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ABSTRACT. Technically exploring a solution space in an effective way helps not only to
find good quality solutions, but also to reduce computation time. This paper proposes an
optimization technique that utilizes hybridization, strategic search, parallelization, and
asynchronous cooperation. A master-slave topology has been formulated in which the
master strategically sorts out portions of the search space in four phases with the help of
a clustering algorithm and assumes the role of an estimation of distribution algorithm to
model the solution distribution within the space using a Gaussian mizture model without
variable dependency. The new algorithm models a solution distribution by considering
not only the mean vector of clustered solutions obtained from previous searches, as per
the continuous univariate marginal distribution algorithm, but also by including infor-
mation about the quality of solutions. With sorted probability distributions assigned by
the master, slaves use genetic algorithms to extensively explore the solution space. The
effect of our proposal has been experimentally analyzed in continuous domains, and the
resultant algorithm shows significant improvements both in finding relatively good solu-
tions and in reducing computation time.

Keywords: Evolutionary algorithms, Genetic algorithms, Estimation of distribution
algorithms, Parallel processing, k-means clustering, Synchronous/asynchronous algo-
rithms, Continuous population-based incremental learning, Continuous univariate mar-
ginal distribution algorithm

1. Introduction. The modern era of computational intelligence has seen much use of
evolutionary algorithms (EAs) with great success [1, 2, 3]. The familiarity and efficiency
of these algorithms is due to their underlying principles of natural inspiration and im-
plementation simplicity. Hybrid algorithms used by modern researchers can explore the
benefits of two or more EAs; hence, they have become important and more powerful tools
in solving optimization problems [4].

Among the well-known classes of EAs are genetic algorithms (GAs), which are robust,
easy to use, and applicable in diverse areas in machine learning, combinatorial opti-
mization, and numerical optimization [5]. An abundance of successful research has been
performed using estimation of distribution algorithms (EDAs), which were introduced as
a novel EA technique by [6]. Both GAs and EDAs have been used with a great degree of
success in a variety of problem domains. The work in [7] cites some examples.

Technological innovation has led to a constant need for increasingly powerful algorithms
as the size and complexity of real life application problems has increased enormously.
Together with intelligent algorithms, the evolution of computers with multiple processor
cores provides an additional tool for “too expensive” problem-solving scenarios, through
the use of parallel processing techniques. The schemes proposed in [8, 9] are examples of
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algorithms utilizing this parallel processing power. However, for large-scale, complicated
problems, further reduction in computation time is still required, and this requires other
powerful techniques. Practical implementation of parallel processing can be achieved in
either a shared memory or distributed memory architecture. The former uses multiple
processor cores in a single processing unit and is characterized by the ability for all
processors to access all memory as a single addressing space. The latter uses processors
distributed in multiple processing units and requires a communication network to connect
inter-processor memory.

Asynchronous algorithms have also replaced synchronous algorithms with the same goal
of improving computation efficiency. These tools have been proved successful by many
researchers, including [10, 11], who achieved a significant reduction of their algorithms
computation times. With asynchronous algorithms, nodes operate at different rates and
hence spend more time in an active mode than in a waiting mode.

This paper broadly analyzes the performance of architecturally formulated master-
slave hybrid approaches to GAs and EDAs using different optimization techniques. This
is a continuation of the research in [12, 13, 14]. The approach aims not only to obtain
good quality solutions, but also to do so in a reasonably small computation time. The
basic idea of this algorithm is to extensively explore the solution space by progressively
sorting out the possible regions where optimal solutions are likely to occur. This search
space monitoring and evaluation process is performed in four strategically arranged search
phases, which are executed in a top-down fashion. The search is performed by slaves using
GAs; search space exploration and supervision is done by the master using an EDA. The
master’s work of EDA probabilistic estimation relies on the solutions obtained by the
slaves GAs during the process. This collaborative work is performed strategically in four
different sequentially executed phases that aim to identify the exact location of the global
optimal solution in a solution space.

In this paper, we improve the estimation of the distribution part of the master’s role,
one of the most important functions in our hybrid approach. In our previous work, we
used the simplest probability distribution model for the continuous univariate marginal
distribution algorithm (UMDAc), which works using only the mean of clustered solu-
tions. The distribution was taken to be Gaussian without variable dependency. A slight
modification of this distribution model is used in our new algorithm by considering not
only each cluster’s mean but also the quality of solutions from previous searches to model
the probability distribution, taking into account that the global optimal solution might
occur in a region far from the cluster center. This sort of enhanced distribution, which
tries to avoid characteristics of non-promising solutions and at the same time to retain
characteristics of promising solutions through learning, is a typical example of machine
learning in relation to an EA.

Parallelization has also been improved. In our previous approach [12; 13, 14], all pro-
cesses perform their roles synchronously. The synchronous execution allowed easier control
of the master-slave collaboration and of the implementation of the optimization program,
but at a cost of waiting delays. Therefore, in our new algorithm, we employ asynchro-
nous execution. We have also parallelized the K-means clustering algorithm used in the
master’s EDA. Parallel dynamic K-means clustering classifies the optimal solutions sent
from the slaves into K groups. The number of groups, K, is dynamically determined in
the algorithm.

The performance of our resultant algorithm is compared in this paper with results
from [12, 13, 14] and other algorithms by using Real-Parameter Black-Box Optimization
Benchmarking 2009 (hereinafter, BBOB) [16] with 24 continuous functions. We experi-
mentally analyzed the contribution of every optimization technique used in our approach.
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The combined benefits are experimentally observed in our resultant algorithm in terms
of the quality of solutions and the algorithm’s computation time.

In Section 2, we explain fundamental concepts, such as the basic evolutionary algorithms
used in our approach. Section 3 gives a detailed explanation of our proposed scheme. The
details of the experiments and an analysis of the results are reported in Section 4. Section
5 concludes the paper by giving some remarks about the algorithm and the results.

