International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 1, February 2014 pp. 151167

EFFECTIVE AUDIO CLASSIFICATION ALGORITHM USING
SWARM-BASED OPTIMIZATION

CHANGSEOK BAE!, NOORHANIZA WAHID?, YUK YING CHUNG?
WEI-CHANG YEH®®, NEIL WILLIAM BERGMANN® AND ZHE CHEN?

'Human Computing Research Section
Electronics and Telecommunications Research Institute
218 Gajeongro, Yuseonggu, Daejeon 305-700, Korea
csbae@etri.re.kr

2Faculty of Computer Science and Information Technology
University Tun Hussein Onn Malaysia
86400 Parit Raja, Batu Pahat, Johor, Malaysia
nhaniza@uthm.edu.my

3School of Information Technologies
University of Sydney
Sydney, NSW 2006, Australia

4Advanced Analytics Institute
University of Technology Sydney
PO Box 123 Broadway, NSW 2007, Australia

SDepartment of Industrial Engineering and Engineering Management
National Tsing Hua University
No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

6School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane St. Lucia, QLD 4072, Australia

Received January 2013; revised May 2013

ABSTRACT. The effectiveness and usefulness of large audio databases is greatly depen-
dent on the ability to classify and retrieve audio files based on their properties or content.
Automatic classification using machine learning is much more practical than manual
classification. In this paper, a new audio classification algorithm using Simplified Swarm
Optimization (SSO) based on Particle Swarm Optimization (PSO) is presented. The
performance of the new algorithm is compared with two existing state-of-the-art classi-
fiers, PSO and Support Vector Machine (SVM), for an audio dataset being classified
into five classes of musical instruments. The experimental results show that the proposed
SS0-based classifier has improved classification accuracy (91.7%) when compared with
PSO (87.2%) and SVM (88.5%). Additionally, the algorithm is shown to have simpler
particle update calculations than PSO, and also requires fewer particles for classification
training.

Keywords: Audio classification, Swarm-based optimization, Classification

1. Introduction. As the amount of multimedia data which is being stored in databases
increases, it is important to be able to analyze data based on its content. This is needed
for indexing, searching, sorting and content-based classification. For textual data, this can
be done on the text itself. However, for audio and video data, content-based management
has traditionally relied mostly on metadata, i.e., textual data about the content which is
added manually at the time of creation or at the time data is entered into the database.
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This manual classification is extremely time consuming, highly labor intensive, expensive,
and difficult. Furthermore, this information is often incomplete or totally absent. In recent
years, there has been an increasing interest in the automatic classification of multimedia
data. This paper investigates the classification of audio data, i.e., assigning segments of
audio to different classes that can be used for searching, indexing or analysis.

In general, the content-based classification of audio data involves two stages: the first
stage is to extract the key low-level audio features, and the second stage is to classify
the audio data based on these extracted key features. The novel contribution of this
paper is in the second stage, i.e., audio classification based on extracted features. Feature
extraction uses a commonly applied method called Mel Frequency Cepstral Coefficients
(MFCC). Then, a new swarm-based classification algorithm using these features will be
presented which is used to classify the audio. The performance of the new algorithm,
Simplified Swarm Optimization (SSO), is compared with two existing high performance
classifiers: Particle Swarm Optimization (PSO) and the Support Vector Machine (SVM).

The remainder of this paper is organized as follows. Related research is surveyed in
Section 2, and a detailed explanation of the proposed algorithm is presented in Section
3. The performance results of SSO, compared with SVM and PSO, are presented and
analyzed in Section 4. Some concluding remarks and future research directions are given
in Section 5.

2. Related Works. There has recently been considerable research on audio classification
using many different types of machine learning and data mining techniques. Techniques
are generally divided into two types: rule-based systems and machine learning models [1-
3]. In the rule-based approach, the audio category is determined based on a predetermined
set, of rules about the audio features. For example, the average energy of an audio segment
can be used to classify telephone audio into speech and silence. The machine learning
approach has recently become more popular for audio classification since it does not
require prior knowledge of the audio features. Instead, the machine learning model is based
on labeled information called training data, and this training data is used to generate
the classifier. A different set of test data can then be used to verify the classification
performance. Designing a machine learning classifier is basically an optimization problem
of how to choose the best set of classifier parameters to optimize classification accuracy.

