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Abstract. This paper is concerned with the problem of Network-based containment con-
trol for a class of multi-agent systems. Under a directed graph, the containment control
protocol of distributed multi-agent system is accomplished through a communication net-
work, in which way all followers’ states can be driven asymptotically converge to the
convex hull spanned by the leaders. By combining Lyapunov stability theory and linear
matrix inequality (LMI) method, a sufficient condition guaranteeing containment control
is derived, and the network-based containment control gain is achieved by solving the
feasibility of linear matrix inequality. The results show the network-based containment
control protocol effectively helps compensate the time-varying delays produced in the com-
munication network. Finally, the effectiveness and feasibility of the control method are
verified with a simulation example.
Keywords: Multi-agent systems, Containment control, Communication network, De-
lays

1. Introduction. Distributed multi-agent systems have received increasing attention
during the last decades due to the rapid developments of computer science and sens-
ing technologies, distributed cooperative control of multi-agent systems has made great
progress. Applications of cooperative control include UAV formation control [1], trans-
portation systems [2], autonomous vehicle systems [3]. Therefore, investigations into
fundamental aspects of cooperative control of multi-agent behavior have been widely re-
ported, e.g., consensus [4-6], formation control [7,8], flocking [9,10] and coverage control
[11].

As a kind of cooperative behavior, containment control of multi-agent systems has been
investigated a lot in recent years [12-18,25-28], which can be found in many application
scenarios such as when a collection of autonomous robots are to secure and then remove
hazardous materials. Containment control problems have been investigated for first-order
multiagent systems under undirected and directed network topologies [12]. The contain-
ment control was also studied for second-order dynamical systems in the presence of mul-
tiple leaders [13]. The authors of [14] proposed a hybrid control scheme based on stop-go
rules for the leader-agents to guarantee that the followers remain in the convex ploy-tope
spanned by the leader agents during their transportation. In [15], the containment control
of first-order and second-order integral multi-agent systems with communication noises is
investigated, and the results are extended to linear multi-agent systems in [16]. In [17], a
hybrid model predictive control scheme for containment and distributed sensing in multi-
agent systems was proposed. In [18], periodic sampled-data based containment control
of multi-agent systems with single-integrator and double-integrator dynamics was stud-
ied. Some necessary and sufficient conditions on sampling period were given to guarantee
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the achievement of containment control. In [25], the containment control problem for
multi-agent systems with general linear dynamics and multiple leaders whose control in-
puts are possibly nonzero and time varying has been studied. The containment problem of
both first-order and second-order integral multi-agent systems with communication noises
was investigated in [26]. [27] investigated the distributed containment tracking control
problem for first-order agents with multiple dynamic leaders under directed Markovian
switching network topologies. The event-based broadcasting containment control prob-
lem for both first-order and second-order multi-agent systems under directed topology has
been investigated by K. Liu et al. in [28]. However, all literature [25-28] has not referred
to the affection of time delay which usually cannot be avoided in multi-agent systems.

It is worthy pointing out, in the aforementioned literature, a point-to-point connected
mean is the main method used to control the multi-agent systems. However, in many mod-
ern applications, multi-agent systems are required to be remotely operated and controlled,
which shall cause the point-to-point control structure is no longer applicable. Consequen-
tially, it is a tendency that each agent in a distributed multi-agent system is controlled
via a communication network. The communication network has the advantages of less
wired, lower cost, easier to maintain, more suitable and flexible structure, etc. However,
it inevitably produces delays and packet-dropouts during information transmission in the
channel because of limited network bandwidth, which may cause negative impact on the
performance of the system, even leading instability to system. By introducing a commu-
nication network, a network-based consensus control protocol for distributed multi-agent
system is proposed with network-induced delay considered by Ding et al. in [19]. However,
the result in [19] can only be suitable for the cases that only one leader exists in MAS,
not referring to the containment control problem, which is a significant but challenging
work.

In this paper, the problem of network-based containment control for a class of multi-
agent systems with multiple leaders is concerned with. Firstly, the containment control
protocol of distributed multi-agent system is accomplished through a communication net-
work, in which way all followers’ states can be driven asymptotically converge to the
convex hull spanned by the leaders. Then, by combining Lyapunov stability theory and
linear matrix inequality (LMI) method, a sufficient condition guaranteeing containment
control is derived, and the network-based containment control gain is achieved by solving
the feasibility of linear matrix inequality. Finally, the effectiveness and feasibility of the
control method are verified with a simulation example.