2. Preliminaries.

2.1. Mathematical notations and function optimization. X, is used to denote a
random variable. An instance of X; is denoted by z;. X = (X, X,...,X,,) denotes an
n-dimensional random variable, and x = (z1,s,...,,) is one of its instances. For a
continuous variable X;, we denote the density function of X; by f(X;). Since, for our
case, all the variables in X are continuous, we denote the joint density function by f(x).
In mathematics and computer science, function optimization is the process of finding
the best solution from all feasible solutions to minimize or maximize a specific func-
tion. Function optimization can be divided into two categories, depending on whether
the variables are continuous or discrete. The case with discrete variables is known as
combinatorial optimization; it is continuous function optimization if the variables are
continuous. In this paper, we perform minimization of continuous functions; the standard
form of optimization is
Minimize f(x)
Subject to g;(x) <0, i .
hz(.%') SO,Z: yoroy P
where
e f(x):R" — R is the objective function to be minimized over the variable z,
e g;(z) <0 are called inequality constraints, and
e hi(x) <0 are called equality constraints.

2.2. Evolutionary algorithms. GAs are population-based EAs that simulate genetic
selection and natural elimination processes of biological evolution. Holland [17] conducted
pioneering work in this field. GAs are useful for searching very general or poorly defined
spaces [18]. The three main components of GAs are crossover, mutation, and selection.
The pseudocode in Figure 1 summarizes the basic structure of GAs.

With recombination operators in GAs, good solutions can be easily destroyed, even with
elitism. EDAs, as explained in [6, 19], have their theoretical foundation in probability the-
ory. They perform iterative evolutionary computation without using any recombination
operators. EDAs work by probabilistic estimation and sampling. The best solutions are
selected from the population and a distribution is constructed from the selected solutions.
Using the distribution, sampling is done to obtain new members of the population. The
pseudocode of EDAs is shown in Figure 2.

The univariate marginal distribution algorithm (UMDA) was described by Miihlenbein
in 1997 [20], who provides the theoretical foundation for the field of investigation in general
and for the algorithm specifically. UMDA is the simplest model of EDA that does not
involve dependency between variables. UMDA models a distribution by just calculating
the average value of each gene representation in its relative position among all selected
genotypes. Miihlenbein also introduced an incremental version of UMDA (IUMDA) that
is described as equivalent to a population-based incremental learning (PBIL) algorithm
[21]. The PBIL approach bridges the gap between machine learning and EAs; PBIL
explicitly constructs an intensional description of the optima, expressed as a distribution
on the solution space. Continuous PBIL (PBILc), as introduced by [22], uses a Gaussian
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distribution to sample the population and updates the distribution from the population.
By doing so, the memory of good regions of the solution space is inherited from generation
to generation.

: P < GeneratelnitialPopulation();
Evaluate(P);
while termination condition is not met do
P’ < Recombine(P);
P" + Mutate(P');
Evaluate(P");
P <+ Select(P, P");
end while
Output the best solution found;

FI1GURE 1. Pseudocode for GAs

P «+ GeneratelnitialPopulation();

Evaluate(P);

while termination condition is not met do
Py, < ChooseFrom(P);
p(z) « EstimateProbabilityDistribution (Ps);
P «+ SampleBasedOn(p(z));

end while

Output the best solution found;

FIGURE 2. Pseudocode for EDAs

3. Asynchronous Hybrid Master-Slave Scheme. Our algorithm is a master-slave
parallel processing approach that hybridizes GA and EDA to explore the solution space
in an asynchronous fashion using a specific strategy. A probabilistic estimation of EDA
uses a Gaussian mixture model without variable dependency.

3.1. Estimation on a mixture model without dependency. For simple computa-
tions, univariate models are used in EDAs. These models assume that the n-dimensional
joint probability distribution function is a product of n univariate and independent proba-
bility distributions. For more powerful estimation, multiple-dependency models are used.
These models show good performance for target problems with a complicated landscape,
but their computational costs are very high.

In our approach, we use the mixture model and perform parallel computation based on
master-slave cooperation. Each slave generates an initial population for the GA according
to a simple model without dependency. However, the total system executes, in parallel,
a search based on the mixture model.

The EDA plays the role of a master for efficient control of search by slaves; hence,
the probabilistic estimation process has to be as accurate as possible to attain more
efficient control. We focus on the Gaussian mixture model, with the master estimating a
distribution of good solutions in the search space as a set of clusters and assuming that
good solutions in each cluster follow a Gaussian distribution.
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We consider, as the probabilistic model, the joint Gaussian probabilistic density func-
tion

filX) = Hfz(ffi) (1)

where f;(z;) denotes the sum of component distributions at the [-th iteration:

filw;) = Zﬂz,jfz(IiU)- (2)

Here, K; is the number of mixture components and 7 ; is the coefficient for mixing the
j-th component. Since we do not assume any dependency among variables, f(z;]j) =
N (wi; pi j,07;,) — that is, the univariate Gaussian density function corresponds to the
j-th component.

The EDA, which serves as the master process, starts with a clustering algorithm that
partitions solutions are sent from the slaves into k; clusters. In the previous works [12, 13,
14], after clustering, the master estimates the mean probabilistic vector for every cluster
using UMDACc as the Gaussian mixture model without dependency between variables.
Let us denote the mean vector by

1 = (g Mo -+ M i) (3)
ey
I _ Y
Mig = —r DT}, (4)
J y=1
k.

where mé is the total number of solutions in the j-th cluster and xi] is the y-th component
of the i-th solution in the j-th cluster at the [-th iteration. Therefore, in the previous
works, the vector is modeled using only the vector ué-, which is just a cluster center,
and the population initialization for the next search is done using ué- and the standard
deviation of solutions within a cluster.

