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Abstract. In this paper, a methodology to control a class of input-affine nonlinear sys-
tems is presented. The method is particularly suitable for systems for which classical
feedback-linearization and linear parameter-varying-based control methods are not appli-
cable or difficult to apply. It borrows concepts from both these methods and results in a
combined technique, more widely applicable and yet efficient, for the control of certain
nonlinear systems, such as those typically encountered in flow control. The proposed
method essentially consists in applying a step similar to feedback linearization to reduce
the nonlinearities of the system and next converts the resulting system into a linear
parameter-varying form. The method is demonstrated on a set of numerical examples,
including a modified viscous Burgers’ equation and an inverted pendulum on a cart.
Keywords: Flow control, Nonlinear control, Hybrid control, Feedback linearization,
Linear parameter-varying control

1. Introduction. While linear control is appealing and efficient, many, if not most,
systems of practical interest are nonlinear. Considering the example of flow control, a
turbulent fluid flow exhibits a strong nonlinearity. Fluid flows are usually modeled by
the Navier-Stokes equations which lead after discretization to a very high-dimensional
nonlinear system intractable for online optimization and control.

The control of general nonlinear systems as encountered in flow control is hence more
challenging than linear control since there is no control method applicable to a general
nonlinear system. Typically, the followed strategy is to develop methods for a specific class
of nonlinear problems. These control strategies include adaptive nonlinear control [1],
neural networks-based control [2], sum of squares-based control [3], sliding mode control
[4], integrator backstepping [5], nonlinear optimal control [6], feedback linearization [7]
and Linear Parameter Varying [8], each with its own pros and cons.

We here combine feedback linearization and Linear Parameter-Varying (LPV) control
to develop a powerful and widely applicable method for a class of input-affine nonlinear
systems. Feedback linearization is one of the model-based nonlinear control methods.
It is a geometric method where the central idea is the algebraic transformation of the
underlying nonlinear system into a fully or partially linear one. In this regard, its name
is a bit misleading since it is not an approximate method like Jacobian linearization.
Feedback linearization has been attracting the attention of researchers for many years
and has been extensively studied in the literature [9, 10, 11]. It finds applications in
biomedical devices, robotic systems, motor drivers, aircraft and automotive industry,
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among others. After transformation of the system into an equivalent linear system, the
machinery of linear control theory can be used. Most of the time, it requires that state
variables or process disturbances are available either through measurements or via an
estimation scheme. As a consequence, the method may require a lot of information about
the underlying process to be controlled, which may not be easy to get in some practical
applications.
LPV-based control is another nonlinear system control strategy, arguably more ad-

vanced and complicated than feedback linearization. In a nutshell, it is a control tech-
nique for systems where the system matrices depend linearly on a time-varying parameter
vector. The time-varying parameter vector may include external or user-defined parame-
ters involving system states and/or control inputs. In the latter case, to distinguish from
the solely external counterpart, the name quasi-LPV is used. LPV control is formulated
as a semi-definite optimization problem where a control objective function is minimized
under the constraint of a system of Linear Matrix Inequalities (LMIs). The solution of the
optimization problem guarantees the existence of a controller such that the L2-gain from
disturbance to the controlled output is bounded from above for all admissible parameter
trajectories. Conceptually, it is possible to put a wide class of nonlinear systems into an
LPV form by a suitable definition of parameters. There exists a large body of literature
on control of systems based on LPV approaches. In [12, 13, 14, 15] parameter-dependent
Lyapunov functions are used, the range of parameters is gridded and, for each grid point,
a set of LMIs is solved. In [8], the followed strategy does not require gridding of the
parameter space since a constant Lyapunov function is assumed. In all LPV frameworks,
the derived controller consists of a Linear Time-Invariant (LTI) controller scheduled by
the parameters. LPV-based control technique is a powerful nonlinear control method and,
like feedback linearization, it has been widely used in many industrial applications, [16],
[17] or [18] to cite just a few.
However, for some nonlinear systems, there exist situations where neither feedback

linearization nor LPV-based control approaches can be applied or, at least, are difficult to
apply. For example, feedback linearization-based control requires transformations which
may not be easy to find or some required geometric conditions may not be satisfied. On
the other hand, the optimization problem to synthesize an LPV controller may not have
a feasible solution, mainly due to a large number of scheduling parameters. In this paper,
we propose a method which combines feedback linearization and LPV control to develop a
hybrid method for a class of input-affine nonlinear systems. The main idea of the proposed
method is to reduce the nonlinearity in the original system so that the rest of the system
can be put in LPV form with a minimum number of scheduling parameters. To this end,
we add-subtract a subset of inputs to/from the system, apply a step similar as feedback
linearization to weaken the nonlinearities of the system and finally convert the resulting
model into an LPV form. As a result, the nonlinearities in the model are reduced through
feedback linearization and the system control is achieved based on LPV control. The
developed method is thus targetting applications requiring nonlinear control.
The paper is structured as follows. In Section 2, feedback linearization approaches

are briefly introduced and their shortcomings are discussed. The proposed method is
presented in its core concepts in Section 3 for input-affine nonlinear systems with equal
number of control inputs (u) and states (x), hereafter denoted as u-x-square systems.
In Section 4, the method is extended to a more general class of input-affine nonlinear
systems using results from Section 3. Since the method heavily relies on the LPV control
theory, a brief summary of the multiplier-based LPV control theory is given in Section 5.
A discussion on the advantages/disadvantages of the proposed method is given in Section
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6. Section 7 presents various case studies to demonstrate the strength and usefulness of
the proposed method. Finally, we conclude with closing remarks in Section 8.

2. Overview of Feedback Linearization for MIMO Systems. In geometric nonlin-
ear control, mainly two kinds of feedback linearization methods exist: input-output and
input-state linearization. Next, we will briefly summarize each of these methods.

2.1. Input-output linearization. Consider the following class of nonlinear systems
with equal number of inputs (u) and outputs (y), denoted as u-y-square systems.