Optimization is a kind of stochastic problem which can be used for guaranteed cost
control [4-7]. This paper proposes a new swarm-based optimization algorithm for audio
classification based on machine learning. Swarm-based optimization techniques such as
Particle Swarm Optimization (PSO) [8], Artificial Bee Colony (ABC) [9], Ant Colony Op-
timization (ACO) [10], and Immune System (IS) [11] are relatively new approaches, and
they have not been widely explored in the area of mining audio data patterns. Among
them, PSO (also known as the swarm intelligence algorithm) is one of the popular swarm-
based algorithms [12,13]. PSO has a shown superior performance compared with Genetic
Algorithms (GA), particularly in optimization applications [14]. In recent years, PSO has
been successfully applied in many different applications due to its robustness and simplic-
ity [15,16]. When compared with other stochastic optimization techniques such as GA,
PSO has fewer complicated operations and parameters to adjust, and can be coded in
just a few lines. In addition, PSO has been shown to be a promising technique for discov-
ering useful and interesting knowledge from databases [17]. Because of these advantages,
PSO has received an increasing amount of attention in the data mining community in
recent years [18-20]. However, PSO suffers from the problem of premature convergence,
especially in high-dimensional multimodal problems, and the convergence speed decreases
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as the number of iterations is increased, leading to difficulties in quickly finding the best
fitness value [21].

3. The Proposed Simplified Swarm Optimization (SSO) for Audio Classifica-
tion. In this paper, a new audio classification approach based on a new swarm optimiza-
tion algorithm is proposed and presented. A common issue in classifying music audio
sequences is identification of the different musical instruments in the audio clip. This
may be used to identify particular music clips which contain certain instruments (e.g.,
find clips with guitar but no piano), or it may be used to index the position within a clip
(e.g., find the piano solo in a particular clip). Therefore, testing for this SSO classifier
is based on classifying five categories of audio content, which are based on the piano,
trumpet, violin, guitar and accordion.

Twelve features are extracted to categorize the audio content, as described in Section
3.1. All of the extracted feature vectors were then fed into the proposed Simplified Swarm
Optimization (SSO) algorithm to mine the audio content pattern. Two existing classifiers,
namely, the Support Vector Machine (SVM), which is based on a statistical learning theory
algorithm, and a PSO rule-based classifier based on a swarm optimization algorithm, are
used to compare the classification performance of the new SSO algorithm. The overall
structure of the proposed audio classification system is shown in Figure 1.

‘ Audio data collection ‘

l

‘ Divide audio data into 6-second WAV file ‘

l

‘ Audio preprocessing ‘

l

‘ Feature extraction (Average MFCC) ‘

l

Machine learning/Data mining
(SSO classifier for training and testing)

End

FIGURE 1. A block diagram of the new digital audio classification system

3.1. Audio feature extraction. The first step is to extract the features in an audio
signal. An audio signal can be considered from two different domains, the time domain
and the frequency domain. In the time domain, a silence ratio (SR), which is the time
ratio of no sound during a given time interval, is one of the most useful features. In the
frequency domain, features are spectral features such as pitch, harmony, bandwidth, and
intensity.

3.1.1. Original MFCCs feature. A Mel-Frequency Cepstral Coefficients (MFCC) is a non-
parametric representation of an audio signal which reflects the human auditory system
quite well. The term mel-frequency indicates a frequency band spaced on the mel-scale,
a perceptual scale of pitches [22]. There are several speech processing algorithms that
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Ficure 2. MFCC transformation procedure

have employed MFCCs for classifying the features in an audio signal, owing to its good
discriminating ability [23,24]. In MFCC, the mel-frequency scale has a linear frequency
spacing below 1 kHz and a logarithmic spacing above 1 kHz. Figure 2 summarizes the
procedure used for MFCC feature extraction.

3.1.2. Average MFCCs feature. Using test data from many audio clips to generate sep-
arate MFCC features for each segment results in too much training data for efficient
learning. For example, suppose there are five classes of audio with 40 audio files of 6
seconds for each class. With a 128 kbps audio bit rate, 16 bits per sample, 512 samples
per frame, and 50% overlap between frames, 186 frames for each audio file in each class
will be extracted using the original MFCCs, which yield 7,440 instances in each class.
Altogether, there are 37,200 training instances to be fed into the classifier. It is inefficient
to feed all 37,200 data sets into a classifier. Therefore, another normalized MFCC array
will be applied by partitioning one audio clip into three parts in the time domain. MFCC
features will be averaged within each partition.