In an actual case, the best solutions might occur far away from a central point; thus, in
this version of our approach, we enhance our probability distribution vector by considering
not only the mean of the best solutions in a cluster but also the quality of solutions
from previous searches. Hence, Equation (4) is replaced by the following equation with
enhanced probability distribution vector /)é- instead of ,ué-:

/li',j — (1 o a)-/”é,j + a.(Xbest,l + Xbest,2 o Xworst), (5)

where « is a learning rate, X! and X2 are the cluster’s best and second-best in-
dividuals, respectively, X*°"*! is a cluster’s worst solution, and uéd- is a cluster-mean
probabilistic vector calculated by Equation (4). Figure 3 illustrates the relationship be-
tween y and ji using a vector representation in a cluster j space. The figure shows that
the best solutions can occur very far from any cluster mean p. If population sampling is
done around only y, then it may cause the algorithm to be somehow kept away from the
real best solutions. The enhanced mean, i tends to shift away from the worst solution
and to occur somewhere not very far from both the cluster mean and the best solutions;
this not only causes the new sampled solutions to be of the best quality but also results
in a speedy search. This idea of employing solution quality in the probability distribution
estimation used in this work was inspired by the field of machine learning, where evolution
is considered to be similar to a learning by query process [30]. In the formula, we use only
the first two best solutions and the one worst solution to represent the solution quality,
but these numbers can be varied with little impact.
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FIGURE 3. Representation of solution distribution and estimation in a clus-
ter for the previous and present approaches

3.2. Strategic master-slave framework. The merits of a master-slave formulation are
the following: i) the formulation is a simple transposition of the single-processor evolu-
tionary algorithm onto a multiple-processor architecture, thus allowing reproducibility of
results; ii) there is no permanent loss of information when a slave fails or is unreachable
by the master; iii) the formulation is appropriate for networks of computers where avail-
ability is sometimes limited (e.g., available only during nighttime or when a screensaver is
on), because nodes can be added or removed dynamically with no loss of information; and
iv) the formulation consists of a centralized repository of the population which simplifies
data collection and analysis, as elaborated in [23]. In changing our approach to be asyn-
chronous, we maintained its basic master-slave architecture to retain the above-mentioned
benefits. The whole algorithm runs in a fixed number of iterations, with the slaves in-
dependently performing GAs (i.e., no chromosome migration between slaves) while the
master controls the GAs using the simplest model of EDA by instructing where each slave
concentrates its search in the next iteration (i.e., the master probabilistically helps slaves
to initialize their population members). The master process receives the best solutions
from all slaves and stores them in database DB. These solutions are then clustered, and
the master process calculates probabilistic estimation vectors p from within the clusters
and sends them to slaves as a message of “where to proceed” for their next search. In ad-
dition to imitating what the EDA does using already obtained best solutions, the master
process uses a strategic control mechanism to effectively explore the search space. Figure
4 is a diagrammatic representation of the proposed scheme. Master needs to interact
with database DB to access the best solutions sent by slaves and has to follow a specific
strategy to perform estimation. In the figure, P.D. K-Means represents parallel dynamic
K-means clustering, which is part of the EDA in our algorithm. Note that the role of the
master is analogous to that of an EDA because the master generates probability vectors
based on solutions already obtained and prepares a probabilistic distribution for the next-
iteration population initialization. However, our method is different from EDAs in that
it incorporates strategic search and parallel evolutionary computation instead of simple
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solution sampling, as in the case of traditional EDAs. Although GAs are used as search
algorithms by the slaves in our method, other population-based evolutionary algorithms
can be used.

The order of probabilistic search space exploration (strategy) is of vital importance, as
experimentally proved in [12]; hence the master performs this task in four sequentially
arranged phases, as follows, to accomplish what we call “strategic search”.

Wide-range search (WRS): At the beginning of the search in early iterations, the GA
population member initialization must be random to explore a much wider area of the
search space (the location of the global optimum is entirely unknown).

Outside clusters search (OCS): When there is a large enough number of solutions
returned by the slaves GAs, parallel dynamic K-means clustering is performed. The re-
sults of clusters are used to form vectors p as per the EDA probabilistic model, calculated
above as 1. In our past works cited above, UMDAc was used to model the vector as shown
in Equation (4). In the present study, enhancements are made, and Equation (5) is used
to calculate the probability distribution vector fi. The vector represents a specific area
within the search space. In this phase, the master instructs slaves to perform initialization
outside of clusters to avoid premature convergence (i.e., it uses complements of a deter-
mined vector). If p = ({15, fl2,j, - - -, fin,;) is the probabilistic estimation vector of the j-th
cluster, the master generates a complementary vector as p = (b— i1 j,b—floj, ..., b—finj),
where b = upper limit of search domain if fi;; > 0, or b = lower limit if fi,; < 0 in [—b, b].
Cumulative clustering (CC): In this phase, the same process as in OCS is used to get
probabilistic vectors, but with an increased number of solutions to be clustered. Here,
the master estimates new vectors at each iteration, and the number of solutions to be
clustered in the current iteration is greater than in the previous iteration. The popula-
tion initialization is done using a vector p = (fi1 3, fi2,js - - - » finj) (i-€., within the estimated
area). Here, every slave is assigned a specific area to search within the larger search space.
Best cluster focusing (BCF): Using the results of CC, the master can make a very
good guess where the best solution lies. The qualities of solutions returned by all slaves
that have been assigned by different clusters are compared. Hence, a final search is done
by all slaves focusing on promising areas using only the p value that resulted in the best
solutions.

In each of the phases described above, except WRS, every slave is assigned by one
probability distribution vector; to initialize a new population for their respective GAs
(sampling) they assume a Gaussian distribution with mean p and standard deviation
calculated by the master for a cluster.

Regarding the master-slave model, some limitations are mentioned in [23], but our
present approach accepts these limitations in favor of accuracy and algorithm performance
(solution quality). When the master process is the backbone of the architecture, it enables
better control of probabilistic estimation for the slave initialization process, and in case
of failure the slaves will assume random initialization. According to previous studies,
creating a network of slaves (migration of chromosomes) helps to boost search performance
[24], but we tried to reduce algorithm complexity as well as communication overhead by
completely removing inter-slave communication.

3.3. Parallel processing. In this research we have adopted a shared-memory parallel
processing technique using a multi-core processing unit. We use master-slave cooperation
to execute, in parallel, an asynchronous strategic hybrid algorithm using a Gaussian
mixture model without variable dependency. We also perform, in parallel, dynamic K-
means clustering in the EDA part of our algorithm during the solution space estimation
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FiGURE 4. Hybrid model based on master-slave cooperation

process. However, on distributed memory systems, our asynchronous version can be
efficiently implemented.