ẋ = f(x) + g1(x)u1 + · · ·+ gp(x)up,

y1 =h1(x),

...

yp =hp(x), (1)

where x ∈ Rn, u = [u1 · · ·up]
T ∈ Rp, y = [y1 · · · yp]T ∈ Rp, f , {gi}pi=1, are assumed to be

smooth vector fields and {hj}pj=1 to be smooth functions. Starting to differentiate yj in
(1) γj times until at least one of the inputs appear on the right hand side, we obtain

y
(γj)
j = L

γj
f hj +

p∑
i=1

Lgi(L
γj−1
f hj)ui, (2)

where Lfhj(x) : Rn → R, x 7→ ∂hj

∂x
f(x), is called the Lie derivative of hj with respect to

f and Lk
fhj(x) , Lf (L

k−1
f hj(x)). Next, define H(x) ∈ Rp×p as

H(x) ,

 Lg1L
γ1−1
f h1 · · · LgpL

γ1−1
f h1

...
. . .

...

Lg1L
γp−1
f hp · · · LgpL

γp−1
f hp

 . (3)

We now introduce the definition of vector relative degree for u-y-square MIMO systems.

Definition 2.1. The system (1) is said to have vector relative degree γ = [γ1 γ2 · · ·
γp]

T at x0 if LgiL
k
fhj(x) = 0, 0 ≤ k ≤ γj − 2, 1 ≤ i, j ≤ p and H(x0) is nonsingular in a

neighborhood of x0.

If the system (1) has vector relative degree γ, then (2) may be written as y
(γ1)
1
...

y
(γp)
p

 =

 Lγ1
f h1

...
L
γp
f hp

+H(x)

 u1
...
up

 , v. (4)

Since H(x) is invertible in a ball around x0, the linearizing state feedback control law is
given as

u = −H−1(x)

 Lγ1
f h1

...
L

γp
f hp

+H−1(x)v. (5)

Many control objectives such as pole placement and reference tracking can be achieved
using this class of methods. The main disadvantages of the input-output feedback lin-
earization are that i) the system states may evolve in a region where H(x) is not invertible
and ii) the zero-dynamics (which exists when γ1 + γ2 + · · ·+ γp < n) may not be stable.
In such cases, the method is not applicable.
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2.2. Input-state linearization. Alternatively, we may consider (1) without output:

S : ẋ =f(x) + g1(x)u1 + · · ·+ gp(x)up = f(x) + g(x)u, (6)

where x ∈ Rn, u ∈ Rp, g(x) ∈ Rn×p. Further, assume that f and
{
gi
}p

i=1
are smooth.

Now, let

Ŝ : ˙̂x =f̂(x̂) + ĝ1(x̂)û1 + · · ·+ ĝp(x̂)ûp = f̂(x̂) + ĝ(x̂)û (7)

be another system with x̂ ∈ Rn, û ∈ Rp, ĝ(x̂) ∈ Rn×p, where again the smoothness

conditions on the corresponding vector fields f̂ and
{
ĝi
}p

i=1
are assumed.

Definition 2.2. The systems S and Ŝ are said to be feedback equivalent if there exists
a transformation

Φ :

{
x̂ = R(x)
u = α(x) + β(x)û

that maps S into Ŝ. In case that α(x) = 0, β(x) = Ip, the systems S and Ŝ are said to
be state equivalent.

The mapping Φ is determined through the following set of partial differential equations
[19]:

∂R

∂x

[
f(x) + g(x)α(x)

]
= f̂(R(x)), (8a)

∂R

∂x

[
g(x)β(x)

]
= ĝ(R(x)). (8b)

When the system S is transformed into

Ŝsl : ż = Az +Bu = Az +

p∑
i=1

Biui (9)

via z = R(x), it is said to be “state-linearizable”. On the other hand, when S is trans-
formed into

Ŝfl : ż = Az +Bû = Az +

p∑
i=1

Biûi (10)

via z = R(x) and u = α(x) + β(x)û, it is said to be “feedback-linearizable”.
Before presenting the necessary and sufficient conditions for state (respectively, feed-

back) linearizability, we need some concepts from differential geometry. To the system S,
we associate distributions D1 ⊂ D2 ⊂ · · · ⊂ Dn defined as

Dk ,
{
adjfgi, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ p

}
, k = 1, · · · , n, (11)

where adjfgi = [f, adj−1
f gi] for j ≥ 1, ad0fgi = gi and [f, gi] ,

∂gi
∂x

f(x)− ∂f

∂x
gi(x).

Theorem 2.1. [9, 10] Consider the system S defined in (6).

(a) The system S is locally state-linearizable if and only if

(i) dim
(
span{g(x), ad1fg(x), · · · , adn−1

f g(x)}
)
= n,

(ii) [adjfg, ad
r
fg] = 0, 0 ≤ j < r ≤ n.
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(b) The system S is locally feedback-linearizable if and only if

(i) dim
(
span{g(x), ad1fg(x), · · · , adn−1

f g(x)}
)
= n,

(ii) D(n−1) is involutive, meaning that [D(n−1), D(n−1)] ⊆ D(n−1).

Although the above conditions are useful to test whether a system is state-linearizable
(respectively, feedback-linearizable), the transformation itself is determined through the
solution of a system of partial differential Equations (8), which may be difficult, if not
impossible, to solve in general. This constitutes the main disadvantage of input-state
feedback linearization methods. The second disadvantage is that when the original non-
linear system state equation is linearized, the corresponding output equations may become
nonlinear which introduces difficulties in the control design phase.

3. A Hybrid Nonlinear Control Methodology.

3.1. Derivation of the method. Being aware of the disadvantages/difficulties or non-
applicability of the above mentioned classical feedback linearization methods, we now
present an alternative approach for input-affine u-x-square nonlinear systems, next extend
to a more general class of input-affine nonlinear systems in Section 4. To start with,
consider

ẋ = Kx+ f(x) +G(x)u, (12)

with

K =

 k11 · · · k1n
...

. . .
...

kn1 · · · knn

 , f(x) =

 f1(x)
...

fn(x)

 , G(x) =

 g11(x) · · · g1n(x)
...

