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Abstract. In this paper, we will construct the maximum likelihood estimator (MLE) of
larger-the-better type process capability index (or lifetime performance index) CL for the
two-parameter Burr XII distribution with progressively type II right censored sample on
the condition of known L. Furthermore, we propose the asymptotic normal distribution
of the MLE for CL in order to develop the hypothesis testing procedure for assessing the
lifetime performance of products. Moreover, the hypothesis testing procedure not only can
effectively evaluate the lifetime performance of products but also is the supplier selection
criteria of the customers. Finally, two examples and Monte Carlo simulation are given
to illustrate the application of the results.
Keywords: Process capability index, Lifetime performance index, Burr XII distribution,
Maximum likelihood estimator, Progressively type II right censored sample, Asymptotic
normal distribution

1. Introduction. It is very important that enterprises emphasize effective management
and assessment of quality performance for products in the competitive market. Process
capability analysis is an effective means to measure the capability and performance of
a manufacturing process. During the last thirty years, process capability indices (PCIs)
have received much attention in the statistical literature. For instance, Montgomery [30]
(or Kane [21]) proposed that the process capability index CL (or CPL) for evaluating
the lifetime performance of electronic components, where L is the lower specification
limit, since the lifetime of electronic components exhibits the larger-the-better quality
characteristic of time orientation. Pearn and Chen [32], and Pearn and Shu [33] have
developed a procedure and confidence intervals for the process capability index CPU and
CPL, and presented extensive tables to test for practitioners when applying these methods.
All of the above PCIs are assumed to be under normal distribution. The assumption of
normality is commonly used in process capability analysis. Nevertheless, the normality is
very questionable in manufactures, service process and business operation process. The
lifetime model of many products may generally follow a non-normal distribution which
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include exponential, Rayleigh, Weibull, gamma, Burr XII or other distributions and so
forth. For example, Tong et al. [37] constructed a uniformly minimum variance unbiased
estimator (UMVUE) of CL based on the complete sample from an exponential distribution.
Moreover, the UMVUE of CL is then utilized to develop the hypothesis testing procedure.
Chen et al. [11] also used the UMVUE of CL to develop the confidence interval under an
exponential distribution with the complete sample. Then, the customers can employ the
testing procedure to determine whether the lifetime of electronic components attain to the
required level. Suppliers can also utilize this procedure to enhance process capability. The
hypothesis testing procedure not only can effectively evaluate the lifetime performance of
products but also is the supplier selection decision criteria of the customers. The selection
of Supplier is very important in customers’ business operation. Product management is
a basic function, which enables a firm to quickly and economically deliver products that
are requested by customers. Suppliers’ production management decisions determine their
product performances, which are the critical supplier selection criteria and influence both
suppliers’ performances and the manufacturing firm’s performance (see Vonderembse and
Tracey [39]).
The Burr XII distribution has been applied in the field of quality control, reliability

studies, and failure time modeling (see Soliman [35]). The probability density function
(p.d.f.) and cumulative distribution function (c.d.f.) of the Burr XII distribution are
given, respectively, by

fX(x|θ) = ckxc−1(1 + xc)−(k+1), x > 0, c > 0, k > 0, (1)

and
FX(x|θ) = 1− (1 + xc)−k, x > 0, c > 0, k > 0, (2)

where the vector parameters θ = (c, k)T , both c and k are shape parameters. For c > 1,
the p.d.f. as Equation (1) is unimodal and is L-shaped for c ≤ 1. We will use the notation
X ∼ BXII(c, k) to indicate that a random variable X has the distribution given by
Equation (1). Its capacity to assume various shapes often permits a good fit when used
to describe biological, clinical, or other experimental data (see Wu and Yu [42]). The Burr
XII distribution has been recognized as a useful model for the analysis of lifetime data.
For instance, Wang and Keats [40] used the maximum likelihood method for obtaining
point and interval estimators of the parameters of the Burr XII distribution. Abdel-Ghaly
et al. [1] applied the Burr XII distribution to measure software reliability. Zimmer et
al. [47] also presented statistical and probabilistic properties of the Burr XII distribution
and described its relationship to other distributions used in reliability analyses. Moore
and Papadopoulos [31] derived Bayesian estimators of the parameter k and the reliability
function for the Burr XII distribution under three different loss functions. Wu and Yu
[42] proposed m pivotal quantities to test the shape parameter and establish confidence
interval of the shape parameter of the two-parameter Burr type XII distribution under
the failure-censored plan. Liu and Chen [29] proposed a novel modification of Clements’s
method (see Clements [12]) using the Burr XII distribution to improve the accuracy of
estimates of indices associated with one-sided specification limits for non-normal process
data. Li et al. [27] proposed the empirical estimators of reliability performances for Burr
XII distribution under LINEX error loss. Wu et al. [44] used the maximum likelihood
method to derive the point estimators of the parameters for Burr XII distribution.
In life testing experiments, the experimenter may not always be in a position to ob-

serve the life times of all the products (or items) put on test. This may be because of
time limitation and/or other restrictions (such as material resources, cost limitation, ar-
tificial negligence of recorder or typist, experimental or mechanical difficulties) on data
collection. Therefore, censored samples often arise in practice. Suppose that out of n
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items put on life test, for instance, the m life times x1:n ≤ x2:n ≤ · · · ≤ xm:n have only
been observed and the life times for the rest n − m components remain unobserved or
missing. This type of censoring is known as type II right censoring. In type II right
censoring scheme, Hong et al. [19] constructed a maximum likelihood estimator (MLE)
of CL under the Pareto distribution with the type II right censored sample. Moreover,
the MLE of CL is then utilized to develop a hypothesis testing procedure. The managers
can then employ the testing procedure to assess the business performance. Wu et al. [41]
also proposed a computational testing procedure to evaluate the lifetime performance of
products under two-parameter exponential distribution with the type II right censored
sample. Hong et al. [20] constructed a MLE of CL, and developed a confidence inter-
val for the lifetime performance index of businesses under the Pareto distribution with
the type II right censored sample. Because there are many scenarios in life-testing and
reliability experiments in which units are lost or removed from experimentation before
failure. The loss may occur unintentionally, or it may have been designed so in the study.
Unintentional loss may occur, for example, in the case of accidental breakage of an exper-
imental unit (Consider a number of lamps placed simultaneously on life-test. One of the
lamps might be accidentally broken after the start of the test but before all the lamps had
burned out.), or if an individual under study drops out, or if the experimentation itself
must cease due to some unforeseen circumstances such as depletion of funds, unavailabil-
ity of testing facilities. More often, however, the removal of units from experimentation
is pre-planned and intentional, and is done so in order to free up testing facilities for
other experimentation, to save time and cost, or to exploit the straightforward analysis
that often results (see Balakrishnan and Aggarwala [3]). In additional, the drop-out of
patients may be caused by migration, lack of interest or by ethical decisions in clinical
trails (see Balakrishnan et al. [5]). Therefore, products (or items) may break accidentally
in an industrial experiment. Moreover, the experimenter can remove items which is pre-
planned prior to failure from a life test at various stages during the experiments, possibly
resulting in a saving of costs and time of testing (see Sen [34], and Asgharzadeh [2]). The
progressively type II right censored samples also often arise in practice. So, in this paper,
we consider the condition of progressively type II censoring. Let m be the number of
failures observed before termination and x1:m:n ≤ x2:m:n ≤ · · · ≤ xm:m:n be the observed
ordered lifetimes. Let ri denote the number of items removed at the time of the ith failure,