Suppose that there are n Hamming windows for one audio clip, then each partition
will have n/3 windows. If there are k¥ MFCC coefficients in one window, the mean of
the corresponding coefficients of each partition will be calculated, and each partition will
produce k¥ MFCC coefficients, summarizing the data in the n/3 windows. The vectors
from these three partitions will then be connected to form a new vector that will be used
for the classification process in the next step. Figure 3 illustrates the process used to
calculate the average MFCC feature vector. This technique has been used successfully in
our previous research [25].

Because each partition generates a feature vector with the same length, the Euclidean
distance can be used to calculate the distance between the average feature vectors of two
different audio files. The Euclidean distance is an effective way to measure the similarity
between two arrays with the same dimension and phase [26]. For any dimension of 4, it

Window 1 Window »/3 Window n/3+1 Window 2#/3 Window 2n/3+1 Window »n
1 |k 1| ... | & 1| ... | k 1 v |k feed 1L K 1 |...| &k
) 1 \
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FIGURE 3. The process used to calculate the average MFCC feature vector [25]
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is defined as

3.2. Particle swarm optimization. Particle Swarm Optimization imitates the intelli-
gent behavior of members of a group sharing their experience in a society. PSO is based
on adaptive social behaviors with individual reactions to the environment or search space.
It was originally proposed by Kennedy and Eberhart as a simulation of the social behavior
of organisms, such as flocking birds and schooling fish [8]. PSO can also be applied to
classification problems. PSO comprises a set of individual particles searching for the op-
timal point in their neighborhood. The movement of particles depends on the behavior of
other particles in the search space and the current best solutions that have been found in
the search space. During PSO training, the particles move around in a multidimensional
search space with their velocities being constantly updated by the best found position
(pbest) of the particles and the best solution met by their neighbors (gbest).

Each particle represents an individual position within a D-dimensional search space.

The i-th particle is represented as X; = (x;1, %, - ,2;p), the best previous position
pbest of any particle is P; = (p;1, pi2, -+ ,Pin), and the velocity for particle i is V; =
(vi1, Vs, + -+ ,v;p). Each particle is characterized by its current position x4, its previous

position p;4, and its velocity v;q. The globally best particle that represents the fittest
particle found thus far in the entire swarm is denoted by FP,. During each iteration,
Equation (2) is used to update the velocity of each particle.

de =w- de_l + ¢y - randy - (pig — xfgl) + ¢y - randy - (pga — le). (2)

In this equation, ¢; and ¢y denote the acceleration coefficients, d = 1,2,---,D, and
rand; and rands are random numbers uniformly distributed within [0, 1]. Acceleration
coefficients ¢; and ¢y control the exploration of the particle movement in a single iteration.
Typically, both coefficients are set to a value of 2.0, and the inertia weight w in Equation
(2) is also used to control the convergence behavior of the PSO [27]. Each particle then
moves to a new potential position as follows:

xfd:x§;1+vfd, d=1,2,---,D. (3)
The algorithm of a standard PSO is as follows:

Step 1: Initialize a population of particles with random positions and velocities.

Step 2: Evaluate the fitness value of each particle in the population.

Step 3: Obtain pbest if the fitness value of particle 7 is better than its pbest fitness
value, and then set a new fitness value as a new pbest of particle 7.

Step 4: Obtain gbest if any pbest is updated and is better than the current gbest,
and then set gbest to the current value of particle i.

Step 5: Update the particles velocity and position according to Equations (2) and
(3).

Step 6: Stop the iteration if the best fitness value or maximum generation is met;
otherwise return to Step 2.

3.3. Simplified swarm optimization algorithm for audio classification. In this
section, a new data mining approach based on the idea of a traditional PSO [8] and our
previously proposed Discrete PSO (DPSO) [28,29] is introduced. The proposed approach,
Simplified Swarm Optimization (SSO), is developed with each particle coded as a positive
integer number. We can apply SSO to data mining applications by accelerating the
occurrence of high-quality potential solutions in the population. The basic idea of this
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approach is to discover the patterns from the corresponding rule that are commonly
found in the best solution of the population. This approach is significantly different from
other methods, which have combined data mining and PSO together. To the best of our
knowledge, the use of a swarm-based algorithm such as PSO algorithm in the context of
audio data mining and classification has not been previously reported. An introduction
to the proposed SSO algorithm is presented in the following subsection.

