
International Journal of Innovative
Computing, Information and Control ICIC International c©2014 ISSN 1349-4198
Volume 10, Number 1, February 2014 pp. 303–313

TRANSDUCTIVE TRANSFER LEARNING BASED ON
KL-DIVERGENCE

Jiana Meng1,2 and Shichang Sun2

1School of Computer Science and Technology
Dalian University of Technology

No. 2, Linggong Road, Dalian 116023, P. R. China
mengjn@dlnu.edu.cn

2School of Computer Science and Engineering
Dalian Nationalities University

No. 18, Liaohexi Road, Dalian 116600, P. R. China
ssc@dlnu.edu.cn

Received January 2013; revised May 2013

Abstract. Transfer learning solves the problem that the training data from a source
domain and the test data from a target domain follow different distributions. In this
paper, we take advantage of existing well labeled data and introduce them as sources into
a novel transductive transfer learning framework. We first construct two feature mapping
functions based on mutual information to re-weight the training and the test data. Then
we compute the KL-divergence between the posterior probability of the unlabeled data and
the prior probability of the labeled data to assign a pseudo-label to the unlabeled data.
Next, a set of high-confidence newly-labeled data besides the labeled data are used for
training a new classifier. The proposed algorithm requires that all unlabeled data in the
target domain are available during training which is similar to the transductive learning
setting, so we call it transductive transfer learning. The effectiveness of the proposed
algorithm to transfer learning is verified by experiments in sentiment classification.
Keywords: Transductive transfer learning, Sentiment classification, KL-divergence,
Mutual information

1. Introduction. Traditional classification algorithms in machine learning assume that
the training and the test data should share the same feature space and have the same data
distribution. In real world applications, however, this assumption often does not hold. If
there are very few labeled instances in the target domain for training, it is time-consuming
to label them manually. So it would be favorable if we can leverage the labeled instances
from the source domain to train a precise classifier for the target domain. In fact, the
feasibility has been approved by frontier researches on transfer learning [1-3].

To transfer learning there are two classes of algorithms in the past, namely, feature-
based algorithms and instance-based algorithms. For feature-based algorithms, Blitzer
et al. [4] propose a structural correspondence learning (SCL) algorithm, which makes
use of the unlabeled data from the target domain to extract some relevant features that
may reduce the difference between domains. Dai et al. [5] propose a co-clustering based
algorithm to propagate the label information across different domains. For instance-
based algorithms, Taylor et al. [6] use source domain instances more selectively, and they
use target domain instances to make decisions and only use source domain instances as
insufficient target instances exist. Jiang and Zhai [7] propose a heuristic algorithm to
remove “misleading” training instances from the source domain based on the difference
between conditional probabilities. Meng et al. [8] propose an adaptive transfer learning
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algorithm that adds the most similar instance to the training data set for solving the
spam filtering problem.
Most of the above-mentioned transfer learning algorithms have achieved great improve-

ment compared with traditional learning algorithms. However, the above-mentioned
works do not consider how to combine the feature-based algorithm and the instance-
based algorithm, which is the focus of this paper. We get the most similar features in
the source domain to the features in the target domain based on mutual information
and construct two feature mapping functions, which re-weight the source domain and the
target domain data. We compute the KL-divergence between the posterior probability of
the unlabeled data from the target domain and the prior probability of the training data
from the source domain, which assign the label of the target domain data and add it to
the source domain selectively. Finally, we retrain a new classifier, so that the hyper-plane
can be revised to be closer to the distribution of the target domain data. Meanwhile,
the proposed algorithm requires that all unlabeled data in the target domain are avail-
able at the training time, and is similar to the transductive learning setting, so we call
it transductive transfer learning. We evaluate the proposed framework on the sentiment
classification problem. Our experimental results show that the transfer framework signif-
icantly improves the performance over a number of baseline algorithms which shows the
effectiveness of the proposed algorithm.

