vector machine regression;

MWPLS: PLS model with moving window method;

OSVR: Updated SVR model.

MWPLS and OSVR models were updated with newly obtained data. Each model
including the time variable was also used in the case studies. The hyperparameters for
the PLS, SVR, LS-SVM, OSVR, MWPLS and MWLS-SVM models were selected with
the five-fold cross-validation.

The number of X variables was set as two. First, 1 and x5 of uniform pseudorandom
numbers whose ranges were from 0 to 10 were prepared. Then, y was set as follows [16,17]:

y =y ][l by]T + N(0,0.1) (17)

where by means the magnitude of contribution of z5 to y and N(0,0.1) is random numbers
from normal distribution given a standard deviation of 0.1 and a mean of 0. We set b, as
follows:

by = 3sin(0.017¢) + 1 (18)
by = 3sin(0.027¢) + 1 (19)
where ¢ was set as 1, 2, ---, 200, and the number of data was 200. The first 100 data

were used for training and the next 100 data were the test data.

The window size, which means the number of data for the model construction, was set
as 20 and 50 for the MWPLS, OSVR and MWLS-SVM models. When the window size
was 20, the number of the last training data was 80, and when the window size was 50,
the number of the last training data was 50.

The static and dynamic model is evaluated on the basis of root mean squared error
(RMSE) and the determination coefficient (r2) of prediction data sets. The r2 is the
determination coefficient for test data and represents the prediction accuracy of each
model. The higher rf) value of a model is, the more predictive accuracy the model has.
The RMSFE for dynamic model is calculated by applying the model to the validation data
in the moving windows width w:

RMSE = (% S () - i(n))Q) (20)

n=1



SOFT SENSOR FOR DISTILLATION PROCESS 2047

where x is a measurement of product composition, Z is its prediction value from the soft
sensor, and N is the number of measurements.

Table 1 shows the prediction results for test data when only z1 and x2 were used and
the time variable ¢ was not used as X variables. From Table 1, we can see that those static
models could not adapt to the time-varying process characteristics. The prediction results
of the dynamic models were better than those of static models. As ¢ was not added to X
variables (21 and z2), any models could not accurately adapt to the time-varying change
of the relationships between X and y. But yet, the prediction results were improved
compared with other methods by using the MWLS-SVM method, especially when the
moving windows width was set as 20, its prediction result was better than others.

The prediction results are shown in Table 2 when ¢ was added to X variables (z1 and
x2). In PLS, SVR, LS-SVM modeling, some of the prediction results were improved,
compared with the results without the time variable ¢, but yet, the improvements were
not enough. For the MWPLS models, the predictive accuracy was drastically decreased
by increasing the window size from 20 to 50. The nonlinear and time-dependent changes
in process characteristics were linearly-approximated in MWPLS modeling. By increasing
the window size, the difference between the actual nonlinear relationship and the linearly

TABLE 1. The prediction results without the time variable

Model by : E,(18) by : E,(19)
r> RMSE r) RMSE
PLS —10.6 19 0.092 11
LS-SVM —10.71 22.05 —0.083 13.655
SVR -9.9 19 0.067 11
MWPLS (20) 0546 3.8 0574 7.3
MWPLS (50)  —1.3 87  —044 13
OSVR (20) 0.498 4.1 0.536 7.6
OSVR (50) 11 83 —020 12

MWLS-SVM (20) 0.628 2.86 0.752  3.574
MWLS-SVM (50) 0.672  4.715  0.559  5.454

TABLE 2. The prediction results with the time variable

Model by : E,(18) by = E,(19)
r> RMSE r., RMSE
PLS —10.6 19 —6.4 31
LS-SVM 0.276  5.484 —-1.11 19.07
SVR —1.2 8.4 —-5.9 20

MWPLS (20)  0.848 2.2 0.848 4.4
MWPLS (50)  0.147 53 0239 9.8
OSVR (20) 0996 0.35 0994  0.85
OSVR (50) 0.995 042 0993  0.93
MWLS-SVM (20) 0.999  0.066 0.999  0.089
MWLS-SVM (50) 0.999 0.113  0.999  0.124
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approximated relationship would be large. The significant improvement of the predictive
ability for the MWLS-SVM model of the window size 20 was confirmed. The proposed
MWLS-SVM model could appropriately deal with the time-varying change of the relation-
ship between X and y by updating the LS-SVM models and by adding the time variable
to X variables.