Notation: R n denotes the n-dimensional Euclidean space. The superscript ‘T ’ stands
for matrix transposition. The notation X > 0 means that the matrix X is a real positive

definite matrix. I is the identity matrix of appropriate dimensions.

[
X Z
∗ Y

]
denotes

a symmetric matrix, where ∗ denotes the entries implied by symmetry. The sign ⊗
represents the matrix Kronecker product.

The paper is organized in 5 sections including the introduction. Section 2 presents the
preliminaries for networked multi-agent system. Section 3 presents some main results on
containment control for networked multi-agent system. There are some simulations to
illustrate the results in Section 4. Section 5 summarized this paper.

2. Preliminaries.

2.1. Graph theory. Some basic graph theory notions are first introduced in this sub-
section.
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Let G = (V , ε, A) be a weighted directed graph with a set of vertices V ={v1, v2, · · · , vn},
a set of edges ε ⊆ V × V , and a weighted adjacency matrix A = [aij]n×n of graph G . If
there exists an edge from vertex vj to vertex vi denoted by εji = (vi, vj), the adjacency
elements associated with the edges are positive, i.e., aij > 0, it means agent vi can receive
the information of agent vj. For any vertex vi ∈ V , it holds aii = 0. The set of neighbors
of vertex vi is denoted by Ni = {vj ∈ V |(j, i) ∈ ε}. The Laplacian matrix of directed

graph G is denoted by L = [lij]n×n, where lii =
n∑

j=1,j ̸=i

aij; lij = −aij, i ̸= j. A directed

path in a directed graph G is a sequence consisting of a group of orderly edges, and it can
be denoted by (vi1 , vi2), (vi2 , vi3), · · · , where ik ∈ {1, 2, · · · , n} and vik ∈ V . A directed tree
is a directed graph, where every vertex, except one special vertex without any neighbor,
which is called the root vertex, has exactly one neighbor, and the root vertex can be
connected to any other vertices through paths. A directed forest is a directed graph
consisting of one or more directed trees, not two of which have a vertex in common. A
directed spanning tree (directed spanning forest) is a directed tree (directed forest), which
consists of all the vertices and some edges in G .

If an agent has no neighbor, it is called as a leader; otherwise, it is called as a follower.
Assume a multi-agent system consists of m (m < n) leaders and n−m followers. Without
loss of generality, it assumes agents 1, 2, · · · ,m are leaders, and agents m+1,m+2, · · · , n
are followers. It defines L = {1, 2, · · · ,m} and F = {m + 1,m + 2, · · · , n} respectively
representing leaders set and follower set. Because leaders have no neighbor, Laplacian
matrix of directed graph G can be decomposed as

L =

[
0m×m 0m×(n−m)

L1 L2

]
where L1 ∈ R (n−m)×m and L2 ∈ R (n−m)×(n−m).

For the sake of further discussion, now we give the following assumption.

Assumption 2.1. The communication digraph G has a directed spanning forest.

Definition 2.1. ([20]). A set F ⊂ R m is said to be convex if (1 − λ)x + λy ∈ F for any
x, y ∈ F and λ ∈ [0, 1]. The convex hull of a finite set of points χ1, · · · , χn ∈ R m, denoted
by Co{χ1, · · · , χn}, is the minimal convex set containing all points χi, i = 1, · · · , n. More

specifically, Co {χ1, · · · , χn} =

{
n∑

i=1

αiχi|αi ≥ 0 and
n∑

i=1

αi = 1

}
.

Lemma 2.1. (Cao et al. [13]). Under Assumption 2.1, all eigenvalues of L2 have positive
real parts, −L−1

2 L1 is nonnegative and each row of −L−1
2 L1 has a sum equal to one.

2.2. Modeling of networked multi-agent systems. Here consider a second-order
distributed multi-agent system, which consists of m leader agents labelled as 1, 2, · · · ,m,
whose dynamics are described as follows.{

ṡi(t) = vi(t)
v̇i(t) = 0

i ∈ L (1)

And n − m follower agents are labelled as m + 1,m + 2, · · · , n, whose dynamics are
described as follows. {

ṡi(t) = vi(t)
v̇i(t) = ui(t)

i ∈ F (2)

where si(t) ∈ R N , vi(t) ∈ R N and ui(t) ∈ R N represent the position, velocity and the
control input of the ith agent. Denote the leader set by L and the follower set by F ,
respectively.
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Definition 2.2. ([21]). The containment control is achieved for system (2) under a
certain control input if the position and velocity states of the followers asymptotically
converge to the convex hull formed by those of the leaders as system (1).