2. Related Works.

2.1. Sentiment classification. Automatic sentiment classification [9] is a supervised
learning task. Although traditional classification algorithms [10] may be used to train
sentiment classifiers from manually labeled data, however, the labeling work will be time-
consuming and expensive. Meanwhile, if we directly apply a classifier trained in one
domain to another domain, the accuracy performance will be very low due to the differ-
ences between the two domains. The reason is that users may use domain-specific words
to express the sentiment in different domains. For instance, consider the simple case of
training a system analyzing reviews about only two sorts of products: kitchen appliances
and electronics. One set of reviews would contain adjectives such as “malfunctioning”,
“reliable” or “sturdy”, and the other “sharp”, “compact” or “blurry”. Therefore, data
distributions are different across domains. This violates the basic assumption of tradi-
tional supervised and semi-supervised classification algorithms. Recently, cross domain
sentiment classification algorithms [11] have been proposed to solve the above problem.

2.2. Transfer learning. Another related learning research area is transfer learning [1-
8,11]. It is an improvement of learning in a new domain through the transfer of knowledge
from a related domain that has already been learned. At present many works have stud-
ied the cross domain sentiment classification, e.g., transfer learning is applied on solving
sentiment classification tasks. Among those, a large majority of algorithms propose ex-
periments performed on the benchmark made of reviews of Amazon products gathered by
[11] which extends a structural correspondence learning algorithm [4] to sentiment clas-
sification. Besides sentiment classification, transfer learning algorithms have also been
applied in many real world applications ranging from natural language processing [4,7],
text categorization [12], visual concept detection [13] and WiFi localization [14].

2.3. Transductive learning. Transductive learning is an inference mechanism which
uses both labeled data and unlabeled data to build a classifier whose main goal is that
of classifying unlabeled data as accurately as possible. Traditional transductive learning
setting assumes that the training data and the test data should follow the same data
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distribution. Transductive SVM (TSVM) is a typical model employing testing data for
transductive learning. Joachims [15] implements TSVM for text classification tasks with
favorable results reported especially for problems with small training datasets.

3. Transductive Transfer Learning Based on KL-Divergence. The formulated
problem in this paper is related to transfer learning, in which the major difficulty is
that the source and the target domain data are not likely to be drawn from the same
distribution. The intuitive solution seems to be simply trained on the target domain
data. It has been shown that even small amounts of labeled target data can greatly
improve transfer results [4], however, in this case no labeled target domain data are
available. To solve this problem, a direct way is to make the unlabeled target test data
be available to the model during training time. Leveraging the unlabeled test data during
training time is called transductive learning. However, transduction is not well studied in
a transfer setting, where the training and the test data come from different domains. To
address the problem, we propose a transductive transfer learning algorithm based on the
KL-divergence.

The proposed transfer learning algorithm is mainly composed of three steps. First, we
obtain a common feature subset to both domains by using the feature-based algorithm.
Then we learn two feature mapping functions to build a new vector space model (VSM)
which ensures that the distributions of the training and the test data are close to each
other. Finally, according to the KL-divergence between the posterior probability of the
unlabeled data from the target domain and the prior probability of the labeled data from
the source domain, we assign the label of the target domain data and add it into the
source domain to retrain a new classifier, thus the instance-based algorithm is achieved.

3.1. Notations. To facilitate discussion, we introduce some notations. Let DS be the
set of the source domain data with labels and DT be the set of the target domain data
without labels. The feature sets of the source and the target domain data are FS and
FT , respectively. FS and FT can be obtained from the feature occurrences in DS and DT .
Here we denote Y = {0, 1} by a set of class labels which is the corresponding output of
the source domain data and the target domain data. Our target is to predict the class
label corresponding to a data in DT . Transfer learning aims to improve the learning of
the target predictive accuracy score using the knowledge in DS and DT , where DS 6= DT .

3.2. Feature subset. In transfer learning, we have labeled data from a source domain,
and we wish to learn a classifier which performs well on a target domain with a different
distribution. Intuitively, if the two domains are related, there exist several common com-
ponents underlying them. Some of these components may capture an intrinsic structure
underlying the original data, while others may not. In order to discover those components,
which do not cause the distribution change across the domains and capture the structure
of the original data well, we need evaluate the interrelation of features between the source
and the target domain. So we compute the co-occurrence features of the training and the
test data, i.e., FC = FS ∩FT . Those co-occurrence features are the representations of the
interrelated degree of the two domains.