. . .
...

gn1(x) · · · gnn(x)

 ,

where kij, i, j = 1, · · · , n, are real constants and fi(x), gij(x), i, j = 1, · · · , n, are real
functions of x. The objective is to transform the system (12) in a form where the resulting
nonlinearity is “weaker”. Consider the input transformation given by

ũ , G(x)u, (13)

and, let x(t) ∈ I , [I1, I2, · · · , In] for all t means that xi(t) ∈ Ii , [xi, xi], i = 1, · · · , n,
for all t. In general, G(x) is not invertible for all x(t) ∈ I but invertibility is required to

pass back from ũ to u. We modify G(x) so that the modified input transformation, G̃(x),
is non-singular for all x(t) ∈ I. To this end, we add-subtract `iui (1 ≤ i ≤ n) to/from the
i-th subequation in (12):

ẋi =
n∑

j=1

kij xj + fi(x) +
n∑

j=1

gij(x)uj + `i ui︸ ︷︷ ︸
=

n∑
j=1

(
G̃`(x)

)
ij
uj

−`i ui. (14)

This operation is repeated for several subequations in (12) until G̃`(x) is non singular for
all x(t) ∈ I. As will be made clear below, the number of add-substract operations drives
the number of time-varying parameters in the subsequent LPV control and must then be
minimized. Let the new system after the “add-subtract” operations be given as

ẋ = Kx+ f(x) +
(
G(x) +G`,s

)︸ ︷︷ ︸
G̃`,s(x)

u−G`,su, (15)
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with G`,s a diagonal matrix

G`,s =

 s1`1
. . .

sn`n

 ,

where si, i = 1, · · · , n, are binary variables (0 or 1) and `i are constants. Specifically,
si denotes whether `iui is added-subtracted to/from the i-th equation. If `iui is added-
subtracted, then si = 1, otherwise si = 0. The modified input transformation matrix

G̃`,s(x) then writes

G̃`,s(x) =


g11(x) + s1`1 g12(x) · · · g1n(x)

g21(x) g22(x) + s2`2 · · · g2n(x)
...

...
...

...
gn1(x) gn2(x) · · · gnn(x) + sn`n

 . (16)

Next, we formulate the minimization of the number of add-subtract operations as follows.
For an element S of the power set 2S of S ,

{
s = (s1, s2, · · · , sn)

}
, define ΠS as the

determinant of G̃`,s(x), i.e.,

ΠS (x; `) = det
(
G̃`,s(x)

) ∣∣∣∣
s=S

.

To minimize the number of “add-subtract” operations which are required to make G̃`,s(x)
invertible, the binary set S is chosen as the minimum cardinality (with minimum number
of “1”s) element of S such that

∃` / ΠS (x; `) 6= 0, ∀x(t) ∈ I. (17)

Remark 3.1. In the determination of `, in general there are infinitely many solutions.
From now on, we will denote the chosen one by `? and the associated vector s as s?.

Assume without loss of generality that solution of (17) results in s?i = 1, 1 ≤ i ≤ r and
s?i = 0, r + 1 ≤ i ≤ n. Equation (15) then becomes

ẋ = Kx+ f(x) +
(
G(x) +G`?,s?

)︸ ︷︷ ︸
G̃`?,s? (x)

u−G`?,s?u (18)

with

G`?,s? = diag(`?1, · · · , `?r, 0, · · · , 0).
Next, assume that we shift one of the components of the state vector x, say xk, 1 ≤ k ≤ n,
by δ and define x̃k = xk+δ so that x̃k ∈ [x̃k, x̃k], where x̃k > 0. After multiplying-dividing
each entry of G`?,s?u in (18) by x̃k, this yields

G`?,s?u = N`?(ρ)x̃k,

where

N`?(ρ) =



`?1ρ1
...

`?rρr
0
...
0


and ρj ,

uj

x̃k

, j = 1, · · · , r.
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To generalize the developments, let us introduce x̃ = x + δx ( ˙̃x = ẋ) where δxi = δδik
with δij the Kronecker symbol. Equation (18) may then rewrite as

˙̃x = [K −K`?(ρ)]︸ ︷︷ ︸
A(ρ)

x̃+ f δx(x̃) + G̃δx
`?,s?(x̃)u−Kδx, (19)

where

K`?(ρ) =



0 · · · `?1ρ1 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · `?rρr 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

kth col.


,

and
f δx(x̃) = f(x+ δx), G̃δx

`?,s?(x̃) = G̃`?,s?(x+ δx).

Defining the transformation

ũ , f δx(x̃) + G̃δx
`?,s?(x̃)u−Kδx, (20)

(19) becomes

˙̃x = A(ρ)x̃+ ũ. (21)

Remark 3.2. In the framework of input-state linearization presented in Section 2.2, the

transformation (20) is an input-state transformation with R(x) = In, β(x) = (G̃δx
`?,s?)

−1(x̃)

and α(x) = (G̃δx
`?,s?)

−1(x̃)
(
Kδx− f δx(x̃)

)
.

State Equation (21) is a special case of the state equation of a general LPV system (in
the sense that only the state matrix A is parameter-dependent)

ẋ = A(ρ)x+ Bu(ρ)u,

where ρ ,
(
ρ1 · · · ρnρ

)T
denotes the vector of time-varying parameters in the sys-

tem. When disturbances, as well as measured and controlled outputs, are considered, the
general LPV system takes the form

ẋ = A(ρ)x+ Bw(ρ)w + Bu(ρ)u, (22a)

z = Cz(ρ)x+Dzw(ρ)w +Dzu(ρ)u, (22b)

y = Cy(ρ)x+Dyw(ρ)w +Dyu(ρ)u, (22c)

where x ∈ Rnx is the state vector, u ∈ Rnu is the manipulated input, w ∈ Rnw is the
disturbance input on the system, z ∈ Rnz is the controlled output, y ∈ Rny is the measured
output and ρ ∈ Rnρ is the time-varying parameter vector. We will control the system (21)
using LPV control theory. As mentioned before, there exists a large body of literature
on control of such systems. The approaches presented in [12, 13, 14, 15] require gridding
of the parameter space, which becomes computationally involved even if the number of
parameters is very moderate (say more than three parameters). In the case of medium-to-
large scale systems, it is very likely that the number of parameters will be relatively large
and hence we will use a method suitable for LPV systems in rational form and which does
not require griding. In Section 5, this underlying LPV control theory will be explained
very briefly but the interested reader can refer to [8] where this method was proposed and
to the references therein for more detailed information.
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3.2. Summary of the approach and remarks. The core ideas on how to combine
feedback linearization and LPV to derive a widely applicable control technique are now
briefly summarized. The main implementation steps are as follows:

1. The original system (12) is input added-subtracted and the subtracted input terms
are divided-multiplied by a shifted state component. This introduces a new nonlin-
earity, parameterized by ρi which is a function of inputs and the shifted state.