Figure 1. The basic structure of multi-agent systems through a network

Here each agent of distributed multi-agent system is controlled by a feedback controller
connected through a communication network, which is helpful to control the multi-agent
system remotely. And its structure is shown in Figure 1. It is assumed that the sensor
is clock driven, and both the controller and the actuator are event-driven. During the
information transmission in the communication network, a network delay is inevitably
induced, which usually consists of two kinds of delays: one is sensor-to-controller delay
τ sc which is produced in forward channel, and the other is controller-to-actuator delay τ ca

which is produced in backward channel. A “packer” is employed to package the sampled
data of agent i and its neighbor agents into one single packet before they get to the network
channel. Namely, the data contained in one packet is transmitted in feedback channel,
which suggests τ sc(t) = τ sc

i (t) = τ sc
j (t), τ ca(t) = τ ca

i (t) = τ ca
j (t), where j ∈ {neighbor

agents of agent i}. So the time delay can be lumped together as one τ(t) = τ sc
i (t)+τ ca(t).

The networked containment control protocol for system (2) is given as
ui(t) = Kc1

∑
j∈Ni

aij[si(tk − τ(t)) − sj(tk − τ(t))]

+Kc2

∑
j∈Ni

aij[vi(tk − τ(t)) − vj(tk − τ(t))]

t ∈ [tk, tk+1], i ∈ F

(3)

where Kc1, Kc2 ∈ R N×N are network-based containment control gains that remain to be
designed later. tk is the sampling instant of the kth packet, and the sensor’s sampling
period is denoted by T = tk+1 − tk, and k ∈ Z+ is the sequence number of current
sampled-packet.

Defining a “synthetical delay” as η(t) = t − tk + τ(t), the control protocol (5) can be
rewritten as 

ui(t) = Kc1

∑
j∈Ni

aij[si(t − η(t)) − sj(t − η(t))]

+Kc2

∑
j∈Ni

aij[vi(t − η(t)) − vj(t − η(t))]

i ∈ F

(4)
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For the sake of further discussion, about the synthetical delay η(t), we give the following
assumption.

Assumption 2.2. η(t) is upper bounded by η, and it is smooth and its derivative is upper
bounded by β, i.e., η(t) ≤ η and η̇(t) ≤ β.

Let xi(t) =
[

si(t) vi(t)
]T

(i = 1, · · · , n), xL =
[

xT
1 · · · xT

m

]T
, and xF =

[
xT

m+1

· · · xT
n

]T
. It notes that vector xi of the leaders is a linear function with respect to

t: xi(t) = si(t0) + vi(t0)t. Then, based on (4), the dynamics of a closed-loop systems
resulting from (1) and (2) can be written as

ẋL(t) = (Im ⊗ A)xL(t) (5)

and

ẋF (t) = (In−m ⊗ A) xF (t) + (L1 ⊗ BK)xL(t − η(t)) + (L2 ⊗ BK)xF (t − η(t)) (6)

where A =

[
0 I2

0 0

]
, B =

[
0
I2

]
, K =

[
Kc1 Kc2

]
.

Letting x̃(t) = xF (t) +
(
L−1

2 L1 ⊗ I4

)
xL(t), it follows from (5) and (6).

˙̃x(t) = (In−m ⊗ A)x̃(t) + (L2 ⊗ BK)x̃(t − η(t)) (7)

Remark 2.1. By Lemma 2.1, we know each entry of −L−1
2 L1 is nonnegative and all row

sums of −L−1
2 L1 equal one, so the convex hull spanned by the leader agents is calculated

as (−L−1
2 L1 ⊗ I2N)xL . The containment control problem is transformed into stabilizing

system (7).

3. Main Results. Before the analysis of consensus, some necessary lemmas in the fol-
lowing sections are introduced.

Lemma 3.1. ([22]). Given a positive definite matrix Q ∈ R m×m, two constants a and b
satisfying a < b, and a vector function ν: [a, b] → R m such that the integrations concerned
are well defined, the following inequality holds(∫ b

a

ν(s)ds

)T

Q

(∫ b

a

ν(s)ds

)
≤ (b − a)

(∫ b

a

νT (s)Qν(s)ds

)
(8)

Lemma 3.2. (Jia [23]). For a given symmetric matrix S with the form S = [Sij], S11 ∈
R r×r, S12 ∈ R r×(n−r), S22 ∈ R (n−r)×(n−r). Then, S < 0 if and only if the following
inequalities hold. {