3.3.1. Parallel dynamic K-means clustering. In data mining, K-means clustering is a
frequently used method for classifying data according to their particular characteristics
[15]. Among its limitations is that it requires the number of clusters as an input. In
an algorithm we used in [12], we specified the number of clusters to be the same as the
number of slaves to make a one-to-one correspondence between the number of vectors
and the total number of slave processes. To increase the efficiency of our algorithm, we
decided to let the algorithm decide the optimal K from a certain range, based on a validity
measure. Various cluster validity measures have been proposed in [25, 26, 27, 28]; all aim
to have clusters that are compact and well separated. In this research, we adopt the
measure explained in [28], with the validity calculated as

validity = intra/inter (6)

where intra denotes the total sum of all distances between points within a cluster and
their respective cluster centers, and inter is the minimum of the distances between cluster
centers. Because we want to maximize inter-cluster distances and minimize intra-cluster
distances, the clustering module with the lowest value of the validity measure is the one
that gives us the best value of K. We therefore executed several K-means algorithms, with
the value of the number of clusters K ranging from 2 to 2k — 1 where k is the total number
of slaves in the algorithm. By the validity obtained from each K-clustering module,
the master process decides the best K. To compensate for the added complexity, these
modules are executed in parallel. Hence, during clustering the master creates sub-master
processes to perform dynamic clustering tasks concurrently. Figure 5 is a pseudocode
fragment for dynamic K-means clustering.

After the clustering process, the master calculates the probabilistic vector and standard
deviation of each cluster. All slaves need to initialize their populations for their GAs based
on the probabilistic vectors returned by the master process. With the best K determined
in the above process, we might obtain a situation where K does not correspond to the
number of slaves (i.e., £ # K). We might ask ourselves how the clusters (vectors) will
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: Access (DB);

: for all K =2..2k — 1 do

Ck «InitializeClusterCenters;

repeat
CalculateEuclideanDistance of solutions(DB);
Group solutions to nearest cluster;
Ck<+RecalculateClusterCenters;

until no change in clusters

Calculate validity| K];

Compare validity[K];

: end for

: Display K

: Display cluster centers

— e
W N = O

FIGURE 5. Pseudocode for parallel dynamic K-means clustering

be assigned to each slave. We developed the simple algorithm shown by pseudocode in
Figure 6 to take care of this kind of situation.

1: if K <k then

2:  Make more (K — k) copies of vectors from the best cluster and assign to remaining
slaves;

3: else

4:  Use vectors only from the best k clusters.

5: end if

FI1GURE 6. Pseudocode for probabilistic vectors assignment

3.3.2. Synchronous vs. asynchronous models. In a synchronized version of our approach
all slaves performed GA searching for exactly the same number of generations during each
iteration. When one slave finished its execution, it must wait for other slaves to finish
so that all can start the next iteration at the same time. The master must also wait
for the slaves to reach a specified number of iterations in order to start the estimation
process. The purpose of this synchronization was to provide smooth timing and activity
scheduling between the master and slaves. For example, the master knows the iteration
in which it will start clustering and can order changing the phase after a specific number
of iterations. As for the slaves, it is easy to determine the type of initialization (phase)
they are going to use at a given iteration. Furthermore, a fixed number of iterations are
observed in every phase (i.e., the total number of algorithm iterations is divided by 4 to
get the number of iterations in each phase).

Figure 7(a) is an activity-time diagram that shows the sequence of events from the
start to the end of the algorithm for the synchronous strategic hybrid approach. M and
S represent synchronous master and slave processes, respectively. A round dot on the S
lines indicates the starting point of synchronization (i.e., the time when the quickest slave
has finished searching). Point p marks the common restart of all slaves after the master’s
estimation. The phase change occurs at the dark dashed horizontal lines. Within the CC
phase, synchronization and estimation occur at each iteration. The thick dark vertical
lines on the M and S lines indicate time intervals when the master and slaves become
active, respectively. The thin parts of the M and S lines are when they are idle. The
master is inactive when it is waiting for slaves to complete their evolutionary computations
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FIGURE 7. (a) Synchronous and (b) asynchronous activity-time sketch
showing search, estimation, phases, and synchronization intervals

and then to return best solutions; slaves are idle when waiting for the master to complete
estimation.

Our asynchronous version allows the slaves to operate at different speeds. If any slave
meets the stopping criteria during the search process, it can terminate, regardless of the
number of generations, and continue to the next initialization. In this algorithm, we also
set a specific number of stored solutions to be reached for the master’s estimation process
to begin. Due to the difficulty of implementing the asynchronous version, we have set the
following conditions to ensure a correct and effective estimation for the master as well as
a smooth population initialization process for slaves.

(i) A slave can start the next phase even if the required estimation by the master has
not finished. In this case, the best local optimal solution of the previous phase is
used as an initialization vector.

(ii) The master must start the estimation process after a specified number of local op-
timal solutions are available in its database. This number must be smaller than the
maximum number of available local optimal solutions during a complete phase of
the synchronous version. This helps to reduce the size of the master’s idle intervals.

(iii) Once the master has finished its estimation process, all the slaves must be in the
new phase to use the newly calculated estimation vectors.

Figure 7(b) shows an activity-time representation of the asynchronous version, with M
and S bearing the same meanings as in Figure 7(a). We have used symbols to mark the
start of every phase for every slave: X for WRS, A for OCS, x for CC and e for BCF.
For the master, the symbols mark the start of the estimation process for each respective
phase. Slave S is the slowest slave. The continuous thick dark vertical line on the S lines
shows the complete removal of idle times for all slaves. On the M line we can see that
estimation starts before some phases end. Early estimation ensures early completion of
the next phase and decreases the master’s idle time. The figure also shows that slaves
finish searching at different points. Note that, time axis on two Figures 7(a) and 7(b) do
not use the same time units, hence the algorithm in Figure 7(b) finishes execution earlier
than in Figure 7(a).
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The removal of wait times for slaves and the reduction in idle time for the master in-
crease the algorithms search capability and mean that it completes its execution earlier
than the previous synchronous model. With asynchronous parallelization, the imple-
mentation is easy on a distributed memory parallel processing platform using Message
Passing Interface (MPI) programming; however, we should take into account the tradeoff
with communication overhead.