Next we select the seeds and the subject factors of the target domain. A seed is
a target domain feature which does not belong to the source domain feature set. We
denote the seeds by F̄C . Obviously, F̄C = FT − FC . Since the seeds belong to the target
domain feature set and do not belong to the source domain feature set, the seeds can
distinguish the target domain instances from the source instances explicitly. Then the
subject factors are selected from the seeds. A subject factor is a high frequency feature of
the seeds. We denote the subject factors by F̂ . Because of the high occurring frequency,
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the subject factors are characteristic and important representation features. If we can
find similar features between the subject factors and the features in FC , the distribution
distance of different domains data will be reduced. In the later experiment the accuracy of
classification will be influenced by different appropriate threshold values of subject factors
and seeds. Through the above-mentioned algorithm, we get a feature subset F ′, where F ′

is constructed by F̂ and FC , i.e., F
′ = F̂ ∪ FC .

3.3. Feature interrelation perspective based on mutual information. For the
purpose of reducing the distribution distance of different domain data, we calculate the
interrelated degree between the subject factors and the features of co-occurrence. The mu-
tual information [16] algorithm is used to evaluate the similarity. The mutual information
of two random variables expresses their mutual dependence or the amount of informa-
tion they have in common. In other words, it measures how much knowing one of these
variables reduces the uncertainty about the other. If the information shared between two
objects is small, the two objects are likely to be independent. Otherwise, the two objects
are unlikely to be independent of each other. Let wi and wj be two features, let p(wi) and
p(wj) be the prior probability of wi and wj, respectively. The co-occurrence probability of
wi and wj is p(wi, wj). The mutual relationship between wi and wj is therefore I(wi, wj),
namely,

I(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(1)

The quantity I(wi, wj) measures the mutual relationship between wi and wj or the
probability that wi and wj make a joint contribution to a system at the same time. If
they are statistically independent, the mutual information between them will be small.
There are three possible values for I(wi, wj): positive, zero and negative. A positive
value means that wi and wj are statistically dependent: I(wi, wj) > I(wi)I(wj). A
negative value means that wi and wj can be regarded as complementary distribution
because I(wi, wj) < I(wi)I(wj), which states that the probability that wi and wj make
a joint contribution to the system is less than the probability that wi and wj make
separate contributions. A zero value means that wi and wj are statistically independent:
I(wi, wj) = I(wi)I(wj). The above analysis indicates that the mutual information of wi

and wj is higher, the similarity of them is larger.

Assume that f i
T is a subject factor and that f j

S is a feature, f j
S ∈ FC , the mutual

information of f i
T and f j

S can be defined as:

I(f i
T , f

j
S) = log

p(f i
T , f

j
S)

p(f i
T )p(f

j
S)

(2)

where p(f i
T , f

j
S) is the feature frequency number that f i

T and f j
S co-occur, p(f i

T ) is the

feature frequency number that f i
T occurs, p(f j

S) is the feature frequency number that f j
S

occurs.
The value of I(f i

T , f
j
S) is an interrelated measure between f i

T and f j
S. Assume that the

value of I(f i
T , f

k
S) is the highest, then we can draw a conclusion that the most interrelated

feature of f i
T is fk

S , namely,

sim(f i
T ) = f j

S (3)

3.4. Feature mapping functions. In Subsection 3.2, we build up a feature subset F ′.
On the basis of the feature subset we define two mapping functions ζ(DS) and ζ(DT ).
For a training set, if d ∈ DS, the vector space model of d is (f 1

S, f
2
S, . . . , f

j
S, . . . , f

k
S). In
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the mapping ζ(DS):

f j
S =

{
1 if f j

S ∈ FC or sim(f i
T ) = f j

S(f
i
T ∈ F̂ )

0 otherwise
(4)

Similarly, if d ∈ DT , the vector space model of d is (f 1
T , f

2
T , . . . , f

i
T , . . . , f

k
T ). In the

mapping ζ(DT ):

f i
T =

{
1 if f i

T ∈ F ′

0 otherwise
(5)

Through the mapping functions, we re-weight the source and the target domain data to
reduce the distance of distributions between them. We build a new VSM to approximate
the distribution of the target domain data.

