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ABSTRACT. Web service composition is a key technology required for the implementa-
tion of Service-Oriented Architecture (SOA). Since there are many web services with the
same functionalities and different Quality of Service (QoS), there is significant interest in
QoS-aware web service composition. This paper proposes a novel Global QoS Constraint
Decomposition (GCD) approach for QoS-aware web service composition that includes
global decomposition and local optimal selection. The GCD model and greedy algorithm
have a weak connection with the QoS values of the candidate web services. Hence, the
proposed approach can be adopted for dynamic scenarios. Finally, experiments were per-
formed to compare this approach to previous work. The results indicate that our approach
shows improved utility and time complexity.

Keywords: Web service composition, QoS-aware, Global QoS constraints decomposi-
tion, Greedy algorithm

1. Introduction. Service-Oriented Architecture (SOA) is an emerging paradigm for the
development of distributed Internet applications. In an SOA environment, a system is usu-
ally described as a composition of web services (WSs) that are loosely coupled, standard-
based, and platform-independent [1]. Due to the limitation of individual WS functional-
ities, it is often necessary to combine a set of WSs to satisfy the complex requirements
of users. Additionally, there are WSs that provide the same functionalities but different
Quality of Service (QoS), so it is a computational challenge to determine an optimal set
of WSs that meet the constraints and preferences of the user, namely QoS-aware Web
Service Composition (QSC). Since QoS of WSs can frequently change in a dynamic en-
vironment, this problem can be quite challenging. An additional level of complexity is
presented because exceptions may occur during the execution of a particular composition
scheme, such as a violation of Service Level Agreement or the unavailability of some WSs.
To address these potential complications, it is crucial to devise a low-complexity approach
to find an optimal replaceable WSs composition.

Most approaches to the QSC problem can be generalized as a local optimization ap-
proach or a global optimization approach [2]. The first approach determines an optimal
WS for an individual task among a set of candidate WSs. This approach has low time
complexity, but it cannot guarantee that the solution meets the global constraints [3].
The second approach is computationally expensive [3,4] because it attempts to select the
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optimal composition in order to provide the best utility within the global constraints.
Therefore, there is a need to design and implement a low-complexity algorithm that com-
bines the advantages of local and global approaches to meet global constraints.

Here, we propose a strategy of web service composition based on GCD. It is a two
stage algorithm: decomposition of global constraints and local selection. During the first
stage, the global constraints are decomposed into a set of local constraints that serve as
the conservative upper/lower bounds for each task. In this way, the satisfaction of local
constraints guarantees the eventual satisfaction of the global constraints. The GCD model
and its solution are only weakly associated with the values of QoS criteria for candidate
services. When these values are changed, the local constraints obtained by the original
process of GCD remain effective. Therefore, when exceptions occur, it is only necessary
to repeat the second stage of the process to find an optimal substitution with linear time
complexity.

Compared to the previous approaches, the contributions of this work are summarized
as follows.

e We proposed an improved model for constraint decomposition with respect to global
constraints. This model adopted a more reasonable objective function that allows
application to a normal workflow by importing the labelled tree.

e We presented a low-complexity, greedy algorithm with the model of constraints de-
composition in accordance with global constraints. The algorithm has few connec-
tions to the properties of QoS in candidate services allowing separation of the process
of decomposition of global constraints and local selection.

The remainder of this paper is structured as follows. Related work is presented and
discussed in Section 2. Section 3 formulates the problem and statement. Section 4 details
the proposed algorithm. Section 5 describes the performance and evaluations. Finally,
we present our conclusions.

2. Related Work. Generally, the QSC problem is an NP-hard problem that is equivalent
to the Multidimensional Multiple choice Knapsack Problem (MMKP) [3,4]. There have
been many attempts to solve this problem. These approaches can be classified as ones
for which the predefined workflow is known and ones for which the predefined workflow
is unknown, referring to WS discovery and semantic reconciliation [5,6]. In our work, we
focus on the first approach.