1: for i = 0... MAXITERATIONS do
2:  Receive(p(z)) from master;

3: P « GeneratelnitialPopulation(p(z));

4:  Evaluate(P);

5. while Target fitness value is not reached do
6 P’ < Recombine(P);

7 P" < Mutate(P’);

8 Evaluate(P");

9 P < Select(P, P");

10: end while

11:  Send the best solutions to master;

12: end for

FIGURE 8. Pseudocode for slaves

Figures 8 and 9 show pseudocode fragments that summarize the slave and master
processes, respectively, in an asynchronous model. In the figures, T" means strategy and
x denotes a real gene of the chromosome in a population. In Figure 9, step 10 indicates
the start of the EDA by using solutions stored in database DB. In step 13, the results of
the clustering algorithm stored in database DB are used to generate probabilistic vectors
(pi(x)) governed by strategy T.

1: Initialize(DB);
2: for i =0...k—1do
3: T WRS;

4:  pi(x) « GenerateProbabilityVector (T, DB);
5. Send p;(x) to Slave i;

6: end for

7: while Termination condition is not met do

8:  ReceiveSolutionFromSlaves(D B, i);

9:  if EnoughSolutions then

10: EstimationOfDistribution(D B);

11: T < Strategy();

12: Perform parallel K-means clustering(D B);
13: pi(x) < GenerateProbability Vector (T, DB);
14: Send p;(z) to Slave i;

15:  end if

16: end while

FiGURE 9. Pseudocode for master

4. Experimental Evaluation. In this work, we implemented our algorithm in the C
programming language using the POSIX Threads (Pthreads) library on a Mac Pro com-
puter (Intel Dual Quad Core: 8 cores in total; 3.0 GHz; 12 GB RAM). Implementation
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is possible on any parallel-processing platform, such as OpenMP or MPT for a shared or
distributed memory environment, respectively. The mentioned libraries are available for
the C, C++, and Fortran programming languages.

To elaborate the significance of our proposed methodology, we compare our current
algorithm with others to examine the following points:

i) Whether the asynchronous approach is more effective than the synchronous ap-

proaches in reducing overall computation time.

ii) Whether parallel processing is more effective than serial processing in reducing overall
computation time.

iii) Whether the strategic hybrid algorithm improves solution quality and reduces com-
putation time.

iv) Whether modification of the EDA probability distribution leads to improvement over
the previous model.

In this experiment, nine algorithms were used to investigate the above-mentioned points.
The performance analysis in this study was conducted by using the algorithms to solve
24 benchmark continuous functions used in BBOB. The algorithms used can be grouped
into the following three categories.

e Parallel strategic hybrid algorithms, which include the synchronous hybrid algorithm
(SH) from [13], the asynchronous hybrid approach using UMDAc¢ estimation (AH)
in [14], and the current version of the asynchronous hybrid algorithm whose EDA
probability distribution model has been enhanced (eAH).

e Traditional parallel algorithms, which include the parallel continuous univariate mar-
ginal distribution algorithm (pUMDAc), parallel continuous population-based incre-
mental learning (pPBILc), and parallel genetic algorithm (pGA).

e Traditional serial algorithms, which include the serial continuous UMDA algorithm
(sUMDAC), serial continuous PBIL algorithm (sPBILc), and serial genetic algorithm
(sGA).

4.1. Functions and parameter settings. We used all 24 functions in BBOB on a
noiseless testbed; noiseless testbeds are described well in [16, 29]. Table 1 displays the
definition of all functions with D as dimension. For descriptions of z, fop:, 2, Si, Tosz,
fpen(x), T, R and C, which are used in the function formulas, see [29]. The functions
have been categorized into five subgroups: separable (f; — f5), moderate (fs — fo), ill-
conditioned (f19 — f14), multi-modal (f;5 — fi9), and weakly structured multi-modal ( fo
— f21). The dimensions 2, 3, 5, 10, 20 and 40 have been used for every function. The
search space for all functions in all dimensions was limited to [—5, 5].

The crossover and mutation probabilities used for GAs are 1 and 0.08, respectively.
GAs used the stochastic remainder method for selection. In PBILc and eAH algorithms,
the learning rate @ = 0.009 was used. 3 Pthreads were used to execute 3 slave pro-
cesses, and 1 Pthread was used to execute the task of master and 1 slave (4 parallel
Pthreads for 8 processor cores executing a master and 4 slave processes). We used three
iterations (population re-initialization) in each tactic (phase), hence making a total of 12
sequentially-executed iterations in every instance. Due to the flexibility of asynchronous
algorithms, phase change occurred at different times for different slaves. The clustering
algorithm, which used values of K from 2 to 7, was executed concurrently by 6 Pthreads
created within master process. This K range was selected after analysis showing that
small K values perform better when the data size is not huge. The numbers of local opti-
mal solutions to be reached in the master’'s DB before clustering and EDA estimation in
the asynchronous algorithms were 400, 800, 1000, 1200 and 1400. For all algorithms, we
maintained the maximum number of function evaluations for fair performance comparison.
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TABLE 1. BBOB functions