0 ≤ ri ≤ n−
i−1∑
j=1

rj − i, i = 2, 3, · · · ,m− 1, with 0 ≤ r1 ≤ n− 1 and rm = n−
m−1∑
j=1

rj −m,

where ri’s and m are pre-specified integers (see Viveros and Balakrishnan [38]). Notice
that the complete sample (r1 = r2 = · · · = rm = 0) and type II right censored samples
(r1 = r2 = · · · = rm−1 = 0, rm = n −m) are special cases of progressively type II right
censored samples. The use of progressively censoring has been investigated, among others,
by Cohen ([13-15]); Sen [34]; Balakrishnan and Cohen [4]; Viveros and Balakrishnan [38];
Balakrishnan and Sandhu [8]; Balakrishnan and Aggarwala [3]; Balakrishnan et al. [7];
Balakrishnan and Lin [6]; Fernández [17], Wu et al. [43], and Lio et al. [28]. Moreover, in
order to evaluate the quality performance of products under no-normal distribution with
progressively type II right censored samples, Lee et al. [24] proposed a testing procedure
to evaluate the lifetime performance of products under the exponential distribution with
progressively type II right censored samples. Lee et al. [26] constructed a Bayesian es-
timator of CL based on the conjugate prior distribution and squared-error loss function
under the Rayleigh distribution with the progressively type II right censored sample. Lee
et al. [25] applied data transformation technology to constructs a maximum likelihood
estimator (MLE) of CL under the Burr XII distribution with the progressively type II
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right censored sample. Moreover, the MLE of CL is then utilized to develop a hypothesis
testing procedure. The managers can then employ the testing procedure to evaluate the
quality performance of products under Burr XII distribution with progressively type II
right censored samples.
Large sample also often arises in practice. In order to evaluate the quality performance

of product under no-normal distribution with large sample and progressively type II right
censored sample in this study. This study proposed an innovative approach to evaluate
the quality performance of product under no-normal distribution with large sample and
progressively type II right censored sample. Large sample theory is the cornerstone of
statistical inference for quality performance evaluation model. The limiting distribution
of a statistic gives approximate distributional results that are often straightforward to de-
rive, even in complicate quality performance evaluation models. These distributions are
useful for approximate inference, including constructing approximate confidence intervals
and hypothesis testing. Therefore, the main aim of this study will apply the large sample
theory to construct the asymptotic normal distribution of the MLE of CL under the two-
parameter Burr XII distribution with the progressively type II right censored sample. The
asymptotic normal distribution of MLE of CL is then utilized to construct a confidence
interval. Furthermore, we utilize the confidence interval to develop the innovative hypoth-
esis testing procedure for evaluating the lifetime performance of products. The innovative
hypothesis testing procedure can evaluate the quality performance of products under no-
normal distribution with large sample and progressively type II right censored sample.
Moreover, the customers can then employ the innovative hypothesis testing procedure to
determine whether the lifetime of products adheres to the required level. Suppliers can
also utilize the innovative hypothesis testing procedure to enhance process capability.
The rest of this study is organized as follows. Section 2 introduces some properties of the

lifetime performance index for lifetime of product under the Burr XII distribution. Section
3 discusses the relationship between the lifetime performance index CL and conforming
rate. Section 4 then presents MLE of CL and its statistical properties under the Burr XII
distribution with large sample and the progressively type II right censored sample. Section
5 proposes the asymptotic normal distribution of the MLE for CL in order to develop the
hypothesis testing procedure for evaluating the lifetime performance of products. Section
6 discusses two numerical examples. A Monte Carlo simulation algorithm of confidence
level and concluding remarks are made in Section 7, and Section 8, respectively.

2. The Lifetime Performance Index. Montgomery [30] has developed a process ca-
pability index CL to measure the larger-the-better quality characteristic. Then, CL is
defined by

CL =
µ− L

σ
, (3)

where µ, σ, and L are the process mean, the process standard deviation and the lower
specification limit, respectively.
To evaluate the product performance of products, CL can be defined as the lifetime

performance index. If X comes from the Burr XII distribution, then there are several
important properties, as follows:

(I) The lifetime performance index CL can be rewritten as

CL =
µ− L

σ
=

kB (k − 1/c, 1 + 1/c)− L√
kB (k − 2/c, 1 + 2/c)− k2B2 (k − 1/c, 1 + 1/c)

=
1

M
[kB (k − 1/c, 1 + 1/c)− L] , −∞ < CL <

kB (k − 1/c, 1 + 1/c)

M
, (4)



IMPLEMENTING LIFETIME PERFORMANCE INDEX 675

where M =
√

kB (k − 2/c, 1 + 2/c)− k2B2 (k − 1/c, 1 + 1/c), ck > 2, B(a, b) de-
notes the beta function, the process mean µ = kB(k − 1/c, 1 + 1/c), the process
standard deviation σ = M , and L is the lower specification limit.

(II) The failure rate function R(x) is

R(x) =
fX(x|c, k)

1− FX(x|c, k)
=

ckxc−1

1 + xc
, x > 0, c > 0, k > 0. (5)

For various values of c and k, some of the possible shapes of the failure rate function
given by Equation (5) are illustrated in Figure 1. Furthermore, we can also see that for
c > 1 the failure rate function is also unimodal and its critical point (single maximum) is
x = (c− 1)1/c; and the failure rate function is L-shaped for c ≤ 1.

When the process mean kB(k−1/c, 1+1/c)(> L), then the lifetime performance index
CL > 0. From Figure 1(b), and Figure 2, for c > 1, and x > (c− 1)1/c, if x is large, and k
is small then the lifetime performance index CL is relatively large and the failure rate is
relatively small. Therefore, the lifetime performance index CL reasonably and accurately
describes the lifetime performance of products.

Figure 1. Plots of the failure rate function (5) for various values of c and k

Figure 2. A comparison of various parameters for CL
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3. The Conforming Rate. If the lifetime of a product X exceeds the lower specification
limit L, then the product is defined as a conforming product. The ratio of conforming
products is known as the conforming rate and can be defined as

Pr = P (X ≥ L)

= {1 + [kB(k − 1/c, 1 + 1/c)−M · CL]
c}−k

, −∞ < CL <
kB (k − 1/c, 1 + 1/c)

M
,

(6)

where M =
√
kB(k − 2/c, 1 + 2/c)− k2B2(k − 1/c, 1 + 1/c), ck > 2, c, and k are the

shape parameters.

Table 1. The lifetime performance index CL v.s. the conforming rate Pr

for Burr XII distribution with (ĉ, k̂) = (3.070429, 2.48687)

CL Pr CL Pr CL Pr

−∞ 0.00000 −0.10 0.40411 0.83 0.80214
−10.0 0.00002 0.00 0.44536 0.85 0.80932
−5.00 0.00117 0.10 0.48829 0.90 0.82706
−2.50 0.01981 0.20 0.53247 0.95 0.84396
−1.50 0.07360 0.30 0.57735 1.00 0.85999
−1.00 0.14171 0.40 0.62235 1.10 0.88932
−0.80 0.18249 0.50 0.66683 1.25 0.92618
−0.40 0.29372 0.60 0.71015 1.50 0.96884
−0.20 0.36492 0.70 0.75167 1.75 0.99108
−0.15 0.38424 0.80 0.79081 2.00 0.99900

Note: CL → k̂B(k̂−1/ĉ,1+1/ĉ)
M ≈ 2.239725 ⇒ Pr → 1.0.

Obviously, there is a strictly increasing relationship between the conforming rate Pr,
and the lifetime performance index CL for given c, and k. Tables 1 and 2 list various
CL values and the corresponding conforming rates Pr with the given values of parameters
c, and k, respectively. Moreover, we will also need Tables 1 and 2 to help for assessing
the lifetime performance of products in two practical examples of Section 6, respectively.
For the CL values which are not listed in Tables 1 and 2, the conforming rate Pr can be
obtained by using Equation (6).