In [2], two approaches are described and compared: local selection and Integer Pro-
gramming (IP) based global selection. For the local selection, the chosen service is based
on local optimum, which becomes sub-optimal in the global view. This approach can-
not address the problem of global constraints. Some greedy strategy-based methods [3,7]
have similar features. The IP-based selection approach gains better performance with-
out violation of global constraints. However, the time complexity becomes exponential,
especially for a dynamic scenario. Gabrel et al. [4] converted the problem of QSC into
a Mixed Integer Linear Programming (MILP) problem, and the number of variables and
constraints are polynomial. However, the solution is time-consuming, particularly under
dynamic conditions. This strategy can only be used for linear objective functions.

Intelligent algorithms have been widely adopted to solve the problems of QSC. In [8],
a Genetic Programming (GP)-based algorithm was proposed to find an approximate op-
timal service composition solution in a distributed service environment. In this scenario,
the performance of an atomic WS is determined for the users’ location. The authors in
[9] employed a penalty-based Genetic Algorithm (GA) to address dependency and con-
flict among WSs. Researchers in [10] devised a GA that takes the execution time, price,
transactional property, stability, and penalty-factor into account when searching for the
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best solution. In [11], they presented a composition model that includes consideration
of the QoS and features in a Cloud network and used GA to solve the problem. To im-
prove the efficiency and speed of convergence, some (GA-based algorithms are used as a
population diversity measurement [12] or an adaptive crossover strategy [13]. Addition-
ally, Simulated Annealing (SA) [14], Harmony Search (HS) [15], Hill-Climbing (HC) [16],
and particle swarm optimization [17-19] strategies have been adopted to address these
problems. Although these algorithms can find optimal solutions, they have poor time
complexity and stability, and if service failure occurs during execution, they are not able
to quickly find a good replacement.

For the QSC problem, a global constraint decomposition-based method can overcome
these shortcomings. In [20], based upon user preferences, the global QoS constraint was
broken down into local constraints. Also, incorporating fuzzy logic, an adaptive parti-
cle swarm optimization algorithm can be exploited to select the best quality ruler. The
process of decomposition relied upon an empirical utility function rather than astrict
mathematic model. In [21], a Quality Constraint Decomposition (QCD) model was es-
tablished to support the generic workflow. However, these approaches cannot satisfy
global constraints. Since the optimization of the global utility of a composite service re-
quires optimizing the local utilities of all tasks, and the global constraints can be verified
by analysis of the local constraints for each task, [22] utilized a decomposition-based al-
gorithm. However, this algorithm cannot leverage local selection alone to quickly find an
alternative solution after an exception occurs in a dynamic scenario. In [23], a methodol-
ogy consisting of Constraint Decomposition Phase and Service Selection Phase is proposed
to select the best available service combination for a given workflow. A new and unique
method based on local selection and a new aggregation function which can assure 100%
guarantee for successful execution of each alternate path of an OR pattern are its main
contributions. However, the proposal is only suitable for decomposing constraints to a
simple combinational workflow.

There are two previous publications that are closely related to our work [24] and [25].
In [24], they analyzed the shortcomings of literature [25] and detailed an approach that
meets the global constraint. However, this model still has several issues. First, the GCD
model’s objective function must be improved. GCD balances the need to provide each
task with as much services as possible to satisfy local constraints with the need for an even
distribution of the number of services for each task. By meeting both these objectives,
GCD can maximize the WS compositions. Second, the complexity of the Culture Genetic
Algorithm (CGA) [22] is proportional to the number of tasks, the number of services, and
the number of QoS criteria and therefore performs more slowly with increased problem
complexity. An approximate algorithm for GCD model that can rapidly find a proper
solution would be highly useful. Third, in the previous works, they have focused on
only a sequential pattern. However, it is essential to also allow patterns of parallel and
exclusive choice in the workflow. By adding these two patterns into the model, we present
an enhanced global QoS constraint decomposition model, and devise a greedy algorithm
to increase the speed of the GCD model.

3. Problem Formulation and Statement.

3.1. Workflow model. A workflow is used to describe the process of assessing and
utilizing the functionalities of different WSs to satisfy the users. For a given workflow,
a task has a set of WSs that share functionality and a pattern (e.g., sequence, parallel,
exclusive choice, or loop) that represents the temporal relationship between different tasks
[4]. Since the loop pattern can be converted into a sequential pattern [27,28], we therefore
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FicUure 1. Illustration of the patterns and resulting labelled tree

consider the following three patterns: sequence (SEQ), parallel (AND), and exclusive
choice (XOR).