2. The introduction of the scheduling parameters ρi, i = 1, · · · , r, along with the defini-
tion of a new control variable ũ, see (20), reformulates the original system as a LPV
system (21). The minimization of the number of add-subtract operations minimizes
the number of time-varying parameters ρi, i.e., we typically want to have r � n.

3. The control input ũ will be determined from an LPV control algorithm to be de-
scribed in Section 5.

4. Using (20), u is finally determined (states are measurable and G̃δx
`?,s?(x̃) is invertible).

4. Extension of the Method to a More General Class of Input-Affine Nonlin-
ear Systems. In this section, we extend the method proposed in Section 3 to a more
general class of input-affine nonlinear systems. The generalization is based on an initial
parametrization of part of the dynamics and subsequent application of the method de-
veloped for u-x-square systems in Section 3 to the square part of the rest of dynamics.
Given the following class of input-affine nonlinear systems

ẋa = fa(x), (23a)

ẋb =Kbx+ fb(x) +Gb(x)u, (23b)

y =h(x), (23c)

with x = [xa xb]
T ∈ Rn, xb, u ∈ Rm, y ∈ Rp, fb(x) ∈ Rm, Gb(x) ∈ Rm×m, and Kb ∈ Rm×n

is a constant matrix. Applying the proposed method of Section 3 to (23b) results in

˙̃xa = f̃a(x̃), (24a)

˙̃xb =Ab(ρ̃)x̃+ ũ, (24b)

y = h̃(x̃), (24c)

where ũ , f δx
b (x̃) + G̃δx

b`?,s?
(x̃)u −Kbδx as before and ρ̃(t) ∈ Rnρ̃ is the parameter vector

resulting from application of the proposed method. After parameterizing f̃a(x̃) (using

system states) as f̃a(x̃) = Aa(ρ̂)x̃ and h̃(x̃) as h̃(x̃) = C(ρ̂), the system (24) can be
compactly represented as

˙̃x =

[
Aa(ρ̂)
Ab(ρ̃)

]
x̃+

[
0
ũ

]
, A(ρ)x̃+ ˜̃u, (25a)

y =C(ρ̂)x̃, (25b)

where ρ(t) = [ρ̂(t) ρ̃(t)]T and x̃ = [x1, · · · , xk−1, x̃k, xk+1, · · · , xn]
T with x̃k = xk + δ.

When the disturbance and controlled output channels are included, the system (25) can
be represented as the general LPV form (22). To clarify the extended method by a simple
example, consider the following system

ẋ1 =4x1 + x2
2,

ẋ2 = − 2x1 + x1x2 + 5x1u1 + x2u2,

ẋ3 =x1 + x3 + sin(x2) + 2x1u1 + u2,

y =x2.
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Letting xa = x1, xb = [x2 x3]
T , ρ̂1 = x2, we have

Kb =

[
−2 0 0
1 0 1

]
, fb(x) =

(
x1x2

sin(x2)

)
, Gb(x) =

[
5x1 x2

2x1 1

]
, h(x) = x2

and

ẋ1 =4x1 + ρ̂1x2,

ẋb =Kbx+ fb(x) +Gb(x)u.

Next, assume that for a control problem associated with the given system we add/subtract
`?1u1 to/from the second state equation to make Gb invertible. Next, multiply-divide the
subtracted `?1u1 in the second state equation by x̃1 = x1+δ, which is positive in the range

of interest. Defining ρ̃ =
u1

x̃1

, we have

Ab(ρ̃) =

[
−2− `?1ρ̃ 0 0

1 0 1

]
, ũ =

(
2δ + (x̃1 − δ)x2

−δ + sin(x2)

)
+

[
5(x̃1 − δ) + `?1 x2

2(x̃1 − δ) 1

]
u,

C(ρ̂) = [0 1 0] and

˙̃x1 = 4x̃1 − 4δ + ρ̂1x2,

˙̃xb = Ab(ρ̃)x̃+ ũ.

Finally, parameterizing −4δ as −4δ = −4
δ

x̃1

x̃1 , −4ρ̂2x̃1, we have the form (25) with

x̃a = x̃1, x̃b = [x2 x3]
T , x̃ = [x̃a x̃b]

T , Aa(ρ̂) = [4− 4ρ̂2 ρ̂1].

5. Recap of LPV Control Theory. We now briefly recall the basics of the LPV ap-
proach.

5.1. The LPV control problem. Consider system (22) where the dependence on ρ is
fractional in each term. We assume Dyu(ρ) = 0, i.e., there is no direct effect of control
inputs on measured outputs. The parameter vector ρ can be “pulled out” [20] from the
system such that (22) becomes

ẋ = Ax+Bpp+Bww +Buu, (26a)

q = Cqx+Dqpp+Dqww +Dquu and p = ∆q, (26b)

z = Czx+Dzpp+Dzww +Dzuu, (26c)

y = Cyx+Dypp+Dyww +Dyuu, (26d)

where p ∈ Rnp , q ∈ Rnq are internal signals entering and leaving the perturbation block
∆ , diag

(
ρ1In1 , ρ2In2 , · · · , ρnρInρ

)
for some positive integers n1, · · · , nρ.

The control design problem is to find a controller K with state space equations

ẋc = Acxc +Bpcpc +Byy, (27a)

qc = Cqcxc +Dqcpcpc +Dqcyy and pc = ∆cqc, (27b)

u = Cuxc +Dupcpc +Duyy, (27c)

where ∆c = ∆ is the controller scheduling function. The plant with controller is shown
in Figure 1, where

G ,


A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw Dyu

 , K ,

 Ac By Bpc

Cu Duy Dupc

Cqc Dqcy Dqcpc

 . (28)
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∆
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w z
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Figure 1. Scheduled LTI-plant with scheduled LTI-controller

For all admissible parameter trajectories ρ(t) ∈ Rnρ , the closed-loop system is required
to be stable and guarantees an L2-gain from the disturbance w to the controlled output
channel z to be less than τ , i.e.,

sup
w∈L2(Rnw ),w 6=0

||z||2
||w||2

< τ, (29)

where the L2-norm of a signal s(t) is defined as

||s(t)||2 =

√∫ ∞

−∞
s(t)T s(t)dt.