3.3.1. SS0 algorithm. The proposed SSO algorithm is adopted from our previous work
[29,30]. Initially, the swarm population size, the number of maximum generations, and
three predetermined parameters will be set. In every generation, the particles positional
value in each dimension will be maintained or updated by its pbest value, or will be
updated by the gbest value or replaced by generating a new random number according to
the procedure described in Equation (4).

zbt if rand() € 0,C,),
p. . ifrand() € [Cy,
sty = Ay Tt € O Ol g
gi7 > ifrand() € [Cy, Cy),
T, if rand() € [Cy, 1].

In this equation, ¢ = 1,2,--- ,m, where m is the swarm population; X; = (z;1, Zs2, - -,
x;ip), where x;p is the positional value of the i-th particle with respect to the D-th dimen-
sion (d =1,2,---, D) of the feature space; and C,, C, and C, are three predetermined
positive constants with (', < C, < C,. The best solution achieved by each particle
(pbest) is denoted by P; = (pi1,pi2, -+ ,Pip), and the best solution achieved thus far by
the whole swarm (gbest) is represented by G; = (gi1, gi2, - - , gip)- In addition, z;4 rep-
resents the new values for the particle in every dimension, which are generated from the
random function rand(), using a uniform distribution in [0, 1]. The updated strategy for
the particles positional values in SSO is presented in the following steps and illustrated
in Figure 4.

Step 1: Initialize the swarm size (m), the maximum generation (maxGen), the
maximum fitness value (max F'it), Cy, C, and C,,.

Step 2: During every iteration, a random number, R, from [0, 1] will be generated
for each dimension.

Step 3: Perform a comparison strategy where

If (0<R<Cy),

Else if (Cy < R < C)),
Else if (C, < R < (),
Else if (Cy <R < 1),

then 2!, = xzd ,
then l‘zd = pzd :
then xf, = gl7',
then zt, = new(z;q).

Step 4: This process will be repeated until the termination condition is satisfied
(e.g., the global maximum has been found or a sufficient number of iteration
steps have been reached); otherwise, return to Step 2.

3.3.2. The rule mining scheme. In the context of a classification task in audio data mining,
the optimization task is to select a best set of classification rules based on the values of
individual features. One particle of the swarm population consists of a conjunction of
conditions composing IF-THEN prediction rules. Such rules have the advantage of being
a high-level symbolic knowledge representation which can be optimized to find a small
number of rules with higher fitness [31]. In the proposed algorithm, we introduce a new
threshold for each attribute, which comes from the lowest and highest data range values
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FIGURE 4. The particles update position scheme for the proposed SSO

Attribute Lower Upper Attribute Lower Upper

1 Bound Bound N Bound Bound Class X

F1GURE 5. Rule mining encoding scheme

of the given feature in the training dataset. The former is called a Lower Bound and the
latter is called an Upper Bound. The Lower Bound and Upper Bound act as a threshold
for the prediction condition. Figure 5 shows the encoding scheme of the particles position
(term), which consists of three parts: the attribute, Lower Bound and Upper Bound. Each
particle contains a number of attributes (dimensions) ranging from 1 to N. The last cell,
Class X, represents the predicted class of the rule.

The general form of the IF-THEN rules generated by PSO and SSO can be performed
in all dimensions as follows:

IF (LowerBound < x;g < UpperBoun) is true, THEN the prediction is Class X.

This approach will most likely produce a seeding position outside the range of values
seen within the training dataset. The most likely place that a particle will be seeded
is around the lowest and highest values in the training dataset. However, the seeding
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examples are from the class being predicted by the rule that the particle is encoding.
Hence, if the manner in which the values from these examples are distributed is different
from all the examples, then the search will hopefully be biased in an useful way. The
Lower Bound and Upper Bound values are obtained using Equations (6) and (7) as below.

Lower Bound = x;4 — p - range(Xmax — Xmin), (6)
Upper Bound = x;q + p - range(Xmax — Xmin), (7)
where X; = (z41,%0, -+ ,%;p) denotes the i-th seed value of the N-th corresponding

attribute in each D-dimension; p is a random number in the range of 0 and 1; and
range(Xmax — Xmin) is the range of values of the training data source for each feature.