S11 < 0
S22 − ST

12S
−1
11 S12 < 0

(9a)

or {
S22 < 0
S11 − S12S

−1
22 ST

12 < 0
(9b)

Theorem 3.1. Under Assumption 2.1 and Assumption 2.2, given constants β, η, σ < 1
satisfying σβ < 1, as well as network-based containment control gain K, if there ex-
ists symmetric positive definite matrix P , positive definite matrices R, Q of appropriate
dimensions such that

−(I ⊗ T )−1 I ⊗ A
√

σηL2 ⊗ BKP 0
∗ I ⊗ (AT P + PA) L2 ⊗ BKP 0
∗ ∗ −I ⊗ Q 0
∗ ∗ ∗ Ξ

 < 0 (10)
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where Ξ = − 1
ση

(1 − σβ)(I ⊗ T ) + I ⊗ R, then multi-agent systems (1) and (2) solve the

containment problem.

Proof: First of all, construct the following Lyapunov-Krasovskii function.

V (x̃(t), t) = x̃T (t)(I ⊗ P )x̃(t) +

∫ t

t−η(t)

x̃T (τ)(I ⊗ Q)x̃(τ)dτ

+

∫ t

t−ση(t)

x̃T (τ)(I ⊗ R)x̃(τ)dτ +

∫ 0

−ση(t)

∫ t

t+s

˙̃xT (τ)(I ⊗ T ) ˙̃x(τ)dsdτ

(11)

Obviously, because P > 0, Q > 0, R > 0, T > 0, V (x̄(t), t) is positive definite. Taking
the derivative of V (x̃(t), t) with respect to t along the trajectory (7) yields:

V̇ (x̃(t), t) = 2 ˙̃xT (t)(I ⊗ P )x̃(t) + x̃T (t)(I ⊗ Q)x̃(t) + x̃T (t)(I ⊗ R)x̃(t)

− x̃T (t − ση(t))(I ⊗ R)x̃(t − ση(t))

− x̃T (t − η(t))(I ⊗ Q)x̃(t − η(t)) + ση(t) ˙̃xT (t)(I ⊗ T ) ˙̃x(t)

− (1 − ση̇(t))

∫ t

t−ση(t)

˙̃xT (τ)(I ⊗ T ) ˙̃x(τ)dτ

(12)

Because σβ < 1, based on Lemma 3.2, the following inequality holds.

− (1 − ση̇(t))

∫ t

t−ση(t)

˙̃xT (τ)(I ⊗ T ) ˙̃x(τ)dτ

≤ − (1 − σβ)

∫ t

t−ση(t)

˙̃xT (τ)(I ⊗ T ) ˙̃x(τ)dτ

≤ − 1

ση(t)
(1 − σβ)

(∫ t

t−ση(t)

˙̄x(τ)dτ

)T

(I ⊗ T )

(∫ t

t−ση(t)

˙̃x(τ)dτ

)
= − 1

ση(t)
(1 − σβ) [x̃(t) − x̃(t − ση(t))]T (I ⊗ T )[x̃(t) − x̃(t − ση(t))]

(13)

Substituting (7) and (13) into (12), it follows

V̇ (x̃(t), t) ≤ 2 [(I ⊗ A)x̃(t) + (L2 ⊗ BK)x̃(t − η(t))]T (I ⊗ P )x̃(t)

+ x̃T (t)(I ⊗ Q)x̃(t) + x̃T (t)(I ⊗ R)x̃(t)

− x̃T (t − ση(t))(I ⊗ R)x̃(t − ση(t)) − x̃T (t − η(t))(I ⊗ Q)x̃(t − η(t))

+ ση [(I ⊗ A)x̃(t) + (L2 ⊗ BK)x̃(t − η(t))]T (t)(I ⊗ T )
[
(I ⊗ A)x̃(t)

+ (L2 ⊗ BK)x̃(t − η(t))
]
− 1

ση
(1 − σβ)

[
x̃(t)

− x̃(t − ση(t))
]T

(I ⊗ T ) [x̃(t) − x̃(t − ση(t))]

(14)

Let ξ = x̃(t) − x̃(t − ση(t)), φ =
[
x̃T (t), x̃T (t − η(t)), ξ

]T
, inequality (14) can be equiva-

lently written as
V̇ (x̃(t), t) ≤ φT Πφ (15)

where

Π =

 I ⊗ (AT P + PA) + Π1 L2 ⊗ BKP + Π2 0
∗ −I ⊗ Q + Π3 0
∗ ∗ Ξ


Π1 = I ⊗ Q + ση(I ⊗ AT )(I ⊗ T )(I ⊗ A)

Π2 = ση(I ⊗ AT )(I ⊗ T )(L2 ⊗ BKP )
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Π3 = ση(L2 ⊗ BKP )T (I ⊗ T )(L2 ⊗ BKP )

Ξ = − 1

ση
(1 − σβ)(I ⊗ T ) + I ⊗ R.