There are alternate methods that can be used to describe a workflow, such as Petri Net
[26], labelled tree [21], or numbered graph [4]. Here, we use the labelled tree method to
describe the workflow. Assume that a workflow includes only one of the patterns (SEQ,
AND, or XOR); it can be labelled as a 2-layer labelled tree. Each leaf node is labelled to
represent a task and the root is labelled to represent a pattern, as shown in Figure 1.

A general workflow consists of the above three patterns that are recursively concate-
nated and interlaced. This can be represented as a labelled tree with the following features:

(1) The number of leaf nodes is equal to the number of tasks in the workflow, and each
leaf node corresponds to a task;

(2) Each internal node represents a pattern. The number of internal nodes is less than
the number of leaf nodes. Thus, the total number of nodes is less than 2 x n, where n
is the number of tasks;

(3) Each internal node has at least two children. Meanwhile, each node has a sole parent,
except for the root node.

Figure 2 illustrates the transformation of a workflow into a labelled tree. This trans-
formation is performed from the inside to the outside. First, A2, A3, and A4 in an SEQ
pattern can be transformed to a sub-tree with the root of SEQ (labelled as ST2) and
A6, A7, and A8 forming an XOR pattern that can be described as a sub-tree with the
root of XOR (labelled as ST6). Then, A5, ST6, and A9 are used to construct an SEQ

FiGURE 2. Illustration of generating a labelled tree based on a workflow
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pattern which corresponds to an SEQ sub-tree (labelled as ST5). Next, ST2 and ST5 can
be transformed to an AND sub-tree (labelled as ST25). Finally, transforming A1, ST25,
and A10 completes the transformation and results in a labelled tree.

3.2. Modeling of QoS criteria. For each task in the workflow, there are a set of WSs.
These WSs must be evaluated based on their QoS criteria. Previous studies [26,29-31]
have shown that QoS criteria can include execution price, response, availability, through-
put, reliability, reputation, and others. As mentioned in [4], depending on the way the
composite WS performance is calculated, there are three kinds of QoS criteria: sum-type
(e.g., price), min/max-type (e.g., response time), and product-type (e.g., reliability). The
aggregating formulas for each workflow pattern are presented in Table 1.

TABLE 1. Quality-aggregated formulas with different patterns
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In Table 1, z;, Vi € [1,n] represents the ith component in combined service X =
(%1, 29, ..., 2,), and q(z;) is the quality value of z;.

The QoS criteria can be positive or negative, and positive attributes can be easily
transformed into negative attributes by multiplying by —1. For the sake of simplicity,
here we only address negative criteria [25].

3.3. Problem statement. There are n tasks T = {T,T5,...,T,} and k constraints
¢ = {c1,¢,...,¢;} in the QSC problem. Each task T;, i € [1,n] has m number of
candidate WSs s; = {s;1, Si2, - - -, Sim}- The objective of the GCD process is to decompose
each global QoS constraint ¢; into a set of local constraints ¢,1, ¢.9, ..., ¢, where n is the
number of tasks in the workflow. These local constraints should ensure that if candidate
services for each task are able to satisfy the local QoS constraints, the combined WS by
these candidate services can meet the global QoS constraints.

To improve performance, GCD attempts to maximize the number of candidate WSs
that satisfy the local constraints. It can be defined as Equation (1):

F(t) = H num(T;) (1)

where num(T;) denotes the number of candidate WSs for T; (i € [1,n]) that meets the
local constraints. The value of num(T;) can be calculated using Equation (2):

num(T;) = #{s|s € s; Nq(s,r) < ¢} (2)

where #S denotes the number of elements in S and ¢(s,r) denotes the rth QoS criterion
for service s.
Hence, the problem of GCD can be formulated as an optimization problem as follows:

Max F(T)
flrt,r)y<e., r=1,2,...,k
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where ¢,; (r = 1,2,...,k; i = 1,2,...,n) are decision variables; rt is the root node of
labelled tree for the given workflow; f(rt,r) represents the upper bound of the rth QoS
criterion for rt; ¢/ denotes the rth QoS criterion for candidate service s;;; and min (g])
and max (¢f) stand for the minimum and maximum of the rth QoS criterion for T;
respectively.