In the case of SSO rule mining, the values of Lower Bound and Upper Bound will not be
updated during or after the generation process. However, in the case of PSO rule mining,
the values of Lower Bound and Upper Bound will be updated according to the new position
updated by the velocity after the generation process. Here, we employed Equation (3) to
update the new current value of the corresponding position. The update strategy of the
Lower Bound and Upper Bound values is performed according to the comparison strategy
as follows:

)
L B =
[(0<R<C,),  thend LoWerBound@y) =y
Upper Bound(x',) =z,
£y —
Else if (Cy < R < C,), then LowerBound(:z:tzd) = Lower Bound(p!,),
) Upper Bound(z',) = Upper Bound(pl,),
L Bound(z!,) = L Bound
Else if (C, < R < C,), then ower Boun (:U:d) ower Bound(gt,),
Upper Bound(z!,;) = UpperBound(gld)
Else if (C, < R < 1), then Lower Bound(zt)) = 2% —rand() x range(Tmax — Tmin),
\ Upper Bound(z!,) = —i—mnd() X range(Zmax— Tmin)-

(8)
This technique is capable of generating a high-quality potential solution in the population,
which is supported by an improvement in the classification performance observed in these
initial experiments.

3.3.3. Rule evaluation. In the previous literature, several different evaluation metrics for
rule evaluation have been presented, and the most commonly used metric is the classi-
fication accuracy, which has a more direct relation to the generalization accuracy. It is
necessary to estimate the quality of every candidate rule. To evaluate the goodness of
the rules, the quality of the rule (fitness function) is computed in the solution space, and
returns a single number that can represent the fitness value of the related position. In
data mining, the data will typically be divided into two parts: training data and test
data. Training data is used to generate a model according to the given rules in the target
problem, and that model will be used later for the test data to obtain the validation accu-
racy. How well the rule will perform in the testing phase will depend on the reliability of
the classification accuracy measurement. In general, the standard classification accuracy
rate can be written as

TP +TN (9)
TP+ FP+FN+TN'

However, the class distribution in many nonlinear classification problems is highly un-
balanced. Therefore, Equation (9) cannot be used to measure the accuracy rate for this

Standard classification accuracy rate =
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model effectively [32]. For this reason, a more comprehensive metric for a rule evaluation
has been used, where quality is expressed as follows:

TP y TN
TP+ FN TN+FP’

where TP, FP, TN and F'N are the number of true positives, false positives, true nega-
tives, and false negatives associated with the rule, respectively [33].

Quality(Q) = sensitivity x specificity = (10)

(1) True Positive (T'P): the number of cases covered by a rule that have the
class predicted by that rule.

(2) False Positive (F'P): the number of cases covered by a rule that have a class
different from the class predicted by that rule.

(3) True Negative (T'N): the number of cases that are not covered by a rule
and do not have the class predicted by that rule.

(4) False Negative (FN): the number of cases that are not covered by a rule
but have the class predicted by that rule.

In the classification problem, () ranges from 0 to 1, and the optimization goal is achieve
the maximum () value.

3.3.4. Rule pruning. In data mining, the main goal of rule pruning is to eliminate the
irrelevant attributes that might have been unnecessarily included in the rule, i.e., to reduce
the number of terms in the rule. Rule pruning can potentially increase the predictive
power of the rule, and can also avoid over-fitting to the training set [33]. Also a shorter
rule is more easily understood by users [34]. During the rule discovery process, once the
highest-quality rule for each class has been found using the training set, the best rule will
be added to the rule set after being pruned using a pruning procedure. The idea of the
pruning process is to iteratively remove each attribute (term) one at a time from the rule,
and at the same time keep improving the quality of the rule. During the initial iteration,
the process will start with the full rule. The rule quality is then computed according to
Equation (10). After that, the attribute pairs are checked in the reverse order to which
they were selected to see if a pair can be removed without decreasing the rule quality.
This involves tentatively removing terms from each rule and seeing if the removal of each
term affects the accuracy of the entire rule set. If the removal of individual terms does
not affect the accuracy it is permanently removed. If it does affect the accuracy, then
it is replaced, and the algorithm moves onto the next term, and eventually the next
rule. To ensure that the process used for minimizing the length of the rule continues,
the quality of the obtained rule must be greater or equal to the original rule. After the
pruning procedure, the examples covered by the rule are removed from the training set.
An example is said to be covered by the rule if the example satisfies all terms (attribute
value pairs) in the rule antecedent (IF part). A WHILE loop is performed as long as the
number of uncovered examples of each class in the training set is greater than zero. Once
this threshold has been reached, the training set is reset by adding the previously covered
examples. After completing the pruning process, all rules that do not contribute to the
classification accuracy will be removed. This is achieved by classifying the training set
using the rule list. If any rules do not classify any examples correctly, they are removed.
Later, a series of test data are used to measure the classification accuracy according to
the rule set obtained. For each instance, a prediction value is computed by examining
every element in the rule set for the corresponding class if it is covered by the rule. The
prediction value is calculated according to the prediction function, as shown in Equation