4. Maximum Likelihood Estimator of Lifetime Performance Index. Suppose
that X1:m:n, X2:m:n, · · · , Xm:m:n are the corresponding progressive type II right censored
sample from a life test of n products (or items) whose lifetimes follow Burr XII distri-
bution with the p.d.f. of X given by Equation (1), and r = (r1, r2, · · · , rm) denotes the
corresponding numbers of products (or items) removed from the life test. Then the joint
p.d.f. of all m progressively type II right censored order statistics (see Soliman [36]) is
given by

A
m∏
i=1

{fX(xi:m:n|θ)[1− FX(xi:m:n|θ)]ri} , (7)

whereA = n(n−r1−1) · · · (n−r1−r2−· · ·−rm−1−m+1), fX(xi:m:n|θ), and FX(xi:m:n|θ) are
respectively the p.d.f. and c.d.f. of X given by Equations (1) and (2). Substituting Equa-
tions (1) and (2) into Equation (7), the likelihood function of X1:m:n, X2:m:n, · · · , Xm:m:n
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Table 2. The lifetime performance index CL v.s. the conforming rate Pr

for Burr XII distribution with (ĉ, k̂) = (5.927297, 2.103976)

CL Pr CL Pr CL Pr

−∞ 0.00000 0.15 0.54708 1.00 0.85039
−6.00 0.00009 0.30 0.61038 1.10 0.87405
−4.00 0.00127 0.40 0.65123 1.15 0.88484
−1.50 0.06799 0.50 0.69044 1.23 0.90069
−1.00 0.14640 0.60 0.72759 1.25 0.90439
−0.60 0.25272 0.80 0.79451 1.50 0.94242
−0.30 0.35959 0.82 0.80061 2.00 0.98294
−0.10 0.44069 0.85 0.80955 2.50 0.99646
0.00 0.48297 0.90 0.82388 3.00 0.99959
0.10 0.52571 0.95 0.83749 3.50 0.99999

Note: CL → k̂B(k̂−1/ĉ,1+1/ĉ)
M ≈ 4.134517 ⇒ Pr → 1.0.

is given as

L(θ) = A
m∏
i=1

{fX(xi:m:n|θ) [1− FX(xi:m:n|θ)]ri}

= A

m∏
i=1

{[
ckxc−1

i:m:n(1 + xc
i:m:n)

−(k+1)
] [
1−

(
1− (1 + xc

i:m:n)
−k
)]ri}

(8)

= A(ck)m
m∏
i=1

xc−1
i:m:n (1 + xc

i:m:n)
(−k(ri+1)+1) ,

where A = n(n−r1−1) · · · (n−r1−r2−· · ·−rm−1−m+1). Then, the natural logarithm
of the likelihood function may be written as

`(θ) ∝ m ln(ck) + (c− 1)
m∑
i=1

ln(xi:m:n)−
m∑
i=1

(k(ri + 1) + 1) ln(1 + xc
i:m:n) (9)

The MLE θ̂ =
(
ĉ, k̂
)T

of θ can be obtained by setting the first partial derivatives of Equa-

tion (9) to zero with respect to c, and k. These likelihood equations for the parameters c
and k are given by

∂`(θ)

∂c
=

m

c
+

m∑
i=1

ln(xi:m:n)−
m∑
i=1

(k(ri + 1) + 1)
xc
i:m:n ln(xi:m:n)

(1 + xc
i:m:n)

= 0 (10)

and
∂`(θ)

∂k
=

m

k
−

m∑
i=1

(ri + 1) ln (1 + xc
i:m:n) = 0. (11)

Equation (11) yields the MLE of k as given by

k̂ =
m

m∑
i=1

(ri + 1) ln(1 + xĉ
i:m:n)

(12)
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By using the MLE of k given by Equation (12), Equation (10) can reduce to

m

ĉ
+

m∑
i=1

ln (xi:m:n)−

 m
m∑
i=1

(ri + 1) ln
(
1 + xĉ

i:m:n

)


×
m∑
i=1

(ri + 1)
xĉ
i:m:n ln(xi:m:n)(
1 + xĉ

i:m:n

) −
m∑
i=1

xĉ
i:m:n ln(xi:m:n)(
1 + xĉ

i:m:n

) = 0. (13)

Since the closed form solutions of Equation (13) is hard to be analytically solved of ĉ,
we will solve the non-linear equation by using the subroutine ZREAL of IMSL from the
mathematical software Compaq Visual Fortran version 6.6 and IMSL (2000) (see [16]).
The subroutine ZREAL is to find the real zeros of a real function using Müller’s method.
The Müller’s method is based on linear approximations to the function whose zero we are
seeking is to approximate the function by a quadratic function (see Laurene ([22])).
According to the invariance property of the MLE (see Zehna [46]), the MLE of CL can

be written as

ĈL =
k̂B
(
k̂ − 1/ĉ, 1 + 1/ĉ

)
− L√

k̂B
(
k̂ − 2/ĉ, 1 + 2/ĉ

)
− k̂2B2

(
k̂ − 1/ĉ, 1 + 1/ĉ

) . (14)

Moreover, the asymptotic normal distribution for the MLEs can be expressed in the
following way (also see Soliman [36]), and Wu and Kus [45]). From the natural logarithm
of the likelihood function in Equation (8), we have

− ∂2`(θ)

∂c2
=

m

c2
+

m∑
i=1

(k(ri + 1) + 1)
xc
i:m:n ln

2(xi:m:n)

(1 + xc
i:m:n)

2
= ν11(θ), (15)

− ∂2`(θ)

∂k2
=

m

k2
= ν22(θ), (16)

and

−∂2`(θ)

∂c∂k
≡ −∂2`(θ)

∂k∂c
=

m∑
i=1

(ri + 1)
xc
i:m:n ln(xi:m:n)

(1 + xc
i:m:n)

= ν12(θ). (17)

Based on the result of Soliman [36], under some regularity conditions, the asymptotic
normality results of the MLE of θ can be defined as

θ̂ ∼ N(θ, I(θ)−1). (18)

The Fisher information matrix I(θ) for θ = (c, k)T is defined by taking expectations of
Equations (15)-(17). However, it is difficult to directly obtain the exact mathematical
form of the above expectations. Therefore, we construct the approximate (observed)

information matrix I0

(
θ̂
)
, which is given by dropping the expectation operator. The

approximate (observed) information matrix I0

(
θ̂
)
is given by

I0

(
θ̂
)
=

 −∂2`(θ)

∂c2
−∂2`(θ)

∂c∂k
∂2`(θ)

∂k∂c

∂2`(θ)

∂k2


θ̂

=

[
ν11(θ) ν12(θ)
ν12(θ) ν22(θ)

]
θ̂

. (19)
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Moreover, we use the approximate (observed) asymptotic variance-covariance matrix(
I0(θ̂)

−1
)
of θ to estimate I (θ)−1, where I0

(
θ̂
)−1

is expressed as

I0

(
θ̂
)−1

=

[
ν11(θ) ν12(θ)
ν12(θ) ν22(θ)

]−1

θ=θ̂

=

 var (ĉ) cov
(
ĉ, k̂
)

cov
(
ĉ, k̂
)

var
(
k̂
) 

θ=θ̂

. (20)

Now, we will use CL ≡ h(θ), and the multivariate delta method (see Casella and

Berger [10], Theorem 5.5.28) stated that the asymptotic normal distribution of h
(
θ̂
)
can

be defined as

ĈL ≡ h
(
θ̂
)
∼ N (h(θ),Σθ) , (21)

i.e., ĈL ∼ N (CL,Σθ). Moreover, we use the approximate (observed) asymptotic variance-
covariance matrix (Σθ̂) of h(θ) to estimate Σθ, where Σθ̂ is expressed as

Σθ̂ =

(
∂h(θ)

∂c

∂h(θ)

∂k

)
I0(θ)

−1

 ∂h(θ)

∂c
∂h(θ)

∂k


∣∣∣∣∣∣∣
θ=θ̂

, (22)

∂h(θ)/∂c, and ∂h(θ)/∂k are the first partial derivates of h(θ) with respect to c, and k.