3.5. Prediction of the pseudo-label based on KL-divergence. As mentioned above,
the training data from a source domain follow different distributions with the test data
from a target domain. For adjusting the distribution bias, we add the test data for
retraining a new classifier, so that the hyper-plane can be revised to be closer to the
distribution of the target domain. Figure 1 illustrates the revision procedure, in which
Figure 1(a) shows the classifier trained on the labeled data from the source domain and
Figure 1(b) shows the adjusted classifier after adding the test data with pseudo-label. The
red diamonds show the test positive instances and the red circles show the test negative
instances.

The pseudo-labels of the test data will be assigned based on the KL-divergence. Assume
that θP is the true probability distribution of the positive instance in the source domain.
θN is the true probability distribution of the negative instance in the target domain. For
inferring the class label of a test data, we compute the distance between a test data and
θP , and the distance between a test data and θN , respectively. Then the distribution
function ϕ is defined as:

ϕ(d; θP , θN) = Dis(θd, θP )−Dis(θd, θN) (6)

Assumed that Dis(p, q) is the distance of distributions p and q. We use the KL-divergence
to compute Dis(p, q). The KL-divergence of probability distributions p and q, L(p ‖q )
can be defined as:

L(p ‖q ) =
∑
x

p(x) log

(
p(x)

q(x)

)
(7)

It is easy to show that L(p ‖q ) is non-negative. L(p ‖q ) = 0 if and only if p = q. L(p ‖q )
is not a true distance between two distributions since it is not symmetric and does not

(a) (b)

Figure 1. Classifier revised after adding the test data
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satisfy the triangle inequality. Then the KL-divergence between θd and θP can be defined
as:

L
(
θ̂d

∥∥∥θ̂P ) =
∑
d

Pr
(
d
∣∣∣θ̂d) log

Pr
(
d
∣∣∣θ̂d)

Pr
(
d
∣∣∣θ̂P )

 (8)

In a similar way, the KL-divergence between θd and θN can be defined as:

L
(
θ̂d

∥∥∥θ̂N )
=

∑
d

Pr
(
d
∣∣∣θ̂d) log

 Pr
(
d
∣∣∣θ̂d)

Pr
(
d
∣∣∣θ̂N )

 (9)

θ̂ shows the estimated distribution model of true distribution model θ. On substitution
of Equations (8) and (9) into Equation (6) yields

ϕ(d; θP , θN) = L
(
θ̂d

∥∥∥θ̂P )− L
(
θ̂d

∥∥∥θ̂N )
=

∑
d

Pr
(
d
∣∣∣θ̂d) log

Pr
(
d
∣∣∣θ̂N )

Pr
(
d
∣∣∣θ̂P )

 (10)

If ϕ(d; θP , θN) < 0, the label of d is positive, whereas the predicted label is negative.
For each instance dj ∈ DT (j = 1, . . . , n), according to ϕ(dj; θP , θN), the label of dj can
be assigned. We call the label pseudo. Then we select λ instances according to the value
of the absolute of ϕ(d; θP , θN) from higher to lower and add them to the training data
set. The process that unlabeled instances having pseudo-labels are added to the training
data set is the instance-based algorithm. Taking into account the two feature mapping
functions constructed in the feature-based algorithm previously, we combine the feature-
based and the instance-based algorithms in the transductive transfer learning strategy.

3.6. Algorithm description. The description of our algorithm is shown in Table 1. We
first obtain a new feature subset. In Step 2, we select seeds and subject factors. Then the

Table 1. Algorithm of transductive transfer learning based on KL-divergence

Input: A labeled training data set DS; An unlabeled test data set DT ; A set Y of
all the class labels.
Output: The label of instance d, d ∈ DT .
1 Preprocess the training and the test data, obtain FS and FT , and seek the intersec-
tion of FS and FT , FC = FS ∩ FT , construct the vector space models of the training
and test data.
2 Repeat
(1) Obtain the seeds and the subject factors of FT according to the DF (instance

frequency) from higher to lower. Get the new feature subset F ′.

(2) Compute the most interrelated feature of f i
T (f i

T ∈ F̂ ), f j
S (f j

S ∈ FC) by mutual

information value of f i
T , f

j
S and construct two new feature mapping functions ζ(DS)

and ζ(DT ).
(3) Rebuild the vector space models of the training and the test data in the mapping

functions ζ(DS) and ζ(DT ).
(4) Compute the KL-divergence and assign the pseudo-label of dj.
(5) Select and add some instances to the training data set. The number of the

selected instances is determined by a parameter λ.
Until the selected test data are not changed.