(11).

Prediction value+ = « x rule quality + 5 x percentage of rule covered, (11)
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where o and 3 are two parameters corresponding to the importance of the rule quality
and the percentage of the rule covered, respectively. The former is known as the quality
weight and the latter is known as the coverage weight, « € [0,1] and f = (1 — «). The
prediction value for each class is accumulated, and the final result is calculated from the
class with the highest prediction value.

4. Experimental Results. To verify the performance of the new SSO-based algorithm
on audio data, a well-known benchmark classifier SVM, and one popular swarm-based
algorithm (PSO) classifier were compared with the new SSO-based algorithm. The SVM
was implemented in WEKA [34], an open-source machine-learning package. A PSO rule-
based classifier was designed and implemented using the same rule-mining scheme, rule
evaluation, and rule pruning as described in the previous section.

4.1. Data collection and preprocessing. For the experiments, significant effort was
needed to collect audio data from diverse sources, mainly from the Internet, as very few
databases are publicly available. The audio data considered in this research were mainly
in MP3 and WAV format with an assortment of sample rates of 22.1 and 44.1 kHz. The
authors in [35] showed that a lower data rate mono channel has been widely used owing
to its ability to provide better models, and it also can reduce the computational time
compared to using a stereo file or higher sampling rates. So, before implementing the
feature extraction phase, the audio signals were down-sampled to 8 kHz and converted
into a consistent WAV format, with 16 bits per sample in a mono channel. This was done
using sound editing software. Table 1 shows the details of the properties for the test audio
data used in our experiments.

TABLE 1. A summary of audio signal properties

Audio property Value
Audio bit rate 128 kbps

Audio sample size 16 bit
Channel 1 (mono)

Audio format PCM
Audio length 6 seconds

The audio stream was divided into non-overlapping sub-clips of 6 s in length. Later,
these sub-clips were manually classified according to their category and used as the train-
ing and test data. Altogether, 2,500 audio sub-clips were used in the experiments. These
recordings were from five well known musical instruments with 500 recordings from each
musical instrument. The five categories of musical instruments — piano, trumpet, violin,
guitar, and accordion — were manually labeled in the dataset.

4.2. Feature extraction. In first step, the average MFCC features were extracted from
the 2,500 musical recordings. Each audio sound was divided into frames where 512 samples
per Hamming window were employed during the MFCC transformation process. The
Hamming window shifted for every half-window size, i.e., 256 samples (32 ms) with a
73% overlap between adjacent frames. Twelve audio features were extracted from each
window, and the average feature values were calculated for each frame. Twelve MFCC
coefficients were used as the audio features because these have been previously shown to
provide good classification [36].
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4.3. Evaluation of classification accuracy. To evaluate the robustness of the pro-
posed SSO-based algorithm, a cross validation for the audio classification was performed.
Here, a 10-fold cross validation approach was used to estimate the predictive accuracy
of the algorithms. In this approach, data instances were randomly assigned to one of 10
equally sized subsets. At each iteration, nine of these sets are merged to form the training
set, while the classification accuracy of the algorithm is measured by using the remaining
subset as test data. This process is repeated ten times, choosing a different subset as the
test set each time until all data instances have been used nine times for training and once
for testing. The final predictive accuracy is computed and reported based on the average
of the classification accuracies of the ten runs of the discovered rule set. This approach
has been used in all experiments to control their validity.