F Name Formula
i Sphere fi(@) = |22+ fopt
D i—1 «
f Ellipsoidal folz) = 32 108(570) 52
i=1
D b
f3 Rastrigin fa(z) =10 <D -3 cos(?ﬂ'zi)) +12l* + fopt
=1
D D
fi Biiche-Rastrigin fa(z) =10 (D - cos(27rz7')> + 3" 22 + 100 fpen() + fopt
i1 i1
D
fs Linear Slope f5(x) =D 58| — sizi + fop
i=1
D 0.9
fs Attractive Sector fo(z) = Tos: (Z(Sizi)2> + fopt
i=1
D i—1
fr Step Ellipsoidal f7(z) = 0.1 max <\/§1\/104, 21 102071 2,2 > + fpen(2) + fopt
D-1
fs Rosenbrock, original fs(@) = Y (100(22 — zi11)? + (20 — 1)) + fopt
iz
D-1 ) ‘ )
fo Rosenbrock, rotated folz) = Y (100(z% — zi1)? + (20 — 1)?) + fopt
i=1
D i—1 «
fio Ellipsoidal fio(x) = D2 10°5=12% + fop
i=1
)
fin Discus S =10%22+ 3" 2% + fopt
i—2
D b
fi2 Bent Cigar Ji2(2) = 212+ 10°Y° 22 + fop
i=2
) D
fi3 Sharp Ridge fia(x) = 22 + 100 <Z Zﬁ) + fopt
i=2
D im1
fia Different Powers fra(z) = <Z \z,\zHﬁ) + fopt
=1
D b
fis Rastrigin fis(x) =10 (D — Y cos (27rzi)) +12l* + fopt
i1
D D 3
fis Weierstrass fre(x) =10 (% > 3T 1/2% cos (273%(2; + 1/2)) — ) + 30 foen() + fopt
i=1k=0
. 2
fiz Schaffers F'7 fir(z) = <m Vi + /sisin’ (50, “)) + 10 fpen(®) + fopt
i=1
D—1 A\
fis F7, condition 1000 fis(x) = <ﬁ > /si + /sisin’ (oOs,-”")) + 10 fpen(z) + fopt
i=1
D=1
f19 | Griewank-Rosenbrock F8F2 fio(z) = % > (48% — cos (gl)) + 10+ fopt
i—1
D
fao Schwefel Jao(x) = 5 zisin (/] z]) + 4.189828872724339 + 100 fpen(2/100) + fopt
i=
2
for| Gallagher 101-me Peaks for(x) = Thss (10 — nl_llzqaix w;exp (—55(z — y)TRTCR(z — yl))> + fpen(®) + fopt
2
fa2 Gallagher 21-hi Peaks foz(x) = Tpss (10 — Iﬁx w; exp (75@ —y)TRTC;R(z — y,-))) + fpen(®) + fop
D 32 17"
N < 20 2;—|20 z;
fo3 Katsuura Jos(x) = 35 1 <1 +iy %) — 2%+ fpen()
i=i =t
D ‘ D D
faa Lunacek bi-Rastrigin foa(z) = min (Z(fl — o), dD + 5 > (% — ;11)2) +10 (D — Y cos (27&'21')) + 10% fpen(2)
i=1 i=1 i=1

4.2. Results. For every algorithm, in every function and every dimension, 15 trials are
run to try to reach the target value f; = fope + Af. The expected running time
(ERT) depends on f; and is computed over all relevant trials as the number of function
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evaluations executed during each trial for which the best function value does not reach
fi, summed over all trials and divided by the number of trials that actually reach f;
[16, 29]. The target value used to consider a trial a success is f; = fopy + 1078, The
randomly generated value f,,; was added to the target value in order to make it difficult
for algorithms to guess the global optimum solution. Finally, f,, is eliminated, and if the
obtained value is less than or equal to 10~%, then the trial is considered a success since
all the functions are minimization problems with their global optimum at 0.

TABLE 2. Number of successfully solved functions (Max = 24)

[DIMENSION | 2 [ 3 | 5 [10]20] 40|

SH 2001119 (3|10
AH 2211511013110
eAH 2318|126 | 3 |1
pGA 171914111070
pUMDACc 513121111
pPBILc 8 1414|111
sGA 20012 5 [ 1100
sUMDAc¢ 6 (32111
sPBILc 1414|111

Table 2 summarizes the results on the ability of algorithms to reach the target value
in all dimensions. Listed in the table is the number of functions for which an algorithm
successfully reached the target value f;. The table suggests that the ability of algorithms
to solve functions decreases with an increase in dimension. Bolded values mark the high-
est number of successfully-solved functions in each dimension. The results also show that
eAH is better able to solve many of the functions in all dimensions than other algorithms.
Although the difference is not large between AH and SH algorithms, we will analyze the
cause of this small difference in the following subsections. Non-strategic approaches gen-
erally gave poor performance, as shown by the table, since they were able to successfully
solve only a few of the 24 functions in all dimensions. The algorithms pGA and sGA
performed well in dimensions 2 and 3 compared with other non-strategic algorithms.

TABLE 3. Computation time percentages

ALGORITHM SH | AH | eAH | pUMDAc | pPBILc | pGA | sUMDAc | sPBILc SGA|
Computation Time (%) | 50.82 | 49.77 | 48.69 | 52.95 51.31 |52.12| 60.21 59.19 100|

Fitness values of functions from each of 5 subgroups are presented in Table 4 for all
algorithms in dimension 5. In the table, AVG is the average of the best fitness values
obtained from 15 trials. MIN stands for the minimum fitness value among the best values
in 15 trials, and STDEV is the standard deviation of the best fitness values. The bolded
numbers mark the best of the best fitness values regarding minimization. The general
indication from this solution quality table is that eAH outperformed all other algorithms
for many functions in terms of obtaining high-quality solutions. Hybrid strategic searching
gave notably better performance, outperforming traditional algorithms in both serial and
parallel modes in all but a few cases.