4. Algorithm Design. To resolve the problem of QSC using global constraint decompo-
sition, the proposed algorithm is divided into two steps: a GCD process and local optimal
selection. QSC is a combinatorial optimization problem. These types of problems can
often be solved using intelligence algorithms [9-20], but these often have a high degree of
complexity and instability. Additionally, because the objective function Equation (1) is
strongly associated with the QoS values of candidate WSs, these algorithms cannot be
used in a dynamic scenario. As an alternative, we propose a greedy algorithm as part of
the process of GCD to reduce the time complexity and allow low coupling to the process
of local optimal selection.

4.1. Constraint conditions for GCD. For each global QoS constraint, there is a cor-
responding constraint condition in the GCD model. We need to formulate the f(rt,r)
using the local constraints ¢,; {r=1,2,...,k, i=1,2,...,n}.

For any node v in labelled tree, when the rth QoS criterion is sum-type (e.g., price),
the upper bound of the rth QoS criterion for v, denoted as f(v, ), can be calculated using
Equation (3):

Crv.task type(v) == LEAF
f(U, T) = chlev.child f(CU, T) type(v) = SEQ or AND (3)

|v.child| Y evev.chiia ] (€U, 1) type(v) == XOR

where v.task represents the task that is associated with the node v, if and only if v is a
leaf node; v.child denotes the set of v’s directed children nodes; type(v) is the type of v.

Similarly, when the rth QoS criterion is min/max-type (e.g., response time), f(v,r)
can be determined by Equation (4):

( Cr.task type(v) == LEAF
chév.child f(CU, T) type(v) == SEQ
f(U, 7“) = ma}]fldf(cv’ ’I“) type(v) == AND (4)
CUEV.chl
\ cvg;l.lcrllnldf(cv’ T) type(v) == XOR

When the rth QoS criterion is product-type (e.g., reliability), then the f(v,r) can be
determined by Equation (5):

Crv.task typ@('U) == LFEAF
f(’U, 7”) = Hcviv.child f(CU, T) typ@('U) - SEQ or AND (5)

[o-child] > evev.cnita f (€v, 1) type(v) == XOR

Using Equations (3) to (5) as appropriate, the f(rt,r) is calculated via recursion. Thus,
all the nodes in the labelled tree will be visited only one time. Because the number of
nodes is less than 2 % n, the time complexity is bounded by O(n).
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4.2. Greedy algorithm for GCD. To include as many possible feasible composition
schemes, a greedy algorithm is used according to the following criteria: (1) the local
constraints are relaxed as much as possible; (2) for each task, the number of WSs meeting
the local constraint should be uniformly distributed. Here, we use a greedy algorithm
to initially search for a solution that meets all the constraints of the GCD model. Next,
the initial solution is adjusted in three phases. First, for the fairness of all tasks, all QoS
criteria for each task will be simultaneously and repeatedly incremented a step-length

Algorithm 1: Find a suitable QCD solution
input:

levelNum: the number of quality level;

q;;: the value of QoS attributes the rth attribute of s;;;
output:

Solution[k][n]: solution[r][i] represents the local constraint for the rth QoS attribute
of the ith task, where Vr € [1, k], Vi € [1,n]
Step 1: set array delta, where deltalr][i] represents the step length for the rth QoS
attribute of the ith task.

Step 2: Init solution[r][i] = min (gj;);
Init delta[r][i] = (max (¢j;) — min (¢};)) /levelNumy;
Step 3: if(lisFit(solution)) then
Output(“cannot find suitable solution”);
End if
Step 4: while (isFit(solution)) do
Solution[r][i] += delta[r][i];
End while
Solution[r]|[i] —= deltalr][i];
Step 5: changed = true;
While (changed) do
For each task 7 do
Solution[r][i] += delta[r|[i];
If (isFit(solution)) then
Changed = true;
Else
Solution[r][i] —= delta[r|[i];
End if
End for
End while
Step 6: changed = true;
While (changed) do
For each task : and each attribute k£ do
Solution[r][i] += delta[r|[i];
If (isFit(solution)) then
Changed = true;
Else
Solution[r]|[i] —= deltalr][i];
End if
End for
End while
Step 7: Output solution;
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within the global constraint. The step length is determined by the number of quality
level levelNum, and is calculated as:

Af = (max (¢j;) —min (¢};)) /levelNum

where max (q{j) and min (q{j) define the maximum and minimum possible value of the
rth criterion for task 7; respectively. The second step is the tuning of all QoS criterion
single tasks. The last step is adjustment of the single QoS criterion for each single task.
The purpose of these last two steps is to maintain as many candidate WSs as possible.
The main workflow of this algorithm is detailed as Algorithm 1.

In Algorithm 1, the function isFit is used to decide whether a potential solution satisfies
the global QoS constraints and determines the time complexity for Algorithm 1. We
suppose that the number of loops for Step 4 to Step 6 is ny, ny and ng (ny + ng + nz <
levelNum), respectively. The number of the function isFit carried out is:

n+n*ny+nxkxng <nxkxlevelNum

where n and k represent the number of tasks and the number of QoS criteria that meet
the global constraints, respectively. Thus, the time complexity of Algorithm 1 is less than
O(n x k * levelNum).

4.3. Local optimal selection. Previous reports [30-34] discussed how to determine the
QoS value of a WS. As mentioned in [23], it is also important to consider commercial
agreements or historical contact information that exist between the current candidate
WS and its upstream service as part of the QoS value assessment for the candidate WSs.
The GCD process is connected with a workflow and QoS model, but it is independent
from the number and the QoS values of the WSs. Therefore, the QoS values of the WSs
can be determined by local optimal selection as detailed in Algorithm 2.

Algorithm 2: Select the best end-to-end composite service using a local selection
strategy
input: the local constraints for each tasks determined by GCD
output: a labelled tree representing end-to-end composite service
Step 1: For each task do
Set utility = —1, selected WS = null;
For each ws associated with task 7" do
determine the QoS values of ws according to the commercial agreements, the
historical contact information, or from its description file;
If (ws satisfies the local constraints for ¢) and (U(ws)>utility) then
Utility = U(ws);
selected WS = wrs;
end if
end for
if (selected WS == null) Output “No available solution”;
end for
Step 2: for each leaf node in LT, let the selected WS represent the corresponding task;
for each internal node in LT, calculate its utility;
Setp 3: for each node in LT with a depth-first traversal do
If (type(v) == XOR) clip all the children except the child with best utility;
End for
Output LT;
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In Algorithm 2, after determining the WSs’ QoS values, the utilities of the WSs that
satisfy the local constraints obtained by the GCD process are then evaluated using Equa-
tion (6).

k r
U(S) — maXEQi ) S) g(ra f) - w, (6)
; max (¢!, s) — min (¢7, s)
where max (¢!, s) is the maximum value and min (¢/, s) is the minimum value that can
be expected for the rth QoS criterion of the task T;; ¢(r, s) denotes the value of the rth
criterion of WSs; w, € (0,1) and Ele w, = 1. For each task, the WS with the best
utility is selected (Step 1).

Note that there may be XOR patterns and several end-to-end composited services
within the workflow and the optimal solution should be selected. In Step 2, for each
internal node in the labelled tree, the utility is calculated as described in [21]. In Step 3,
with a depth-first traversal, for each XOR node in the labelled tree, the child with the
best utility is retained.

The time complexity of Step 1 is O(nm), and the time complexity of Step 2 and Step 3
are O(n), where n and m represent the number of tasks and the number of WSs for each
task, respectively. The time complexity of Algorithm 2 is bounded by O(nm).

5. Experiments. The experiments were conducted on a Lenovo PC with Intel (R) Core
(TM) i5-2430M, with a 2.4 GHz Intel Xeon dual-core processor and 4 GB RAM, under
Windows 7 and Java 7. The workflows were randomly generated with SEQ, XOR, and
AND patterns by varying the number of tasks. For the number of AND and XOR patterns,
each accounts for one quarter. As in reference [4], the goal was to minimize the cost
(execution price) and satisfy the two QoS constraints of execution (response) time and
reliability. The WS registry was generated as done previously [4]. For a given number of
tasks and a set number of WSs per task, 20 instances were randomly generated in order
to compute average value.