4.4. Results and discussion. The performance of the proposed SSO was measured by
comparing it with a traditional PSO-rule based classifier. The aim was to discover the
optimum population size and number of generations for the SSO and PSO that leads
to the highest classification accuracy. Hence, in each experiment, the simulation was
run using five different numbers of particles (10, 20, 30, 40 and 50) with a different
number of generations ranging from 10 to 50. Since the SSO and PSO are stochastic
search algorithms, it was hard to determine their performance through one or two trials.
Therefore, experiments were initially run ten times. However, it was observed that after
five runs, the algorithms have the same results. Therefore, each experiment was run five
times, and all the presented results are averaged over five trials of the simulation.

Table 2 lists the implementation specifications and parameters used in the experiments
that gave the best results. Note that the setting of the parameters in the SSO and PSO to
generate the best solution was data dependent, and this is worthy of further investigation
in a future study. The results of the classification accuracies and the average rule set size
for both the SSO and PSO algorithms are shown in Table 3. From Table 3, although the
average rule set size generated by PSO is simpler (smaller) than SSO, SSO has managed
to achieve a higher classification accuracy compared with PSO over five runs.

To validate the competitiveness of SSO with other industrial benchmark classifiers,
SVM was also used on our audio dataset. SVM is one of the most popular statistical
techniques used for audio classification problems. SVM is a learning machine that plots
the training vectors in a high-dimensional feature space, and labels each vector by its class
[37]. SVM classifies data by determining a set of support vectors, which are members of
the set of training inputs that outline a hyper-plane in the feature space.

We employed SVM with its default parameters as a set in WEKA. In this paper, the
Sequential Minimal Optimization (SMO) [38] algorithm was implemented for training

TABLE 2. Parameter settings for the SSO and PSO algorithms

Parameter settings SSO PSO
Number of particles (m) 30 30
Maximum generation (max Gen) 50 50
Maximum fitness 1.0 1.0
Cu, C, Cy 0.1, 0.4, 0.9 -
Coverage weight, « 0.5 -
Quality weight, 0.5 -

C1, C9 - 20, 2.0

Maximum weight - 0.9

Minimum weight - 0.4
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TABLE 3. Comparison of the classification accuracies and average rule set
size for SSO and PSO over five runs when m = 30 and max Gen = 50

SSO PSO
Number of runs CA ARS CA ARS
1 90.8 15.5 85.8 14.2
2 91.9 15.8 86.6 15.4
3 91.9 15.2 86.6 15.2
4 91.9 15.0 86.6 15.4
5 91.9 15.0 86.6 15.2
Average 91.7 15.3 86.4 15.1
Max 91.9 15.8 86.6 15.4
Min 90.8 15.0 85.8 14.2
Standard Deviation 0.49 0.35 0.36 0.50

(Note: CA = Classification Accuracy, ARS = Average Rule set Size)

TABLE 4. The classification accuracies (%) of SSO and PSO in different
settings of m and max Gen, and SVM

SSO PSO

m 10 20 30 40 50 | 10 20 30 40 50
101 80.8 85.6 86.3 87.6 87.6|76.5 784 82.3 83.3 83.8
201 83.2 884 88.8 89.8 89.8|80.7 83.8 84.0 84.1 84.2
max Gen | 30 | 85.6 88.9 90.1 90.8 90.8|83.8 84.1 84.2 84.5 84.9| 88.5
401 88.8 89.8 90.0 91.2 91.2|82.8 83.8 85.2 85.7 86.6
50189.1 90.8 91.7 91.7 91.7|83.8 84.9 86.4 86.8 87.2

SVM

The performance of SSO for audio classification when compared to PSO and SVM
(m=30, maxGen=50)

92
91 -+
90 -
89 |
88
87 +

Classification Accuracy (%)

86
85

84

SSO PSO SVM

FIGURE 6. The overall performance of SSO against PSO and SVM

the SVM classifier. Here, the Radial Basis Function (RBF) kernel was used during the
training of the known and labeled feature vectors derived from the dataset. The equation
for the RBF kernel is K (z;, 2;) = exp(—7|lz; — z;|%).
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From Table 4, it was observed that SSO can achieve best higher accuracy when m = 30
and max Gen = 50. On the other hand, PSO can achieve its best results with m = 50 and
max Gen = 50. Thus, to obtain the highest classification accuracy, the SSO algorithm
tends to use a smaller total evaluation number of 1,500, when compared with PSO with a
2,500 total evaluation number. Furthermore, in all different settings of m and max Gen,
SSO performs better than PSO, and it also outperforms the SVM as shown in Table
4. In terms of the overall classification performance, SSO has clearly shown its superior
performance by correctly classifying the five classes from the audio data with 91.7%
accuracy when compared with PSO (87.2%) and SVM (88.5%).