4.2.1. Serial versus parallel algorithms. The aim of introducing parallelism has always
been to improve computation time. The results obtained from our experiments are no
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TABLE 4. Solution quality comparison in dimension 5
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| ALG | fi | 1 Jiz Ji9 fa2
AVG 3.5619E-09 | 5.8020E-02 | 1.8506E-01 | 8.6209E-02 | 5.1524E-02
SH MIN 1.3195E-09 | 1.2031E-09 | 4.6595E-03 | 2.5394E-02 | 1.9348E-07
STDEV | 2.1450E-09 | 8.9749E-02 | 3.3509E-1 | 5.1667E-02 | 1.7745E-01
AVG 2.5700E-09 | 8.4467E-02 | 7.5223E-02 | 1.2613E-01 | 2.2398E-03
AH MIN | 3.0880E-10 | 3.6630E-10 | 1.2058E-04 | 2.3562E-02 | 2.2508E-07
STDEV | 1.8572E-09 | 1.9095E-01 | 8.5335E-02 | 6.1482E-02 | 6.4706E-03
AVG | 2.5360E-09 | 1.9661E-03 | 1.5160E-02 | 7.0060E-02 | 8.9911E-05
eAH MIN 7.8040E-10 | 1.4970E-10 | 1.9397E-05 | 1.4944E-02 | 8.1141E-09
STDEV | 1.7561E-09 | 5.3856E-03 | 1.7336E-02 | 3.6636E-02 | 1.8403E-04
AVG 2.14499E-08 | 1.0424E-01 | 8.4906E-02 | 1.5332E-01 | 2.4834E-03
pGA MIN 3.5901E-09 | 9.9537E-03 | 2.5819E-03 | 6.7322E-02 | 2.8590E-09
STDEV | 2.2057E-08 | 1.0271E-01 | 7.7475E-02 | 5.6923E-02 | 6.7231E-03
AVG 1.5817E-04 | 1.7513E+00 | 3.0356E+401 | 2.1024E-02 | 1.7150E+01
pUMDAc | MIN 7.3161E-05 | 3.7411E-08 | 6.9705E+00 | 6.6291E-03 | 8.7747E-07
STDEV | 7.4731E-05 | 1.6203E400 | 1.4132E+401 | 5.6148E-03 | 1.6666E+01
AVG 1.0873E-04 | 3.5251E-01 | 4.7317E+401 | 3.1755E-03 | 1.4667E+01
pPBILc MIN 1.3532E-05 | 5.9970E-10 | 5.9737TE4+00 | 4.3874E-04 | 1.1461E-08
STDEV | 1.0447E-04 | 9.7806E-01 | 3.2899E+01 | 1.7521E-03 | 1.6814E+01
AVG 4.6528E-09 | 1.1643E-01 | 1.4250E-01 | 1.0919E-01 | 1.2684E-03
sGA MIN 3.8410E-10 | 5.8984E-03 | 3.0856E-03 | 2.6584E-2 | 4.6275E-08
STDEV | 2.6029E-09 | 1.3988E-01 | 2.2171E-01 | 5.0943E-02 | 3.9949E-03
AVG 2.1956E-04 | 2.7514E4-00 | 3.7565E+01 | 2.0360E-02 | 1.7062E+01
sUMDAc¢ | MIN 1.2584E-04 | 1.3055E-01 | 4.5708E4-00 | 7.9231E-03 | 9.7095E-07
STDEV | 6.5895E-05 | 3.0673E4+00 | 1.9363E+01 | 5.2269E-03 | 1.6595K+01
AVG 1.8239E-04 | 2.6681E-01 | 5.2831E+401 | 2.1273E-03 | 1.4055E+01
sPBILc MIN 1.0757E-04 | 1.5362E-09 | 1.2774E+01 | 4.4938E-05 | 1.9641E-08
STDEV | 7.4661E-05 | 7.8501E-01 | 2.7192E+01 | 2.3145E-03 | 1.7116E+401

exception. Parallel versions of GA, UMDACc¢, and PBILc have managed to reduce compu-
tation time by 47.88%, 12.06% and 13.31%, respectively, as shown in Table 3, which lists
the overall computation time needed to complete algorithm execution for all 24 functions
across all dimensions as a percentage of the slowest algorithm (i.e., sSGA). From Tables 2
and 4, it is clear that there is no significant difference in solution quality between serial
and parallel versions of these three algorithms. Therefore, we introduced the idea of the
strategic parallel approach in our work in order to improve the quality of solutions while
at the same time reducing computation time.

4.2.2. Strategic versus non-strategic parallel approaches. The introduction of strategies as
explained in Section 3.2 has played a very big role in improving the quality of solutions
as well as in reducing computation time. Table 4 shows that SH, AH and eAH obtained
the best average fitness values for most cases in comparison to other algorithms. Table
2 also shows that strategic algorithms outperformed non-strategic algorithms in terms
of their ability to reach the target value, except in dimension 40 for the UMDAc and
PBILc algorithms. Another significant difference that can be seen from our experimental
results is that every strategic approach finished execution earlier than any non-strategic
approach.
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FIGURE 10. Bootstrapped empirical cumulative distribution of the number
of objective-function evaluations divided by dimension (FEvals/D) for 50
targets in 100752 for separable functions f; — f5 (left subplot) and moderate
functions fs — f9 (right subplot) in 5-D

Figure 10 compares the performances of strategic and non-strategic algorithms using
a bootstrapped empirical cumulative distribution in two subgroups of functions (separa-
ble and moderate) in dimension 5. The graphs express the proportion of solved problems
rather than the reached function values; therefore, it is possible to meaningfully aggregate
many graphs for several functions of the same class into one graph. The graphs show the
ratio of the number of function evaluations in which the algorithms successfully reached
target values to the number of function evaluations divided by dimension. Therefore, not
only the ability to reach target values was considered but also the ability to reach them
in a specified number of function evaluations. Higher proportions of function evaluations
reaching the target values are noted for all strategic algorithms (SH, AH and eAH) com-
pared with non-strategic algorithms (pGA, pUMDAc and pPBILc) for different numbers
of function evaluations in both subplots.

4.2.3. Performance comparison between synchronous and asynchronous algorithms. After
we introduced the idea of strategies to our parallel algorithms, we moved forward, looking
for further reduction of computation time and improvement of solution quality. Since all of
our parallel algorithms were synchronous parallel master-slave algorithms with the master
and slaves waiting for each other to finish some tasks before starting others, we decided to
introduce asynchronous evaluation, hoping for even more reduction in computation time.
The results show no major difference in terms of solution quality; however, asynchronous
parallel strategic algorithms (AH and eAH) were slightly better than the synchronous
parallel strategic algorithm (SH). These results are shown in Tables 2 and 4.