4.2. Distillation process case study. The structure of the dynamic MWLS-SVM pre-
diction model is taking as this form:

y(k) = f(X(k),0)
X(k) = [m(k), 21(k — 1), -+ a1 (k — d)
wo(k), ok — 1), -+, 2o (k — d) (21)

n(k), zo(k = 1), -+ xp(k — d)]

where f(-) is the nonlinear model, and 6 is the model’s parameter.

Xi(k,k-1,++ k-d) ——

Xo(k.k-1,+- k-d)

'

Nonlinear
MWLS-SVM = v (k)
Model

Xo(kk-1,--- k-d) —»

FIGURE 2. Nonlinear model structure with multi-point input

For optimal selection of the input variables, the sensitivity matrix analysis method is
presented to select the most suitable secondary variables to be used as the soft sensor’s
inputs [21]. We define this cumulative frequency index, because the components in the
feed flow N, = 2 are considered in this paper, the temperatures on 21, 20, 22, 19 trays
are chosen as the sensitive variables to the composition soft sensor’s inputs.

The radial basic function kernel is chosen as the kernel function for all soft sensor
models. The optimal selection of parameters is very important to the soft sensor’s perfor-
mance. In order to obtain the optimal parameters for the soft sensor models, the five-fold
cross-validation technique is used to choose the optimal parameters. As a result, the op-
timal parameters range of the soft sensor models are defined as p € [0.5, 5], v € [1,10000],
and in order to decrease the computational complexity, the number of validation data
takes the last 10% data in the training data sets, and the max error which we can accept
¢ is defined as € = 0.0005. The training data set which we select for the static LS-SVM
soft sensor is N = 300. So, the moving windows width for dynamic MWLS-SVM soft
sensor is also set as w = 300.

The simulation results are shown in Figures 3-6. In Figure 3 and Figure 4, the dashed
dots with blue color represent the true distillation compositions while the red solid lines
represent the results of dynamic soft sensor predicting. The statistical results are sum-
marized in Table 3. The simulation results show that the MWLS-SVM soft sensor has
better performance of generalization than the static LS-SVM soft sensor.
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In order to develop the dynamic MWLS-SVM composition soft sensor, we should define
the moving windows width w. In this section, we also analyze the performance of the
dynamic composition soft sensor with different moving windows width. In the simulation
experiments, we defined w = 50, 100, 200, 300. The statistical results of the MWLS-SVM
soft sensors in different data sets are summarized in Table 4.

The simulation results show that the estimated outputs of soft sensor based on MWLS-
SVM model to the top composition match real values of the top composition and follow
the varying trend of the top composition very well. In Table 3, it also shows that the
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TABLE 3. Comparison of dynamic and static soft sensors

Method RMSE (107%)
LS-SVM N = 300 1.7991
MWLS-SVM w = 300 1.3270

dynamic MWLS-SVM soft sensor has good performance of generalization. From Figure
3 and Figure 5, we find that the dynamic MWLS-SVM soft sensor model has a good
generalization performance in estimation of the top composition with w = 300. Compared
with the dynamic model with w = 50, 100, 200, statistical results in Table 4 show that
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TABLE 4. Comparison of dynamic soft sensors

Dynamic Model RMSE (107%)
MWLS-SVM w = 50 3.2973
MWLS-SVM w = 100 3.5329
MWLS-SVM w = 200 1.8743
MWLS-SVM w = 300 1.3270

the MWLS-SVM soft sensor with the moving windows width w = 300 predicts more
accurately in the time-varying data. The simulation results show that the long moving
windows width covers more information and predicts more accurately in this model, but
we find that the training of the dynamic model will consume more time than other models
in our experiments.

5. Conclusions. This paper does research on on-line dynamic soft sensor for composition
estimator in the distillation column based on an MWLS-SVM and sensitivity matrix
analysis method. Through the optimal selection of the second variables and building
the dynamic MWLS-SVM composition soft sensor, the simulation result shows that this
method is efficient.

With the development of composition soft sensors, it is possible to implement inferen-
tial control of quality variables of the distillation process on-line. In summary, successful
installation of the composition soft sensors in an existing refinery can ensure better prod-
uct quality control with higher productivity. Future work will concern on how to reduce
the computation time and improve the performance of the dynamic moving windows
algorithm.
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