Figure 6 graphically shows the classification performance of SSO, PSO and SVM. The
parameters for SSO and PSO are set according to those listed in Table 2. Interestingly,
we can see a substantial improvement in accuracy between SSO and PSO of 5.3%, and
3.2% difference between SSO and SVM. As this is the first attempt to apply swarm-based
optimization to classify audio data, an improved performance of 3.2% to 5.3% for SSO
can be considered as a significant contribution in the data mining and data classification
research areas. To the best of our knowledge, this is the first reported use of swarm-based
optimization algorithms for audio data pattern classification.

Figure 7 illustrates the performance of SSO under five different iteration conditions with
respect to various particle numbers when compared to PSO. From the graphs in Figure
7, we can see that the accuracies for both SSO and PSO gradually increase when the
number of particles increases. Figures 7(a) through 7(d) show that the SSO performance
tends to stabilize when the number of particles is equal to 40 and 50 with a classification
accuracy of 87.6%, 89.8%, 90.8% and 91.2% for a maximum generation of 10, 20, 30 and
40, respectively. When the number of generations is equal to 50, SSO can persistently
achieve the highest classification accuracy of 91.7% with only 30 particles, as shown
in Figure 7(e). As mentioned earlier, the parameter settings for SSO and PSO are case
dependent; therefore, in this experiment we only need 30 particles for SSO to achieve high
audio classification accuracy. It should be noted that SSO does not require the calculation
and use of the velocity and only needs to update the particles position according to
some simple conditions, leading to an improvement in the computation performance. On
the other hand, under all maximum generation conditions, PSO requires more particles
(m = 50) to obtain high classification accuracy.

SSO consistently outperforms PSO. PSO considers each particle based on two key
vectors, the velocity and position, and thus, PSO needs to allocate more memory than

90

|

86

84 - |
—_— "-".-' -
82 o A

80 —
78 -

—
76 -
74

Classification accuracy (%)

10 20 30 40 50
Number of particles

(a) Performance result for various particles number vs maximum generation
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FIGURE 7. Performance results for swarm classifiers with respect to differ-
ent numbers of particles against five maximum generations: (a) max Gen =
10, (b) maxGen = 20, (c¢) maxGen = 30, (d) maxGen = 40, and (e)
max Gen = 50. (—— SSO, — — - PSO)

SSO for each particle in each generation. In addition, each particle in PSO requires the use
of more than two equations, and generates three random numbers, five multiplications,
and three additions to update the position of any particle [29].

5. Conclusions. An efficient audio classification algorithm has been presented in this
paper. Simplified Swarm Optimization (SSO) is a new data mining algorithm derived
from the traditional Particle Swarm Optimization (PSO), and it mimics the biological
behavior of swarm intelligence. New Lower Bound and Upper Bound thresholds have been
introduced for each particle encoding scheme to improve the audio classification accuracy.
To evaluate the effectiveness of the proposed method, experiments were carried out on a
database with audio sounds of five different musical instruments: piano, trumpet, violin,
guitar, and accordion. The comparison results demonstrate the difference in performance
between two algorithms based on a biologically inspired paradigm, and one algorithm
based on statistical learning theory. Our results show that the SSO classifier can increase
the classification accuracy by 3.2% and 5.3% over SVM and PSO, respectively. SSO has
demonstrated superior performance to both of these algorithms for audio classification
based on decision-rule generation.

To validate the competitiveness of SSO with PSO, five different numbers of particles and
maximum generations have been performed in each experiment. The results show that
SSO requires fewer particles to achieve higher accuracy. To the best of our knowledge, this
is the first time the SSO and PSO algorithms have been applied to the audio classification
problem.

The results show that SSO is a promising approach for automated multimedia data
classification. The results show in particular that SSO can classify music according to
the instrument which is playing, which is very useful for music searching and indexing.
The SSO algorithm is still in its early stages, and further improvements in results can
be expected with more investigation. Further research will focus on improving the search
strategy in SSO and investigating other audio feature sets.
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