3 Call a traditional machine algorithm to calculate the label of instance d (d ∈ DT ).
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subject factors are selected from higher to lower according to the feature frequency value.
The most interrelated feature f j

S (f j
S ∈ FC) of f i

T (f i
T ∈ F̂ ) is obtained which measures

the interrelated degree between features. We then construct two new feature mapping
functions and vector space models of the training and the test data. Finally, we compute
the KL-divergence and assign the pseudo-label of dj. We select λ instances according to
the KL-divergence and add them to the training data set. Iterating the above process
until the selected test data is not changed. The final label predictions are decided by
SVM.

4. Experiments and Results. To investigate these questions, we have conducted ex-
periments using mutual information to compute interrelated features for rebuilding the
new VSM and adding different numbers of target domain instances with pseudo-labels.
The experimental results are presented in Tables 2, 3 and Figures 2, 3. The results are
discussed in the corresponding sections.

4.1. Data sets. We evaluate our algorithm by one corpus, namely, Amazon review [11].
We use the Amazon reviews data set to select Amazon product reviews for four different
product types: books, DVDs, electronics and kitchen appliances. This benchmark data
set has been used in previous work [11] on cross domain sentiment classification. We can
directly compare our algorithm against existing algorithms by evaluating on the Amazon
reviews data set. The detail descriptions of the corpus are given in [11].

4.2. Software and evaluation. We evaluate the baseline classifier, i.e., Support Vector
Machine, which has been proved to be effective on many machine learning tasks. Here, we
use the Svm-light [17] with a linear kernel function, and the default values are assigned
to the parameters. Finally, the accuracy is calculated as a performance evaluation. In
our experiments, we compare the classification results based on the BOW (Bag-of-Word)
representation of instances. BOW is the earliest approach used to represent the instance
as a bag of words under VSM. Standard pre-processing is performed on the raw data.
Stop words are eliminated, and stemming is unperformed with the data set.

4.3. Comparison results. To evaluate the benefit of our proposed algorithm, we com-
pare the proposed algorithm with two baseline algorithms in Table 2. Next, we describe
the algorithms.

• Baseline: This baseline simulates the effect of not performing the feature-based and
the instance-based transfer learning algorithms. We simply train a binary classifier using
SVM from the labeled reviews in the source domains and apply the trained classifier on
a target domain. This can be considered as a lower bound that does not perform transfer
learning.

• FBA (feature-base algorithm): FBA means we use the feature-based algorithm, how-
ever, do not use unlabeled data in the target domain to train a binary classifier.

• Proposed: This is the proposed algorithm described in this paper. We use the feature-
based and the instance-based algorithms described in Section 3 to train a binary classifier.

As discussed previously, we apply our algorithm to one corpus. Table 2 shows the
accuracy results. Column 1 describes the data sets of the corpus; Column 2 shows the
baseline performances which is applied Svm-light to the data sets; Column 3 shows the
performances obtained by FBA. It means that the models of the classifier are built on the
feature subset F ′. In the experiment the ratio of subject factors and seeds is 10%. The
performances are improved compared with Column 2. This result indicates that using
mutual information to compute interrelated features for rebuilding the new VSM can
generate positive effect on accuracy. If the data from the source and the target domain
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Table 2. Comparison of accuracy results of different data sets

Data sets Baseline FBA Proposed
D vs B 0 .761 0 .782 0.801
E vs B 0 .680 0 .736 0.766
K vs B 0 .693 0 .712 0.725
B vs D 0 .782 0 .795 0.811
E vs D 0 .693 0 .710 0.720
K vs D 0 .716 0 .778 0.806
B vs E 0 .692 0 .747 0.779
D vs E 0 .714 0 .732 0.749
K vs E 0 .806 0 .829 0.842
B vs K 0 .723 0 .785 0.805
D vs K 0 .742 0 .791 0.821
E vs K 0 .831 0 .848 0.855
average 0 .736 0 .770 0.790

are closely related, the performance of the classifier is actually improved. In particular,
FBA can still give stable results, and the accuracies are increased by 3.4% averagely.
This demonstrates the robustness of FBA under feature-based transfer settings. The
last column shows the performance of the proposed algorithm. Here, we see that the
performance outperforms the baseline by 5.4 percentage points and FBA by 2 percentage
points in the whole problems. This is most likely because, although the training and the
test data are related, they are still drawn from different distributions and thus cannot
be intermingled indiscriminately. However, through using the added test data based on
the KL-divergence, the hyper-plane can be revised to be closer to the distribution of the
target domain data which leads to the improving of the classifier performance.