5. Testing Procedure for the Lifetime Performance Index. In this subsection, we
will apply the statistical testing procedure to evaluate whether the lifetime performance
index adheres to the required level. The one-sided hypothesis testing and one-sided con-
fidence interval for CL can be derived by taking ĈL to be asymptotic normal distribution
with mean CL, and asymptotic variance-covariance matrix Σθ given by Equation (21).
Assuming that the required index value of lifetime performance is larger than c∗, where c∗

denotes the target value, the null hypothesis H0 : CL ≤ c∗ and the alternative hypothesis
H1 : CL > c∗ are performed. Since the MLE of CL is used as the test statistic, the re-

jection region can be obtained as
{
ĈL

∣∣∣ĈL > C0

}
. For a given the specified significance

level α, we calculate the critical value C0 as follows:

Sup
{CL≤c∗}

P
(
ĈL > C0

)
≤ α

⇒ P
(
ĈL > C0|CL = c∗

)
= α (23)

⇒ P
(
ĈL − CL ≤ C0 − CL|CL = c∗

)
= 1− α

⇒ P

(
ĈL − CL√

Σθ̂

≤ C0 − c∗√
Σθ̂

)
= 1− α,

where
(
ĈL − CL

)/√
Σθ̂ ∼ N(0, 1) and Σθ̂ is shown in Equation (22). From Equation

(23), utilizing zα which is the percentile of the standard normal distribution with right-tail
probability α, then

C0 − c∗√
Σθ̂

= zα

is obtained. Thus, the critical value can be written as

C0 = c∗ + zα
√
Σθ̂ (24)
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where c∗, α and Σθ denote the target value, the specified significance level and the ap-
proximate (observed) asymptotic variance-covariance matrix given by Equation (22), re-
spectively. Moreover, we also find that C0 is independent of n and ri, i = 1, 2, · · · ,m.
In addition, the level 100(1 − α)% one-sided confidence interval of CL can be derived

as follows:

With the pivotal quantity is
(
ĈL − CL

)/√
Σθ̂ ∼ N (0, 1) and zα which is the per-

centile of the standard normal distribution with right-tail probability α, then

P

(
ĈL − CL√

Σθ̂

≤ zα

)
= 1− α

⇒P
(
CL ≥ ĈL − zα

√
Σθ̂

)
= 1− α (25)

From Equation (25), we have that

CL ≥ ĈL − zα
√
Σθ̂ (26)

is the level 100(1−α)% one-sided confidence interval of CL. Thus, the 100(1−α)% lower
confidence bound for CL can be written as

LB = ĈL − zα
√

Σθ̂ (27)

where ĈL, α and Σθ̂ denote the MLE of CL given by Equation (14), the specified sig-
nificance level, and the approximate (observed) asymptotic variance- covariance matrix
given by Equation (22), respectively.
The managers can employ with the one-sided confidence interval to determine whether

the product performance attains to the required level. The proposed testing procedure
about CL can be organized as follows:
Step 1: The MLE of the parameters c and k of the Burr XII distribution are solved by

Equations (12) and (13) with the progressively type II right censored sampleX1:m:n, X2:m:n,
· · · , Xm:m:n and the censoring scheme r = (r1, r2, · · · , rm). We will solve the non-linear
Equation (13) by using the subroutine ZREAL of IMSL from the mathematical software
Compaq Visual Fortran version 6.6 and IMSL (2000) [16].
Step 2: The goodness of fit test based on the Gini statistic (see Gail and Gastwirth [18])

is applied for the progressively type II right censored sample X1:m:n, X2:m:n, · · · , Xm:m:n.
Step 3: Determine the lower lifetime limit L for products and performance index

value c∗, then the testing null hypothesis H0 : CL ≤ c∗ and the alternative hypothesis
H1 : CL > c∗ is constructed.
Step 4: Specify a significance level α.
Step 5: Given the number of observed failures before termination m, the censoring

scheme r = (r1, r2, · · · , rm), the lower lifetime limit L and the significance level α, then
we can calculate the 100(1− α)% one-sided confidence interval [LB,∞) for CL, as

LB = ĈL − zα
√
Σθ̂,

where ĈL, α and Σθ̂ denote the MLE of CL given by Equation (14), the specified signifi-
cance level and the approximate (observed) asymptotic variance- covariance matrix given
by Equation (22), respectively.
Step 6: The decision rule of statistical test is provided as:
If the performance index value c∗ /∈ [LB,∞), then we will reject H0. That is, there is

an evidence to indicate that the lifetime performance index of products meets the required
level.
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Based on the above mentioned innovative hypothesis testing procedure, the innovative
hypothesis testing procedure can evaluate easily the quality performance of products under
no-normal distribution with large sample and progressively type II right censored sample.
Moreover, the hypothesis testing procedure not only can effectively evaluate the lifetime
performance of products but also is the supplier selection criteria of the customers. Two
numerical examples illustrate the use of the testing procedure in Section 6.

6. Numerical Examples. We propose two procedures of test which are based on a one-
sided confidence interval. Under large sample, Burr XII distribution and progressively
type II right censored sample, these innovative hypothesis testing procedures can be used
to determine whether the lifetime performance of products adheres to the required level.
We will apply the following two examples to illustrate the use of these hypothesis testing
procedures. In Example 6.1, we give data on the failure times of 25 ball bearings in
endurance test from Lee et al. [26]. In Example 6.2, we present simulated data, the
simulated data are generated from the Burr XII distribution with c = 6, k = 2, n = 30,
m = 20, and the given censoring scheme r = (0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2).

Example 6.1. (Real life data)
Lee et al. [26] considered a type II right censored sample of size m = 23 from the original

data set of 25 observations which are the number of million revolutions before failure for
each of ball bearings in endurance test (see Caroni [9]). The observations (in hundreds of
millions) {xi:23:25, i = 1, · · · , 23} = {0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848,
0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6780, 0.6780, 0.6864, 0.6864, 0.6888, 0.8412, 0.9312,
0.9864, 1.0512, 1.0584, 1.2792}, and the censoring scheme r = (r1, r2, · · · , r23) = (0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2), i.e., the 25 ball bearings placed simultaneously
in endurance test. Two ball bearings are accidentally broken after the time of the 23th
failure. The two ball bearings must be removed at the time of the 23th failure.

Then, the proposed testing procedure of CL based on a confidence interval is stated as
follows:

Step 1: Consider the progressively type II right censored sample {xi:23:25, i = 1, · · · , 23}
and the censoring scheme r = (r1, r2, · · · , r23). Solve Equations (12) and (13) by using
the subroutine ZREAL of IMSL from the mathematical software Compaq Visual Fortran
version 6.6 and IMSL (2000) [16]. TheMLE of the parameters of the Burr XII distribution

are ĉ = 3.070429 and k̂ = 2.48687.
Step 2: We propose the goodness of fit test based on the Gini statistic for the progres-

sively type II right censored sample {xi:23:25, i = 1, · · · , 23}, and the censoring scheme
r = (r1, r2, · · · , r23). To apply this Gini statistic to test whether the failures of ball
bearings data come from the Burr XII distribution with the p.d.f. is

fX

(
x|θ̂
)
= 7.635758x2.070429

(
1 + x3.070429

)−3.48687
, x > 0 (28)

where θ̂ = (3.070429, 2.48687)T .
At a α = 0.05 significance level, the hypothesis test is

H0 : X ∼ BXII(3.070429, 2.48687) v.s.