We normalize the parameter vector ρ to ρ̄ such that |ρ̄i(t)| ≤ 1 for all t ≥ 0. For the
rest of the paper, we replace ρ with ρ̄ and assume that each parameter is bounded in
magnitude by 1. With such a parameter vector, we associate the “multiplier” sets

P =

{(
Q S
ST R

)
: Q ≺ 0, S = −ST , R = −Q

}
, (30)

P̃ =

{(
Q̃ S̃

S̃T R̃

)
: R̃ � 0, S̃ = −S̃T , Q̃ = −R̃

}
. (31)

5.2. Existence conditions for the required controller. A theorem by [8] is now
given which provides sufficient conditions for the existence of a stabilizing controller of
the form (27) that guarantees an upper bound on the L2-gain from the disturbance to
the controlled output. In the statement of the theorem, M⊥ denotes a basis for the

orthogonal complement of the image of M and the symbol ? stands for B in

(
A ?
BT C

)
and ?TMB. Let

F1 =


0 0 X 0
0 P 0 0
X 0 0 0
0 0 0 −τI

 , F2 =


0 0 Y 0

0 P̃ 0 0
Y 0 0 0
0 0 0 τI

 ,
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G1 =


A Bp Bw

Cq Dqp Dqw

0 I 0
I 0 0
0 0 I

 , G2 =


I 0 0
0 I 0

−BT
p −DT

qp −DT
zp

−AT −CT
q −CT

z

0 0 I

 .

Theorem 5.1. [8] A controller of the form (27) exists such that the closed-loop system is
stable for all admissible parameter trajectories and the L2-gain from w to z is less than τ

if there exist P ∈ P, P̃ ∈ P̃, X = XT ∈ Rnx×nx and Y = Y T ∈ Rnx×nx such that

(
?
)T

⊥

(
?
)T

F1G1


CT

y

DT
yp

DT
yw


⊥

?

(
Cz Dzp Dzw

)
CT

y

DT
yp

DT
yw


⊥

−τI


≺ 0,


(
?
)T

⊥

(
?
)T

F2G2

 Bu

Dqu

Dzu


⊥

?

(
BT

w DT
qw DT

zw

) Bu

Dqu

Dzu


⊥

τI

 � 0, (32a)

(
Y I
I X

)
� 0,

(
R I

I R̃

)
� 0. (32b)

The controller is constructed from X, Y , the multipliers P , P̃ and from the system
matrices. The controller construction steps are lengthy and technical and hence are
skipped here. The details can be found in [8].

5.3. Number of scheduling parameters in LPV control methods. As mentioned
in Section 1, there exist many different linear-parameter varying control methods, in which
parameter gridding approaches or multiplier-based approaches can be used. In all cases
of LPV control algorithms, the computational burden of controller design, Cburd, can be
expressed as Cburd ≈ σ2κNpar withNpar denoting the number of parameters. The constants
σ > 0 and κ > 0 depend on the LPV control method used. As a result, for all LPV control
applications it is always desirable to reduce the number of scheduling parameters from
computational point of view. Moreover, the feasibility of the associated LMIs for a given
problem and the performance of a synthesized LPV controller may be affected by the
number of scheduling parameters because the required stability and performance have
to be satisfied for all parameter trajectories. Beyond a certain number of parameters,
the LMIs of controller synthesis become infeasible. If not, we would have the chance of
controlling all nonlinear systems that can be put in LPV form; which is obviously not the
case. The proposed method improves these issues by reducing the number of scheduling
parameters.

6. Contribution of the Paper and Discussion of Pros-Cons. This paper con-
tributes to the field of nonlinear control by hybridizing two nonlinear control methods:
feedback linearization and LPV control.
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As will be shown in the case studies in Section 7, there exist many examples where
feedback linearization and LPV control are difficult to apply or simply unapplicable. The
present hybrid method combining the power of two methods yields a more widely ap-
plicable solution. The method was motivated by developing a solution to the control of
nonlinear systems encountered in flow control applications as shown for the case study
in Example 7.3. However, the applicability of the method is for a more general class of
input-affine nonlinear systems as demonstrated by its use for a practical case study in
Example 7.4. One of the main powerful sides of the proposed method is its applicability
to nonlinear systems where a time-dependent reference tracking can be done under pro-
cess disturbances owing to the fact that the core of the method depends on LPV control
theory. However, as discussed in Section 5.3, LPV method may suffer from a high num-
ber of scheduling parameters, a limitation alleviated by the proposed method through
cancelation of some or all of the system nonlinearities.
Although the developed method is in principle applicable to the given class of input-

affine nonlinear systems, the final control relies on an LPV control algorithm and hence
there is no guarantee that the LMIs related to the LPV control of the resulting LPV
model (corresponding to a chosen xk) will be feasible. The structure of the LPV model
of the system is dependent on which xk is chosen. It is not known a priori which state
should be shifted. A state is selected, the corresponding LPV model is obtained and a
feasible solution for LMIs (32) is searched. If no feasible solution is found, another state
is shifted and the same procedure is re-applied.
As for the pros, the proposed approach is applicable to systems where feedback lin-

earization is not applicable either because the necessary geometric conditions are not
satisfied and/or because it is difficult to find the associated transformations.
As shown in the examples in the case studies in Section 7, it may provide a solution

to some problems where the LPV control itself is not working. Further, as discussed in
Section 5.3, this method achieves the reduction in the number of scheduling parameters.
When applied to dense/large-scale nonlinear systems, the proposed approach provides a
way to put the underlying system into LPV form with minimum number of scheduling
parameters via reducing nonlinearities through feedback linearization, a crucial property
as discussed above. For example, the system (12) could be put into LPV form (21) by
defining ρi , xi, i = 1, . . . , n. In this case, there would be n time-varying parameters
and, due to the nonlinearity involved, the size of ∆ would be large and make application
of LPV control difficult, as demonstrated in the third example in Section 7. In contrast,
the presented method is expected to lead to a lower number of parameters in (21) and to
a reduced size of the corresponding ∆.
Finally, although we do not know which state to shift nor how much to shift a priori,

the possibility of different shifts adds a flexibility to the proposed method.