Figure 11 shows a plot of the ratio of ERT for AH to ERT for SH versus log,,(Af).
Each subplot is for one function, which represents one of the five subgroups of functions.
Ratios less than 1 indicate an advantage of AH; smaller values are always better. The
line becomes dashed when, for any algorithm, ERT exceeds threefold the median of the
trialwise overall number of f-evaluations of the function by the same algorithm. Filled
symbols indicate the best A f-value achieved by an algorithm (ERT is undefined to the
right). The dashed line continues as the fraction of successful trials of the other algorithm,
where 0 means 0% and the y-axis limit is 100%, values below zero for AH. The line ends
when no algorithm reaches Af anymore. The number of successful trials is given only
if it was in {1...9} for AH (1°* number) and non-zero for SH (2"¢ number). One star
indicates significance at p < 0.05; otherwise, p < 10~#*, with Bonferroni correction within
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Ficure 11. Ratio of ERT for AH to ERT for SH versus log,,(Af) in
dimensions 2:+4, 3:V, 5:%, 10:0, 20:[] and 40:{

each figure. The figure shows the advantage of AH over SH for almost all the ratios in
each function for all dimensions except dimension 5 in f; and dimension 40 in fi;.

CPU timing experiments were conducted to compare the computation speeds of SH
and AH, by using function fs and restarted until at least 30 s. All experiments were
conducted on a Mac Pro (Intel Xeon Dual Quad Core: 8 cores in total; 3.0 GHz; 12 GB
RAM) running OS X 10.6.8. For SH, the results were 2.0; 2.0; 2.0; 2.0; 2.1, and 2.2 x 107"
s per function evaluation in dimensions 2; 3; 5; 10; 20 and 40, respectively. The results for
AH were 1.8; 1.9; 2.0; 2.0; 2.0, and 2.0 x 10~ ° s per function evaluation in dimensions 2;
3; 5; 10; 20, and 40 respectively. Furthermore, the overall computation time for algorithm
execution of all 24 functions in all dimensions was reduced by 2.07% for AH and by 4.19%
for eAH as related to SH.
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FIGURE 12. Expected running time (ERT in log;, of number of function
evaluations) of eAH (z-axis) versus AH (y-axis) for 46 target values Af €
[1078,10] in each dimension on functions f; — fio. Markers on the upper
or right edge indicate that the target value was never reached. Markers
represent dimension: 2:-+, 3:V, 5:%, 10:0, 20:[], 40:0.

4.2.4. Performance of strategic hybrid approaches in different EDA models. Since our
strategic master-slave parallel algorithms rely on EDA probabilistic estimations and sam-
pling for population initialization in late phases of searching, we tried to conduct ex-
periments using two different EDA probabilistic estimation models and compare their
performances. Both algorithms were asynchronous strategic parallel master-slave algo-
rithms with one using the previous UMDAc to model distribution (AH) and the other
using quality of solutions to enhance its distribution (eAH). Experimental results show
that eAH slightly outperforms AH in terms of both solution quality and computation time.
In Table 4, eAH has better AVG, MIN, and STDEV values in all presented functions than
AH does. In terms of speed, eAH finished execution earlier than AH by 2.17%.

The search capabilities and speeds of AH and eAH are further compared using the data
in Figures 12 and 13. In the figures, ERT (in log;, of the number of function evaluations)
needed to reach certain target values for eAH (z-axis) and AH (y-axis) has been plotted
for all 24 functions. From these figures we can see that it took a slightly larger number of
function evaluations for AH to reach most of the targets in almost all functions than for
eAH to do so. We can also spot that for almost all functions many markers are found on
the upper edge rather than on the right edge, indicating that many of the target values
were not reached by the AH algorithm.

Generally, it was easy for both algorithms to reach the target value f; in lower dimen-
sions (2 and 3) for most of the functions. In higher dimensions (5-40), both AH and eAH
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FIGURE 13. Expected running time (ERT in log;, of number of function
evaluations) of eAH (z-axis) versus AH (y-axis) for 46 target values Af €
[107%,10] in each dimension on functions fi3 — foy. Markers on the upper
or right edge indicate that the target value was never reached. Markers
represent dimension: 2:-+, 3:V, 5:%, 10:0, 20:[J, 40:0.

performed exceptionally well, with eAH outperforming AH. Furthermore, analysis of the
results using the number of successful trials for all 24 functions indicates that functions
from two subgroups, separable (f; — f5) and weakly structured (especially fog — fa2), were
easily solved by both algorithms. For moderate functions, only f; was easily solved in
dimensions 2-5. No algorithm was able to solve moderate functions in dimensions 10-40.
Using all algorithms, the worst performance was observed for the ill-conditioned functions
f10 — f1a and the multimodal functions fi5 — fi9, in which no algorithm reached the target
value in any dimension for functions fiy and f;3. However, AH and eAH did exception-
ally well on these two subgroups by obtaining a good number of successful trials for some
functions in dimension 2, with fewer successful trials in dimension 3.

5. Concluding Remarks. In this paper, we researched an effective way to explore a
continuous search space using a strategic master-slave hybrid approach of GAs and EDA.
Parallel processing techniques such as master-slave formulation and asynchronization were
used to overcome the tradeoff between computation time and solution quality. The at-
tempt was made by having the master progressively narrowing the search space to try
to locate promising regions using a four-phase strategy. The modeling process within
the regions is done using an enhanced UMDACc probabilistic distribution that includes
information about the quality of solutions from previous searches. Using GAs, the slaves
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explored the regions with estimated probability distributions to optimize some bench-
mark continuous functions. We performed progressive comparisons using nine different
algorithms with BBOB continuous functions to try to analyze the effect of every tech-
nique used in our resultant approach. The combination of parallel processing, strategic
searching, asynchronization and an enhanced probabilistic estimation model resulted in
the powerful algorithm eAH, which not only improved solutions significantly but also cut
the computation time by up to 51.31% in comparison with other algorithms. Moreover,
apart from our general findings, we have seen that the ability of different algorithms differs
between continuous functions as well as between subgroups of functions. For example, in
Table 4, sPBILc was exceptional at finding the best values for function f9, outperforming
all other algorithms on this function.

In future work, we will focus mainly on strengthening the master part of our algorithm,
and in particular, will replace the current univariate estimation models with multivariate
models. We also plan to introduce automation into strategic search, which will involve
automatic phase changes according to the search conditions. Since we plan to experiment
with real-world application problems, the resultant algorithm will also need to have a
fault-tolerance mechanism in case of the failure of either the master or slave processes.
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