H1 : X � BXII(3.070429, 2.48687).
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The Gini statistic is given as (see Gail and Gastwirth [18])

G23 =

23−1∑
i=1

iWi+1

(23− 1)
23∑
i=1

Wi

,

where Wi = (23 − i + 1)(Z(i) − Z(i−1)), i = 1, · · · , 23, Z(0) ≡ 0, Z(1) < Z(2) < · · · < Z(23)

are the corresponding order statistics for Z1 = nY1, Zi =

[
n−

i−1∑
j=1

(rj + 1)

]
(Yi − Yi−1),

i = 2, . . . , 23, and the data transformation Yi = ln(1 + X3.070429
i:23:25 ), i = 1, . . . , 23, Y0 = 0

(see Lee et al. [25]; Lawless ([23])).
For m > 20 the rejection region is

{∣∣(Gm − 0.5)[12(m− 1)]1/2
∣∣ > zα/2

}
, where the

critical value zα/2 is the percentile of the standard normal distribution with right-tail
probability α/2. The Gini statistic is

G23 =

22∑
i=1

iWi+1

(23− 1)
23∑
i=1

Wi

= 0.600728.

Then we get that
∣∣(G23 − 0.5)[12(23− 1)]1/2

∣∣ = 1.636636 < z0.025 = 1.96, so we cannot
reject H0 at the 0.05 level of significance. That is, there is an evidence to indicate that
the failures of ball bearings data come from the Burr XII distribution with the p.d.f. is

fX

(
x|θ̂
)
= 7.635758x2.070429(1 + x3.070429)−3.48687, x > 0,

where θ̂ = (3.070429, 2.48687)T .
Step 3: The lower lifetime limit L is assumed to be 0.3236569, i.e., if the lifetime of

a ball bearing exceeds 0.3236569 number of million revolutions, then the ball bearing is
defined as a conforming product. To deal with the product purchasers’ concerns regard-
ing operational performance, the conforming rate Pr of products is required to exceed
80 percent. Referring to Table 1, the CL value is required to exceed 0.83. Thus, the
performance index value is set at c∗ = 0.83. The testing hypothesis: H0 : CL ≤ 0.83 v.s.
H1 : CL > 0.83 is constructed.
Step 4: Specify a significance level α = 0.05.
Step 5: With Equations (14), (22), and (27), we can calculate the 95% lower confidence

interval bound for CL, as

LB = ĈL − zα
√
Σθ̂

= 1.250000− 1.645
√
0.0505586

= 0.8801178.

So, the 95% one-sided confidence interval for CL is [LB,∞) = [0.8801178,∞).
Step 6: Because of the performance index value c∗ = 0.83 /∈ [LB,∞), we reject

H0 : CL ≤ 0.83. Thus, there is an evidence to indicate that the lifetime performance
index of 25 ball bearings operation does meet the required level.
In addition, by using Equations (14) and (24), we calculate ĈL = 1.250000 > C0 =

c∗ + zα
√
Σθ̂ = 0.83 + 1.645

√
0.0505586 ≈ 1.19988, so we also reject H0 : CL ≤ 0.83.

Hence, it is concluded that the lifetime performance index of 25 ball bearings operation
meets the required level.
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Example 6.2. (Simulated data)
We consider a simulated data, the simulated data is a progressively type II censored sam-

ple from the Burr XII distribution with (c = 6, k = 2). The progressively type II censored
sample {xi:20:30, i = 1, · · · , 20} = {0.3177954, 0.5651290, 0.5961775, 0.6106820, 0.6232408,
0.6729921, 0.6734749, 0.7266641, 0.7712947, 0.7737789, 0.8211182, 0.8539740, 0.8625961,
0.9103306, 0.9191059, 0.9421834, 0.9600189, 0.9997976, 1.016076, 1.038353} and the censor-
ing scheme r = (r1, r2, · · · , r20) = (0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2), i.e., the
30 experimental units placed simultaneously in lifetime test. Two experimental units are
accidentally broken after the time of the 4th failure. The two experimental units must be
removed at the time of the 4th failure. Two experimental units are accidentally broken
after the time of the 8th failure. The two experimental units must be removed at the time
of the 8th failure. Two experimental units are accidentally broken after the time of the
12th failure. The two experimental units must be removed at the time of the 12th failure.
Two experimental units are accidentally broken after the time of the 13th failure. The
two experimental units must be removed at the time of the 13th failure. Two experimental
units are accidentally broken after the time of the 20th failure. The two experimental units
must be removed at the time of the 20th failure.

Then, the proposed testing procedure of CL based on a confidence interval is stated as
follows:

Step 1: Consider the progressively type II right censored sample {xi:20:30, i = 1, · · · , 20}
and the censoring scheme r = (r1, r2, · · · , r20). Solve Equations (12) and (13) by using
the subroutine ZREAL of IMSL from the mathematical software Compaq Visual Fortran
version 6.6 and IMSL (2000) [16]. TheMLE of the parameters of the Burr XII distribution

are ĉ = 5.927297 and k̂ = 2.103976.
Step 2: We propose the goodness of fit test based on the Gini statistic for the pro-

gressively type II right censored data {xi:20:30, i = 1, · · · , 20} and the censoring scheme
r = (r1, r2, · · · , r20). To apply this Gini statistic to test whether the failures of the simu-
lated data come from the Burr XII distribution with the p.d.f. given by

fX

(
x|θ̂
)
= 12.47089x4.927297

(
1 + x5.927297

)−3.103976
, x > 0, (29)

where θ̂ = (5.927297, 2.103976)T .
At a α = 0.05 significance level, the hypothesis test is

H0 : X ∼ BXII(5.927297, 2.103976) v.s.

H1 : X � BXII(5.927297, 2.103976)

The Gini statistic is given as (see Gail and Gastwirth [18])

G20 =

20−1∑
i=1

iWi+1

(20− 1)
20∑
i=1

Wi

,

where Wi = (20 − i + 1)(Z(i) − Z(i−1)), i = 1, · · · , 20, Z(0) ≡ 0, Z(1) < Z(2) < · · · < Z(20)

are the corresponding order statistics for Z1 = 30Y1, Zi =

[
30−

i−1∑
j=1

(rj + 1)

]
(Yi − Yi−1),

i = 2, . . . , 20, and the data transformation Yi = ln(1 +X2.57416
i:20:30 ).

For m = 3, · · · , 20, the rejection region is {Gm > ξ1−α/2 or Gm < ξα/2}, where the
critical value ξα/2 is the percentile of the Gm statistic with right-tail probability α/2. The
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Gini statistic is

G20 =

19∑
i=1

iWi+1

(20− 1)
20∑
i=1

Wi

= 0.465109.