7. Case Studies. In this section, we demonstrate the developed method first on two
simple numerical examples, then on a complex benchmark problem in flow control appli-
cations and finally on a more practical example. Each case study also presents a different
difficulty for feedback linearization or LPV-based control. The first case study is a second
order nonlinear system for which neither feedback linearization control nor LPV control
is applicable. The second one is a more complex system for which again feedback lin-
earization and LPV control methods do not work. The third case study is an extensively
studied benchmark problem from flow control applications [21] and the practical case
study involves control of an inverted pendulum on a cart [22]. All these case studies
demonstrate the widely and efficient applicability of the proposed solution.
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Example 7.1.

The system is described by

ẋ1 = −x1 + 6x2 + 2x1x2u1,

ẋ2 = 0.1x2
1 + 8x2 + 1.5x2u2,

x1(0) = 2, x2(0) = 3. (33)

Assume that the measured output is y = [x1 x2]
T and that the objective is the tracking

of references r1 = 1+ sin(t) and r2 = 2+ 2 cos(t). Before applying the proposed method,
note that if the input-output feedback linearization was considered with hi = xi, i = 1, 2,
the H(x) matrix in (3) would be

H(x) =

[
2x1x2 0
0 1.5x2

]
,

which becomes singular as x1 → 0 or x2 → 0. From the targeted references, we see that
x1 → 0 or x2 → 0 is possible, hence preventing feedback linearization based on the input-
output linearization method to be applied. On the other hand, feedback linearization
based on the input-state linearization is clearly difficult since it would require to solve
a set of nonlinear partial differential equations. The application of LPV control to this
example by selecting ρ1 = x1 and ρ2 = x2 does not work (the LMIs are infeasible). Indeed,
as x2 → 0, ρ2 → 0 and for the zero trajectory of ρ2 the control inputs have no effect on
the system.

As a result, we resort to the proposed method. Note that G(x) defined in (13) is
the same as H(x) and we hence need addition-subtraction of some input(s) to make it
invertible. In case of perfect tracking we would have x1(t) ∈ [0, 2] and x2(t) ∈ [0, 4].
However, in practice there will be tracking errors and we assume a margin of two units:
x1(t) ∈ [−2, 4] , I1 and x2(t) ∈ [−2, 6] , I2. Adding-subtracting s1`1u1 to/from the
first state equation and s2`2u2 to/from the second state equation, we want to find `1 and
`2 such that

det
(
G̃`,s(x)

)
= (2x1x2 + s1l1)× (1.5x2 + s2l2)

6= 0, ∀x(t) ∈ I , [I1 I2]. (34)

A feasible solution to (34) is `?1 = 25 and `?2 = 7 (and hence s?1 = s?2 = 1). Next x2 is
shifted by δ = 15 (x̃2 , x2 + δ) and the subtracted inputs are multiplied-divided by x̃2 in

the equations. Defining ρi ,
ui

x̃2

, i = 1, 2, (33) becomes

ẋ1 = −x1 + (6− `?1ρ1)x̃2 − 6δ + [2x1(x̃2 − δ) + `?1]u1,

˙̃x2 = 0.1x2
1 + (8− `?2ρ2)x̃2 − 8δ + [1.5(x̃2 − δ) + `?2]u2,

x1(0) = 2, x̃2(0) = x2(0) + δ = 18. (35)

Now the modified input transformation matrix

G̃δx
`?,s?(x1, x̃2) =

[
2x1(x̃2 − δ) + `?1 0

0 1.5(x̃2 − δ) + `?2

]
is invertible in the range of interest, which is based on the range of desired references plus
some margins. Letting

ũ ,
[

−6δ
0.1x2

1 − 8δ

]
+ G̃δx

`?,s?u, (36)
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Figure 2. Tracking results (a) and the corresponding control inputs (b)
for Example 7.1

(35) becomes

ẋ1 = −x1 + (6− `?1ρ1)x̃2 + ũ1,

˙̃x2 = (8− `?2ρ2)x̃2 + ũ2,

x1(0) = 2, x̃2(0) = 18. (37)

For designing an LPV controller for (37), an initial range for ρ1,2 is assumed, which is
a posteriori validated from the simulation of the system under the control action. We
here assume ρ1,2 ∈ [−3, 3]. For physical systems, since most of the time the states and/or
control inputs are physical variables, their ranges, and hence the ranges associated with
the time-varying parameters defined algebraically from them, are known. The control
input to be determined by the LPV controller is ũ. After it is determined, the real
control input u is determined from (36). The tracking results and the associated control
inputs shown in Figure 2 demonstrate the effectiveness of the resulting control. From
the controlled system simulation results we have ρ1 ∈ [−1.27,−0.1] and ρ2 ∈ [−0.7, 0.56],
which are included in the ranges assumed before designing the controller.

Example 7.2.

The second example is as follows

ẋ1 = x3 − x4 + x1 sin(x4) + sin(0.3x2)u1,

ẋ2 = x1 + 0.5x2
4 + (x1 − 1)u2,

ẋ3 = x4 − x3x1 + u2 + x2u3,

ẋ4 = x2 + x1x2 + u3 + (x3 + x4)u4,

x(0) = [4.5 − 0.5 2.5 3]T . (38)

The measured outputs are y1 = x1, y2 = x3+x4. The objective is the tracking of references
r1 = 4, r2 = 6. For this problem, note that input-output linearization presented in Section
2.1 is not applicable since the system is not u-y-square. Although the presented discussion
of Section 2.1 can be extended to non-square systems [19], some kind of invertibility of
a matrix like H(x) defined previously is unavoidable. When the invertibility condition is
not satisfied, the use of Moore-Penrose pseudo-inverse leads to a performance degradation
[23]. The difficulty in applying state-input linearization lies in solving a set of partial
differential equations and in the fact that the transformed outputs will be nonlinear. The
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direct application of LPV control with ρ1 , sin(x4) ∈ [−1, 1], ρ2 , sin(0.3x2) ∈ [−1, 1],
ρ3 , x4 ∈ [2.5, 3.5], ρ4 , x1 − 1 ∈ [3, 4], ρ5 , x3 ∈ [2, 3] and ρ6 , x2 ∈ [−1, 0] does
not give a feasible solution. Note that here we tried to choose small parameter bounds
based on initial conditions (even though in reality we may need wider limits) to help the
synthesis of a feasible direct LPV controller but it failed. Further, in addition to the
above parametrization, many others were tried but a feasible direct LPV controller was
not obtained. As a result, we resort to the proposed method.