5.1. Utility and time complexity. We evaluated the utility and time complexity of our
approach (GS_.GCD) compared to MILP [4] and CGA_QCD [21]. The value of levelNum
was set to 20; the number of initial individuals was set to 200; the iteration time was set
to 200; and other parameters were assigned the same values as used by [21].

As shown in Figure 3, we used the MILP results as a reference. When the number of
WSs was set, to 300 and the number of tasks ranged from 40 to 200, the execution price of
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FI1GURE 3. Execution price for the three models for different numbers of tasks
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GS_GCD and CGA_QCD approaches increased by 2% and 10%, respectively. In Figure
4, when the number of tasks was set to 100 and execution price over a range of WSs was
evaluated, we found that the execution price of GS_GCD increased 5% at lower WSs but
decreased as the number of WSs increased. From Figure 3 and Figure 4, we can conclude
that the utility of GS_.GCD was slightly lower than that of MILP, but it significantly
outperformed the CGA_QCD model.

The results in Figure 5 and Figure 6 show that the time complexity of GS_GCD is less
than MILP and CGA_QCD for the number of tasks and the number of WSs. The results
also show that the growth of WSs has little impact on the time for the GS_.GCD model
but results in strong increases in computation time for the MILP and CGA_QCD models.
This is because the complexity of GS_GCD is dominated by the GCD process which is
largely independent of the number of WSs. However, the scale of the MILP model is
approximately linear with the number of the WSs. For the CGA_QCD model, although
the QCD component is independent of the number of WSs, the CGA algorithm required
to solve this model is closely related resulting in a strong dependence overall.

In summary, for both utility and time complexity, our results indicate that the GS_GCD
model significantly outperforms the CGA_GCD model. Although the performance of
the GS-GCD model is similar to that of MILP, we propose the GS_GCD is superior to
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FiGUrRE 5. Computational time requirements for the three models for dif-
ferent numbers of tasks
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FIGURE 6. Computational time requirements for the three models for dif-
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MILP for the following reasons: (1) the objective function of MILP must be linear; (2)
MILP requires a much higher time complexity than GS_GCD; and (3) once service failure
occurs during execution, it is difficult to find an optimal replaceable service that can still
guarantee the global QoS constraints.

5.2. The impact of levelNum. This experiment was designed to determine the influ-
ence of levelNum on our model. In this experiment, the value of levelNum ranged
from 5 to 40.

In terms of execution price, according to Figure 7 and Figure 8, when the value of
levelNum is equal or greater than 10, the value of levelNum has a slight influence. As
the number of tasks or WSs increased, there was less of an effect.

We next determined the costs for different values of levelNum. As shown in Figure 9
and Figure 10, the time cost linearly increased as the value of levelNum increased.

The experimental results show that the proposed method is not sensitive to the value
of levelNum only if levelNum > 10. Thus, the model has good stability.

6. Conclusions. This paper proposes a global QoS constraint decomposition-based ap-
proach to analyze workflow-based QSC. To decompose the global QoS constraints, a set
of local constraints for each task was first obtained. Then, using these local constraints,
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FIGURE 7. Execution price in terms of different values of levelNum (5,
10, 20, 30, or 40) over a range of number of tasks
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FIGURE 9. Time cost in terms of different values of levelNum (5, 10, 15,
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FIGURE 10. Time cost in terms of different values of levelNum (5, 10, 15,
20, 25, 30, 35, or 40) and the number of tasks

a local optimal selection process was carried out to ensure the suitability of the global
constraints. In this proposed approach, the GCD model and solution method are nearly
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independent from the WSs. This ensures that the local constraints obtained by the orig-
inal GCD process are valid even if the QoS values of WSs change. Therefore, when an
exception occurs during running time, an appropriate replacement or composition service
can be quickly found via a local optimization selecting process. Finally, the experimental
results demonstrated that this approach outperforms current approaches.

This paper does not consider user preferences for constraints, and is not able to include
constraints that are expressed in uncertain form. Expansion of the model to allow this
flexibility is the goal of future studies.
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