Since G20 = 0.465109, which is between ξ0.025 = 0.37048, and ξ0.975 = 0.62952, so we
cannot reject H0 at the 0.05 level of significance. That is, there is an evidence to indicate
that the simulated data come from the Burr XII distribution with the p.d.f. is

fX

(
x|θ̂
)
= 12.47089x4.927297(1 + x5.927297)−3.103976, x > 0,

where θ̂ = (5.927297, 2.103976)T .
Step 3: The lower lifetime limit L is assumed to be 0.5822911, i.e., if the lifetime of a

product exceeds 0.5822911, then the product is defined as a conforming product. To deal
with the product purchasers’ concerns regarding operational performance, the conforming
rate Pr of products is required to exceed 80 percent. Referring to Table 2, the CL value
is required to exceed 0.82. Thus, the performance index value is set at c∗ = 0.82. The
testing hypothesis: H0 : CL ≤ 0.82 v.s. H1 : CL > 0.82 is constructed.
Step 4: Specify a significance level α = 0.05.
Step 5: With Equations (14), (22), and (27), we can calculate the 95% lower interval

bound for CL, as

LB = ĈL − zα
√
Σθ̂

= 1.340002− 1.645
√
0.0713563

= 0.9005797

So, the 95% one-sided confidence interval for CL is [LB,∞) = [0.9005797,∞).
Step 6: Because of the performance index value c∗ = 0.82 /∈ [LB,∞), we reject the

null hypothesis H0 : CL ≤ 0.82. Thus, there is an evidence to indicate that the lifetime
performance index of products does meet the required level.
In addition, by using Equations (14), and (24), we calculate ĈL = 1.340002 > C0 =

c∗ + zα
√
Σθ̂ = 0.82 + 1.645

√
0.0713563 ≈ 1.25942, so we also reject H0 : CL ≤ 0.82.

Hence, it is concluded that the lifetime performance index of products meets the required
level.

7. The Monte Carlo Simulation Study.

7.1. The Monte Carlo simulation algorithm of confidence level. In this section,
we will discuss the results of a simulation study for confidence level (1 − α) based on a
100(1−α)% one-sided confidence interval of the lifetime performance index CL. We used
α = 0.05, and then generated different sample sizes from Burr XII distribution with p.d.f.
given by Equation (1) with respect to progressively type II right censored sample.
The Monte Carlo simulation algorithm of confidence level (1−α) is given in the following

steps:
Step 1: Given n, m, c, k, L, and r = (r1, r2, · · · , rm), where c > 0, k > 0, ck > 2,

m ≤ n.
Step 2: (a) The generation of data Z1, Z2, · · · , Zm is by the standard exponential

distribution.
(b) Set Y1 = Z1

n
, and Yi =

Z1

n
+ Z2

n−r1−1
+ · · · + Zi

n−r1−r2−···−ri−1−i+1
, for i = 2, · · · ,m.

Y1, Y2, · · · , Ym are the progressively type II right censored sample from a standard expo-
nential distribution.



IMPLEMENTING LIFETIME PERFORMANCE INDEX 685

(c) Using the given values of parameters c, k, and the data transformation of Xi:m:n =[
exp

(
Yi

k

)
− 1
] 1

c , i = 1, · · · ,m, we obtain that X1:m:n, X2:m:n, · · · , Xm:m:n are the corre-
sponding progressively type II right censored sample from Burr XII distribution with
p.d.f. given by Equation (1).

(d) The value of LB is calculated by

LB = ĈL − zα
√
Σθ̂,

where ĈL, α, and Σθ̂ denote the MLE of CL given by Equation (14), the specified signifi-
cance level and the estimated asymptotic variance- covariance matrix given by Equation
(22), respectively.

(e) If CL ≥ LB then Count = 1, else Count = 0.
Step 3: (a) Step 2 is repeated 100 times.

(b) The estimation of confidence level (1− α) is (1̂− α) = total count/100.
Step 4: (a) Repeated Steps 2-4 with 100 times, then we can get the 100 estimations

of confidence level as follows: (1̂− α)1, (1̂− α)2, · · · , (1̂− α)100.

(b) The average empirical confidence level 1− α of (1̂− α)i, i = 1, · · · , 100, i.e., 1− α =

(1/100)
100∑
i=1

(1̂− α)i.

(c) The sample mean square error (SMSE) of (1̂− α)1, (1̂− α)2, · · · , (1̂− α)100, i.e.,

SMSE = (1/100)
100∑
I=1

[
(1̂− α)i − (1− α)

]2
.

The results of simulation are illustrated in Tables 3 and 4 of Appendix based on L = 1.0,
the different values of sample size n, observed numberm (n ≥ m), shape parameters (c, k),
and the censoring scheme r = (r1, r2, · · · , rm), respectively. From Tables 3 and 4, based
on L = 1.0 and α = 0.05, the following points can be drawn:

(I) All of the average empirical confidence level 1− α close to confidence level (1− α)

for any observed number m, m ≤ n, and rm = n−
m−1∑
j=1

rj −m.

(II) As shape parameter (c, k) = (6, 2), (6, 1.5), and (7, 1.5), all of the SMSE are enough
small. Moreover, the scope of SMSE is between 0.000240 and 0.000605.

(III) As shape parameter (c, k) = (1.9, 2), (2, 2), and (2, 2.1), all of the SMSE are enough
small. Moreover, the scope of SMSE is between 0.000436 and 0.001428.

(IV) For any sample size n, fix the observed number m, the SMSE for c > k are smaller
than the SMSE for c ≤ k.

Hence, these results from simulation studies illustrate that the performance of our pro-
posed method is acceptable.

7.2. The Monte Carlo simulation algorithm of the estimated risks. In this sec-
tion, we will discuss the results of a simulation study for the estimated risks of the MLEs
and the asymptotic normal distribution of the lifetime performance index CL. Using the
similar algorithm described in Lee et al. [26], we generated different sample sizes from
Burr XII distribution with p.d.f. given by Equation (1) with respect to progressively type
II right censored sample.

The Monte Carlo simulation algorithm of the estimated risks is given in the following
steps:

Step 1: Given n, m, c, k, L, and r = (r1, r2, · · · , rm), where c > 0, k > 0, ck > 2,
m ≤ n.
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Step 2: (a) The generation of data Z1, Z2, · · · , Zm is by the standard exponential
distribution.
(b) Set Y1 = Z1

n
, and Yi =

Z1

n
+ Z2

n−r1−1
+ · · · + Zi

n−r1−r2−···−ri−1−i+1
, for i = 2, · · · ,m.

Y1, Y2, · · · , Ym are the progressively type II right censored sample from a standard expo-
nential distribution.
(c) Using the given values of parameters c, k, and the data transformation of Xi:m:n =[

exp
(
Yi

k

)
− 1
] 1

c , i = 1, · · · ,m, we obtain that X1:m:n, X2:m:n, · · · , Xm:m:n are the corre-
sponding progressively type II right censored sample from Burr XII distribution with
p.d.f. given by Equation (1).
Step 3: The MLE of the lifetime performance index CL, and approximate (observed)

asymptotic variance-covariance matrix Σθ̂ are computed by using Equations (14), and
(22), respectively.
Step 4: (a) Repeat Steps 2 and 3 10000 times, then we can get the 10000 estimations

of ĈL, and Σθ̂ as follows: (ĈL)i, and (Σθ̂)i, i = 1, · · · , 10000.

(b) The SMSE of
(
ĈL

)
1
,
(
ĈL

)
2
, . . .,

(
ĈL

)
10000

, i.e., SMSE = (1/10000)
10000∑
i=1

[(
ĈL

)
i

−CL]
2.

(c) The mean of variance-covariance matrix (MVCM) of (Σθ̂)1 , (Σθ̂)2 , . . ., (Σθ̂)100000,

i.e., MVCM = (1/10000)
10000∑
i=1

[
(Σθ̂)i

]
.