Assuming a margin of two units for tracking errors, we have: x1(t) ∈ [2, 6] , I1 and
x3(t) + x4(t) ∈ [4, 8] , I3. The non-modified input transformation matrix G(x) for this
example is

G(x) =


sin(0.3x2) 0 0 0

0 x1 − 1 0 0
0 1 x2 0
0 0 1 x3 + x4

 (39)

and since it is a lower triangular matrix, its determinant is given as

det (G(x)) = sin(0.3x2)× (x1 − 1)× x2 × (x3 + x4). (40)

From the given tracking references we specified ranges for x1(t) and x3(t) + x4(t). Since
we have sin(0.3x2) ∈ [−1, 1], the only range needed to ensure a non-zero determinant is
that of x2(t). We assume x2(t) ∈ [−2, 12] , I2, which needs to be verified after simulation
of the controlled system. To ensure a positive determinant (negative determinant can
be considered as well) over the specified ranges, we add-subtract s1`1u1 to/from the first
state equation and s3`3u3 to/from the third state equation to find `1 and `3 such that

det
(
G̃l,s(x)

)
= (sin(0.3x2) + s1l1)× (x1 − 1)× (x2 + s3l3)

× (x3 + x4) 6= 0, ∀x1(t) ∈ I1, x2(t) ∈ I2, x3(t) + x4(t) ∈ I3. (41)

The determined solution is `?1 = 1.2 and `?3 = 1 (hence, s?1 = s?3 = 1, s?2 = s?4 = 0).
Next, we multiply-divide each subtracted control input by x1 (which is positive from the

initial condition and from the fact that r1 = 4) and finally define ρ1 , u1

x1

and ρ2 , u3

x1

.

Equation (38) then becomes

ẋ1 = −`?1ρ1x1 + x3 − x4 + x1 sin(x4) + [sin(0.3x2) + `?1]u1,

ẋ2 = x1 + 0.5x2
4 + (x1 − 1)u2,

ẋ3 = −`?3ρ2x1 + x4 − x3x1 + u2 + (x2 + `?3)u3,

ẋ4 = x2 + x1x2 + u3 + (x3 + x4)u4,

x(0) = [4.5 − 0.5 2.5 3]T . (42)

The modified input transformation matrix is

G̃δx
`?,s?(x) =


sin(0.3x2) + `?1 0 0 0

0 x1 − 1 0 0
0 1 x2 + `?3 0
0 0 1 x3 + x4

 . (43)
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Letting

ũ ,


x1 sin(x4)
0.5x2

4

−x3x1

x1x2

+ G̃δx
`?,s?(x)u, (44)

(42) becomes

ẋ1 = −`?1ρ1x1 + x3 − x4 + ũ1,

ẋ2 = x1 + ũ2,

ẋ3 = −`?3ρ2x1 + x4 + ũ3,

ẋ4 = x2 + ũ4,

x̃(0) = [4.5 − 0.5 2.5 3]T . (45)

We here assume ρ1 ∈ [−6, 10], ρ2 ∈ [−3, 12] and design an LPV controller for (45). The
tracking results, the corresponding control inputs and the second state of the system are
shown in Figures 3 and 4. From Figure 4(b), note that x2(t) ∈ I2. Again, the overall
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Figure 3. References and system response for Example 7.2
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control methodology presented here is seen to be effective. From the controlled system
simulation results we have ρ1 ∈ [−5.9, 7.9] and ρ2 ∈ [0.4, 10.5], which are included in the
ranges assumed before the design of the controller. Note that x2 can be zero and hence
G(x) can be singular, which clearly shows the non-applicability of feedback linearization
if the input transformation is based on G(x).

Example 7.3. Modified 1-D Burgers’ System.

Consider the following partial differential equation, a modified 1-D Burgers’ equation
encountered in fluid mechanics:

∂v

∂t
+ (v + V )

∂v

∂x
= ν

∂2v

∂x2
+ gv, (46)

where v(x, t) : D×T → R, D, T ⊆ R, is the variable of interest to be controlled (mainly
to follow a predetermined trajectory), g(x, t) : D × T → R is the forcing function or the
control signal, ν > 0 is the viscosity and V is a constant. To obtain an ODE model of
the system amenable to control, we use the classical Proper Orthogonal Decomposition
(POD) method [24, 25] for representing v and Fourier functions for describing g. Namely,
consider the expansions

v(x, t) ≈ ϕ0(x) +
n∑

i=1

ai(t)ϕi(x), (47a)

g(x, t) ≈ φ0(x) +
n∑

i=1

bi(t)φi(x), (47b)

where ai(t), bi(t), i = 1, . . . , n, are respectively the temporal coefficients of the orthonor-
mal spatial modes ϕi(x), φi(x), i = 1, . . . , n. Here, {ϕi(x)} are obtained through POD
by post-processing the output of the model (46) with a given reference forcing function,

chosen as g(x, t) = gref (x, t) , sin(t)+
n−1∑
i=1

3i

n
sin

(
2πi

5
x

)
sin(t). The POD approximation

is constructed from 500 snapshots over the time span t ∈ [0, 10], see [24] for details on the
method. Retaining the first n = 10 modes already accounts for 99.6% of the total energy
of the system (in the L2(D × T )-norm) and was hence deemed sufficient for the present
control purpose. The forcing function g(x, t) is decomposed over functions {φi(x)}:

{φi(x)} ,
{
1, sin

(
2π

L
x

)
, . . . , sin

(
2π

L
(n− 1)x

)}
, (48)

where L , 5 is the length of the spatial interval and x ∈ [0, L]. The functions ϕ0(x),
φ0(x) are mean values of v(x, t) and g(x, t) at x over the considered time span. After
taking the required temporal and spatial derivatives of the approximation v(x, t) given by
(47a), inserting the resulting expressions together with (47b) into (46), multiplying both
sides by ϕk(x), k = 1, · · · , n and integrating over space from 0 to L, we finally obtain the
following system

ȧk =
n∑

i=1

Likai +
n∑

i,j=1

Qijkaiaj +
n∑

i,j=1

Bijkaibj +
n∑

i=1

Cikbi + ck, k = 1, . . . , n, (49)

with L, Q, B and C time-independent projection tensors. Note that the orthogonal
property of {ϕk(x)}n1 over the spatial domain with uniform measure was used. As a test

case, the temporal coefficients arefi (t) of the reference solution with the forcing function as
g(x, t) = gref (x, t), V = 1, n = 10, computed from (46) are tracked (noted ri(t) for figure
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Figure 5. LPV-control simulation results (top row) and the corresponding
error variations (bottom row): responses of states 1 to 5

readability). To guarantee invertibility of G̃δx
`?,s?(x), we follow the same steps as before

and obtain `?1 = `?2 = · · · = `?10 = 1 and set ρj ,
bj
ã10

, j = 1, . . . , 10, where ã10 , a10 + 2.