Applying Schur complement theory described as Lemma 3.2 to inequality (10), it fol-
lows Π < 0. From (15), it holds V̇ (x̃(t), t) < 0, so system (6) is asymptotically stable.
Therefore, as t → ∞, xF (t) → −

(
L−1

2 L1 ⊗ I2N

)
xF (t). This completes the proof.

Based on the stability condition described as Theorem 3.1, next, the method for solving
the network-based containment control gain K will be studied.

Theorem 3.2. Under Assumption 2.1 and Assumption 2.2, given constants β, η, σ < 1
satisfying σβ < 1, if there exists symmetric positive definite matrix X, positive definite
matrices R̃, Q̃, and matrix W of appropriate dimensions such that

−X ⊗ I I ⊗ A λ
√

σηL2 ⊗ BW 0
∗ λI ⊗ (XAT + AX) λL2 ⊗ BW 0

∗ ∗ −I ⊗ Q̃ 0

∗ ∗ ∗ Ξ̃

 < 0 (16)

where Ξ̃ = − 1
ση

(1 − σβ)(I ⊗ X) + I ⊗ R̃, then multi-agent systems (1) and (2) solve the

containment problem with network-based containment control gain K = WX−1.

Proof: Defining P = λT , pre- and post-multiplying both sides of inequality (10)
with diag{I, I ⊗ T−1, I ⊗ T−1, I ⊗ T−1} and with the introduction of other new variables
T−1 = X, W = KT−1, Q̃ = T−1QT−T, R̃ = T−1RT−T, it follows inequality (16). Then,
Theorem 3.2 is proofed.

Remark 3.1. It is obvious that inequality (16) is linear, so here the network-based con-
tainment control gain K can be directly achieved by searching the feasibility to LMI (16).

4. Simulations. Consider the second-order multi-agent system including three leader
agents marked as 1, 2 and 3, and three follower agents marked as 4, 5 and 6. The
topology formed between leaders and followers has a directed spanning forest, which is
shown as Figure 2. For simplicity, here we suppose that all the weights of edges are set as
1. It assumes the “synthetical delay” η(t) produced in the communication network is not
less than 0.08 and not greater than 0.65, i.e., 0.08 ≤ η(t) ≤ 0.65. And its derivative is
not greater than 0.36, i.e., η̇(t) ≤ 0.36. We choose parameter σ = 0.45. By solving the
LMI in Theorem 3.2, the network-based containment control gain is calculated as follows.

K =

[
−2.0343 −5.2128 −5.4245 2.5481
−0.0178 −2.7042 1.0012 −0.6253

]
The agents’ initial states are assumed to obey Gaussian distribution. Applying the de-
signed network-based containment control gain to the multi-agent system, we depict the
position and velocity trajectories of all the agents in Figure 3. From this figure, it is
obvious that, after 20 seconds, even affected by the time-varying delay produced in the
communication channel, all followers’ states reach the convex hull spanned by the leaders
which is represented by dotted line. This shows the effectiveness and feasibility of the
proposed design method.

Moreover, the method proposed in [24] is used for the same problem. The trajectories
of positions and velocities are shown in Figure 4, from which it is obvious to see that
follower agents’ states fail to reach the convex hull spanned by the leaders. After all, this
further demonstrates the advantages of the method proposed in this paper.
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Figure 2. The topology graph for multi-agent system

(a) Position trajectories of all the agents (b) Velocity trajectories of all the agents

Figure 3. State trajectories of all the agents

(a) Position trajectories of all the agents (b) Velocity trajectories of all the agents

Figure 4. State trajectories of all the agents based on the method in [24]

5. Conclusions. The problem of network-based containment control for a class of multi-
agent systems is studied in this paper. Under a directed graph, the containment control
protocol of distributed multi-agent system is accomplished through a communication net-
work, in which way all followers’ states can be driven asymptotically converge to the
convex hull spanned by the leaders. By combining Lyapunov stability theory and linear
matrix inequality (LMI) method, a sufficient condition guaranteeing containment control
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is derived, and the network-based containment control gain is achieved by solving the
feasibility of linear matrix inequality. The results show the network-based containment
control protocol effectively helps compensate the time-varying delays produced in the
communication network.
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