4.4. Parameter sensitivity. There is one parameter λ which is the number that the
added target instances with a pseudo-label in the proposed algorithm. In Figure 2, we
show the accuracy under the different threshold values of λ. The x-axis is the value of
λ, which represents the number of the test data which are selected and added to the
training data set. The y-axis is the value of accuracy. The x-axis equals 0 means that
no target unlabeled data are added into the training data set. As shown in Figure 2,
adding some labeled target instances can greatly improve the performance for all data
sets. Furthermore, with the increasing value of λ, the accuracy increases slightly. The
reason is that the hyper-plane can be revised to be closer to the distribution of the target
domain data after adding the test data. So any changes in classification accuracy can be
directly attributed to the contribution of the unlabeled data. Another reason is due to
the strong relativity between the transformed training data and the test data by usage of
the feature-based algorithm.

4.5. Comparison with previous works. We compare our proposed algorithm with
SCL and SCL-MI [11]. Next, we briefly describe those algorithms. SCL and SCL-MI are
the structural correspondence learning (SCL) algorithms proposed by Blitzer et al. [11].
These algorithms utilize both labeled and unlabeled data in the benchmark dataset. SCL-
MI selects pivots using the mutual information between a feature and a domain label. A
point of difference between SCL and our proposed algorithm is that SCL allows a small
number of labeled data from the target domain to learn the model from one domain to
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Figure 2. Parameter sensitivity of λ

Figure 3. Accuracy results compared with SCL and SCL-MI

a new domain, however, our proposed algorithm does not use the labeled target domain
data to train a binary sentiment classifier.

We first compare the proposed algorithm with previous works in Figure 3. Out of the
12 data sets compared in Figure 3, our proposed algorithm reports the best accuracies
among all sentiment classification algorithms in 9 data sets except “E vs D”, “K vs E”,
and “E vs K” data sets, whereas SCL-MI reports the best accuracies in the remaining 3
data sets. Obviously, our proposed algorithm performs uniformly better than SCL and
SCL-MI in the most of the data sets.

Table 3 shows the average accuracy performances on the 4 target domains. As shown
in Table 3, we see that the proposed algorithm outperforms SCL and SCL-MI in all
target domains. Compared with the two algorithms, SCL and SCL-MI use the unlabeled
target instances to infer a good feature representation, however, SCL and SCL-MI do not
effectively use the unlabeled target instances to train a binary classifier. Furthermore,
SCL and SCL-MI would not work if there were no labeled target instances. In some
cases, even few of labeled target instances are scarce. In contrast, our proposed algorithm
does not allow unlabeled target instances to contribute to the model estimation.

Furthermore, we can see the proposed algorithm further increases the classification
performance. We believe the reason is that through the feature-based algorithm our
approach can obtain the feature interrelation perspective; afterwards using through the
instance-based algorithm our proposed algorithm can select more informative instances
to retrain a new classifier. At the same time, those selected informative instances in the
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Table 3. Comparison with previous works

SCL SCL-MI Proposed algorithm
Books 0.728 0.746 0.764
DVDs 0.746 0.763 0.779

Electronics 0.784 0.789 0.790
Kitchen 0.808 0.821 0.827

target domain can effectively revise the original classifier because their distribution is
similar to the distribution of the target domain data. Fusing the feature-based and the
instance-based algorithms can improve the classification performance of their independent
algorithm.

5. Conclusions. If the distribution of labeled data is different from that of unlabeled
data, a classifier trained on labeled data can cause sub-optimal classification on unlabeled
data. In this paper we propose a transductive transfer learning algorithm to solve this
problem. We re-weight the source and the target domain data by computing the most
similar features in the source domain to the features in the target domain. We compute
the KL-divergence to bias class probabilities of labeled data and improve classification.
We fuse the feature-based and the instance-based algorithms on sentiment classification
task. The experimental results show that our algorithm can greatly outperform some
existing state-of-the-art algorithms.
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