The tracking results are shown in Figures 5 and 6 together with the corresponding
errors ei over time, ei , ri − ai, i = 1, . . . , 10. In the figures, the solid color signals are
the references and the dashed ones are the system responses. The error is seen to remain
low, for all states at all time, again demonstrating the efficiency of the present method.
Note that if one tries to directly apply LPV control to (49) by taking ρi , xi, i =

1, . . . , 10, the size of ∆ would be more than 1000 × 1000 and LMIs in Theorem 5.1 will
not be feasible to obtain an LPV controller.

Example 7.4. Inverted pendulum on a cart.

The last example considers a practical application of the method introduced in Section 3
to an inverted pendulum mounted on a motor driven cart. This example also demonstrates
the use of the method for a non-square x-u system (see Section 4) and comparison of the
performance of the proposed method with a fuzzy control approach [22]. The system is
shown in Figure 7 and the dynamics of the system is given by [22]:

ẋ1 =x2, (50a)

ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2− a cos(x1)u

4l/3− aml cos2(x1)
, (50b)

where x1 denotes the angle θ of the pendulum from the vertical, and x2 = θ̇ is the angular
velocity. g = 9.8 m/s2 is the gravity constant, m is the mass of the pendulum, M is the
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Figure 6. LPV-control simulation results (top row) and the corresponding
error variations (bottom row): responses of states 6 to 10

F

m, L

M

θ

Figure 7. Inverted pendulum on a cart

mass of the cart, a = 1/(m + M), L = 2l is the length of the pendulum and u = F is
the force applied to the cart. Since the system is not u-y-square, input-output feedback
linearization is not applicable and the input-state linearization will involve solution of a
nonlinear PDE as before.

Letting

G(x) = G(x1, x2) =
−a cos(x1)

4l/3− aml cos2(x1)
,
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Figure 8. Comparison of hybrid and the fuzzy control methods for an
inverted pendulum on a cart

we see that G(x) will be singular when x1 = π/2. As a result, we add-subtract `u to/from
(50b) to obtain

G̃`(x) = G̃`(x1, x2) =
−a cos(x1)

4l/3− aml cos2(x1)
+ `.

Shifting x1 by δ = 2, multiplying-dividing the subtracted `u by x̃1 = x1 + δ and letting

ρ =
u

x̃1

, (50) becomes

˙̃x1 = x2, (51a)

ẋ2 = −`ρx̃1 + ũ, (51b)

where

ũ =
g sin(x̃1 − δ)− amlx2

2 sin (2 (x̃1 − δ)) /2

4l/3− aml cos2(x̃1 − δ)
+ G̃`(x̃1 − δ, x2)u.

We consider the stabilization of the system with the initial condition x(0) = [π/2, 0]T . For
the proposed method with the given objective, we set `? = 0.15 10−3. Note that a small

positive ` value is enough to make G̃`(x) invertible for the given objective. We prefer a
small ` value since we observe (through a simulation study) that the associated control
input, and hence ρ(t), is large for the considered system. An unnecessary parameter
interval for ρ(t) will degrade the performance of the designed controller. The physical
system parameter values are taken from [22] as m = 2kg, M = 8kg and l = 0.5m.
The parameter range for ρ(t) was taken to be [−100, 6000]. The results of the hybrid
method are compared in Figure 8 with the fuzzy control method of [22]. The subscript
“h” is used for the proposed hybrid control approach and “f” is used for the fuzzy control
approach. The proposed method is seen to be faster than the fuzzy method in stabilizing
the system. Next, we try to demonstrate the tracking performance of the hybrid algorithm
for the inverted pendulum on a cart by tracking r = cos(t). The result is shown in Figure
9. Note that for this case we cannot apply the fuzzy control method of [22] since it is
for stabilization. In general, nonlinear tracking control is significantly more difficult than
nonlinear stabilization for an arbitrary tracking of a reference in the reachable set of the
system. As seen from Figure 9, in contrast, the present approach can be applied both for
stabilization and tracking thanks to the underlying LPV control theory.



HYBRID NONLINEAR CONTROL 1227

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

time (sec)

x 1 &
 r

 (
ra

d)

 

 

r

x1

(a)

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

800

time (sec)

u 
(N

)

(b)

Figure 9. Tracking performance of hybrid method for an inverted pendu-
lum on a cart

8. Conclusion. In spite of an extensive research over the last decades, nonlinear sys-
tem control remains a challenging field for general nonlinear systems. The combination
of some already existing approaches often achieves good results or provides a solution
to problems which cannot be solved by the individual approaches. In this paper, we
have presented such a method for the control of a class of input-affine nonlinear systems
by combining the feedback linearization and the linear parameter-varying control meth-
ods. The main idea behind the present hybrid method is to use the linearizing power of
feedback linearization to alleviate the limitation of LPV control and hence increase its
applicability. The resulting method is most suitable for cases where feedback linearization
is not applicable or a linear-parameter varying control cannot be used or as an alternative
hybrid control method for the given class of input-affine nonlinear systems. The proposed
hybrid method provides an LPV modeling of the system with a minimum number of time-
varying parameters by reducing the system nonlinearities via feedback linearization made
possible through input add-subtract operations. The role of the added inputs is to make
the input transformation matrix invertible in the range of interest. The subtracted inputs
are divided-multiplied by a shifted state and these introduced nonlinearities are defined
as scheduling parameters, functions of both inputs and the shifted state. A greedy-like
algorithm is used to minimize the number of input add-subtractions, leading to a small
number of scheduling parameters. The resulting model is finally put into an LPV form
and controlled using LPV-based control theory. Numerical examples of various complex-
ity and exhibiting different control difficulties were considered to illustrate the power of
the method. They are all effectively handled by the proposed method. As seen from
the examples, the proposed method can be used both for stabilization and time-varying
reference tracking.
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