In addition, the Monte Carlo simulation algorithms of the estimated risks for ĉ, and k̂
are completely analogous to the above algorithm of the estimated risks for ĈL; hence, they
are omitted in here. The results of simulation are illustrated in Tables 5 and 6 of Appendix
based on L = 1.0, the different values of sample size n, observed number m (n ≥ m),shape
parameters (c, k), and the censoring scheme r = (r1, r2, · · · , rm), respectively. From Tables
5 and 6 of Appendix, based on L = 1.0, the following points can be drawn:

(I) All of the mean variance-covariance matrix (MVCM) are smaller than the SMSE

for any observed number m, m ≤ n, and rm = n−
m−1∑
j=1

rj −m. It is indicated that

the approximate (observed) asymptotic variance-covariance matrix is better than
their corresponding SMSE for the considered cases.

(II) Fix the sample size n, if the observed number m increases, then it can be seen

that the estimated risks of ĈL, ĉ, k̂ will decrease for the shape parameter (c, k) =
(6, 2), (6, 1.5), and (7, 1.5).

(III) Fix the sample size n, if the observed number m increases, then it can be seen

that the estimated risks of ĈL, ĉ, k̂ will decrease for the shape parameter (c, k) =
(1.9, 2), (2, 2), and (2, 2.1).

Hence, these results from simulation studies illustrate that the performance of our pro-
posed method is acceptable.

8. Conclusions. As the standard of living and economic development in Taiwan get
increasingly higher, customer’s demands for production quality become more critically
requested. In order to satisfy customer needs, the merchant should control and promote
their quality of processes and products by using statistical methods. Therefore, process
capability indices are widely used to determine whether product quality meets the required
level in the service (or manufacturing) industry. Lifetime performance index CL is one of
most well-known capability indexes, introduced by Montgomery [30], for larger-the-better
type quality characteristic. The assumption of normality is commonly used in process
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capability analysis, but, it is very questionable in most process such as manufactures,
service, and business operation. Moreover, in life testing experiments, the experimenter
may not always be in a position to observe the life times of all the products (or items)
on test. This may be because of time limitation and/or other restrictions (such as ma-
terial resources, cost limitation, artificial negligence of recorder or typist, experimental
or mechanical difficulties) on data collection. Therefore, censored samples often arise in
practice. Progressive censoring is quite useful in many practical situations where budget
constraints are in place or there is a demand for rapid testing or in the case of acciden-
tal breakage of an experimental unit. Moreover, large sample often arises in life testing
experiments. This study constructs the MLE of CL under the two-parameter Burr XII
distribution with the progressively type II right censored sample by using multivariate
delta method and large sample theory. The MLE of CL can be utilized to develop a
confidence interval of CL in the condition of known L. Further, the confidence interval of
CL is utilized to develop the innovative hypothesis testing procedure for evaluating the
lifetime performance of products. The innovative hypothesis testing procedure is a quality
performance assessment system in Enterprise Resource Planning (ERP). The innovative
hypothesis testing procedure can assess the lifetime performance of products under Burr
XII distribution with large sample and progressively type II right censored sample. For
example, the innovative hypothesis testing procedure is utilized to evaluate the quality
performance of products in the large sample quality data of biological, clinical, or other
lifetime experiments, and in many practical situations where budget constraints are in
place or there is a demand for rapid testing or in the case of accidental breakage of an
experimental unit. The innovative hypothesis testing procedure not only can be easily ap-
plied and can effectively evaluate whether the lifetime of products adheres to the required
level but also is the supplier selection criteria of the customers. The selection of Supplier
is very important in customers’ business operation. In addition, this study provides a ta-
ble of the lifetime performance index with its corresponding conforming rate. Hence, for
any specified conforming rate, a corresponding CL can be obtained, and the hypotheses
of the innovative testing procedure can also be expressed in terms of the conforming rate
under L is known limit.
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Appendix A.

Table 3. Average empirical confidence level (1− α) for CL under α = 0.05

n m r = (r1, r2, · · · , rm) c = 6, k = 2 c = 6, k = 1.5 c = 7, k = 1.5

30

15 (15, 14 ∗ 0) 0.95420 0.94510 0.94500
(0.000432) (0.000340) (0.000470)

20 (10, 19 ∗ 0) 0.95310 0.94620 0.94910
(0.000444) (0.000585) (0.000477)

25 (5, 24 ∗ 0) 0.95430 0.94630 0.95150
(0.000482) (0.000451) (0.000361)

40

25 (15, 24 ∗ 0) 0.95430 0.94630 0.95150
(0.000482) (0.000451) (0.000361)

30 (10, 29 ∗ 0) 0.95470 0.947500 0.95039
(0.000541) (0.000463) (0.000388)

35 (5, 34 ∗ 0) 0.95390 0.94870 0.94580
(0.000549) (0.000423) (0.000582)

50

30 (20, 29 ∗ 0) 0.95470 0.947500 0.95039
(0.000541) (0.000463) (0.000388)

35 (15, 34 ∗ 0) 0.95390 0.94870 0.94580
(0.000549) (0.000423) (0.000582)

40 (10, 39 ∗ 0) 0.95320 0.94600 0.94810
(0.000464) (0.000452) (0.000511)

100

80 (20, 79 ∗ 0) 0.95460 0.94850 0.94690
(0.000466) (0.000515) (0.000555)

85 (15, 84 ∗ 0) 0.94670 0.95110 0.94970
(0.000240) (0.000367) (0.000605)

90 (10, 89 ∗ 0) 0.95200 0.94710 0.94930
(0.000380) (0.000453) (0.000519)

Note:

1. n and m denote the sample size and the observed number, respectively.
2. r = (r1, r2, · · · , rm) denotes censoring scheme and r = (15, 14∗0) = (15, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0) for m = 15.
3. The value in parentheses are sample mean square error (SMSE).
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Table 4. Average empirical confidence level (1− α) for CL under α = 0.05

n m r = (r1, r2, · · · , rm) c = 1.9, k = 2 c = 2, k = 2 c = 2, k = 2.1

30

15 (15, 14 ∗ 0) 0.94570 0.95420 0.95560
(0.001151) (0.000992) (0.001072)

20 (10, 19 ∗ 0) 0.94810 0.95850 0.96280
(0.001273) (0.001331) (0.001314)

25 (5, 24 ∗ 0) 0.94190 0.94890 0.95210
(0.001175) (0.000933) (0.000893)

40

25 (15, 24 ∗ 0) 0.94790 0.95870 0.96200
(0.001121) (0.00136) (0.001428)

30 (10, 29 ∗ 0) 0.95070 0.95960 0.96290
(0.001253) (0.001226) (0.001403)

35 (5, 34 ∗ 0) 0.95010 0.95870 0.96160
(0.000865) (0.000879) (0.001064)

50

30 (20, 29 ∗ 0) 0.94630 0.95570 0.95950
(0.001159) (0.001153) (0.001317)

35 (15, 34 ∗ 0) 0.94020 0.94780 0.95070
(0.000722) (0.000698) (0.000735)

40 (10, 39 ∗ 0) 0.95560 0.96590 0.96750
(0.000824) (0.001281) (0.001211)

100

80 (20, 79 ∗ 0) 0.94830 0.95350 0.95550
(0.000661) (0.000745) (0.000715)

85 (15, 84 ∗ 0) 0.94950 0.95260 0.95430
(0.000707) (0.000550) (0.000637)

90 (10, n89 ∗ 0) 0.94540 0.94980 0.95180
(0.000436) (0.000568) (0.000566)

Note:

1. n and m denote the sample size and the observed number, respectively.
2. r = (r1, r2, · · · , rm) denotes censoring scheme and r = (15, 14 ∗ 0) = (15, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0) for m = 15.
3. The value in parentheses are sample mean square error (SMSE).
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Table 5. Estimated risks of the MLEs ĈL, ĉ, k̂ for CL, c, k

n m r = (r1, r2, · · · , rm)
c = 6, k = 2 c = 6, k = 1.5 c = 7, k = 1.5

SMSE MVCM SMSE MVCM SMSE MVCM

30

15 (15, 14 ∗ 0)
0.094117 0.082164 0.089152 0.076544 0.084368 0.071254

(1.467, 0.506) (1.350, 0.388) (1.599, 0.248) (1.492, 0.199) (2.235, 0.248) (2.030, 0.199)

20 (10, 19 ∗ 0)
0.080166 0.069274 0.071231 0.063194 0.071171 0.060147

(1.251, 0.333) (1.119, 0.259) (1.384, 0.166) (1.256, 0.137) (1.884, 0.166) (1.710, 0.137)

25 (5, 24 ∗ 0)
0.069855 0.062527 0.061214 0.050227 0.056125 0.048257

(1.085, 0.237) (0.939, 0.194) (1.223, 0.123) (1.063, 0.106) (1.664, 0.123) (1.446, 0.106)

40

25 (15, 24 ∗ 0)
0.069855 0.062527 0.061214 0.050227 0.056125 0.048257

(0.971, 0.238) (0.866, 0.195) (1.076, 0.123) (0.968, 0.106) (1.464, 0.123) (1.318, 0.106)

30 (10, 29 ∗ 0)
0.054103 0.053545 0.048657 0.041705 0.047951 0.040765

(0.820, 0.186) (0.748, 0.156) (0.919, 0.099) (0.842, 0.086) (1.251, 1.146) (0.099, 0.086)

35 (5, 34 ∗ 0)
0.048120 0.045422 0.039822 0.035832 0.037412 0.034672

(0.730, 0.148) (0.661, 0.130) (0.820, 0.081) (0.748, 0.072) (1.116, 0.081) (1.018, 0.072)

50

30 (20, 29 ∗ 0)
0.054103 0.053545 0.048657 0.041705 0.047951 0.040765

(0.762, 0.187) (0.707, 0.156) (0.845, 0.099) (0.791, 0.086) (1.151, 0.099) (1.076, 0.086)

35 (15, 34 ∗ 0)
0.048120 0.045422 0.039822 0.035832 0.037412 0.034672

(0.681, 0.149) (0.626, 0.130) (0.757, 0.081) (0.703, 0.072) (1.031, 0.081) (0.957, 0.072)

40 (10, 39 ∗ 0)
0.040835 0.038275 0.034648 0.030887 0.034121 0.030168

(0.594, 0.560) (0.129, 0.112) (0.666, 0.070) (0.630, 0.063) (0.906, 0.070) (0.857, 0.063)

100

80 (20, 79 ∗ 0)
0.023271 0.018772 0.015626 0.015584 0.015425 0.015250

(0.284, 0.056) (0.274, 0.053) (0.318, 0.032) (0.307, 0.030) (0.433, 0.032) (0.418, 0.030)

85 (15, 84 ∗ 0)
0.020561 0.017638 0.016153 0.014720 0.014489 0.014403

(0.277, 0.052) (0.260, 0.049) (0.311, 0.029) (0.293, 0.028) (0.423, 0.029) (0.398, 0.028)

90 (10, 89 ∗ 0)
0.016836 0.016827 0.015014 0.013963 0.013769 0.013583

(0.254, 0.048) (0.248, 0.047) (0.287, 0.027) (0.279, 0.027) (0.391, 0.027) (0.379, 0.027)

Note:

1. n and m denote the sample size and the observed number, respectively.
2. r = (r1, r2, · · · , rm) denotes censoring scheme and r = (15, 14 ∗ 0) = (15, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0) for m = 15.
3. The value in parentheses are sample mean square error (SMSE).
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Table 6. Estimated risks of the MLEs ĈL, ĉ, k̂ for CL, c, k

n m r = (r1, r2, · · · , rm)
c = 1.9, k = 2 c = 2, k = 2 c = 2, k = 2.1

SMSE MVCM SMSE MVCM SMSE MVCM

30

15 (15, 14 ∗ 0)
0.240069 0.223462 0.233766 0.193225 0.257669 0.212223

(0.168, 0.563) (0.140, 0.402) (0.187, 0.563) (0.155, 0.402) (0.185, 0.649) (0.153, 0.458)

20 (10, 19 ∗ 0)
0.159916 0.135950 0.156942 0.130877 0.173420 0.147204

(0.125, 0.333) (0.112, 0.259) (0.139, 0.333) (0.124, 0.259) (0.137, 0.379) (0.122, 0.291)

25 (5, 24 ∗ 0)
0.119993 0.104215 0.118173 0.100540 0.130882 0.113364

(0.109, 0.237) (0.094, 0.194) (0.121, 0.237) (0.104, 0.194) (0.119, 0.268) (0.103, 0.217)

40

25 (15, 24 ∗ 0)
0.120859 0.105303 0.119017 0.101574 0.131765 0.114524

(0.097, 0.238) (0.087, 0.195) (0.108, 0.238) (0.096, 0.195) (0.107, 0.269) (0.095, 0.218)

30 (10, 29 ∗ 0)
0.095367 0.084874 0.094157 0.082036 0.104217 0.092632

(0.082,0.186) (0.075, 0.156) (0.091, 0.186) (0.083, 0.156) (0.090, 0.209) (0.082, 0.174)

35 (5, 34 ∗ 0)
0.077225 0.070719 0.076455 0.068514 0.084679 0.077543

(0.073, 0.148) (0.066, 0.130) (0.081, 0.148) (0.073, 0.130) (0.080, 0.166) (0.072, 0.144)

50

30 (20, 29 ∗ 0)
0.095752 0.085419 0.094536 0.082555 0.104615 0.093215

(0.076, 0.187) (0.071, 0.156) (0.085, 0.187) (0.079, 0.156) (0.084, 0.210) (0.077, 0.174)

35 (15, 34 ∗ 0)
0.077503 0.071631 0.076726 0.069319 0.084968 0.078356

(0.068, 0.149) (0.063, 0.130) (0.076, 0.149) (0.070, 0.130) (0.075, 0.166) (0.069, 0.145)

40 (10, 39 ∗ 0)
0.067902 0.061542 0.067225 0.059650 0.074479 0.067494

(0.060, 0.129) (0.056, 0.112) (0.066 , 0.129) (0.062, 0.112) (0.065, 0.145) (0.061, 0.124)

100

80 (20, 79 ∗ 0)
0.030240 0.029357 0.030148 0.028568 0.033484 0.032409

(0.028, 0.056) (0.027, 0.053) (0.032, 0.056) (0.030, 0.053) (0.031, 0.062) (0.030, 0.058)

85 (15, 84 ∗ 0)
0.028275 0.027488 0.028159 0.026759 0.031295 0.030361

(0.028, 0.052) (0.026, 0.049) (0.031, 0.052) (0.029, 0.049) (0.030, 0.057) (0.028, 0.055)

90 (10, 89 ∗ 0)
0.026475 0.025833 0.026378 0.025156 0.029320 0.028546

(0.026 , 0.048) (0.025, 0.047) (0.028, 0.048) (0.028, 0.047) (0.028, 0.053) (0.027, 0.051)

Note:

1. n and m denote the sample size and the observed number, respectively.
2. r = (r1, r2, · · · , rm) denotes censoring scheme and r = (15, 14 ∗ 0) = (15, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0) for m = 15.

3. The values in parentheses are estimated risks of the maximum likelihood estimators (ĉ, k̂)
for (c, k).


