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Abstract. This research focuses on stability analysis of a bilateral control system using
a nonlinear single-link flexible slave arm with constant communication network delay. In
our study, a rigid master arm and a single-link flexible slave arm comprise a bilateral
control system where control is performed over a communication network with constant
delay. A flexible arm was modeled by a linearized system in our previous research; how-
ever, it is described by a nonlinear system in this paper. The stability of the proposed
bilateral control system is analyzed by using the Lyapunov stability theorem. The reac-
tion torque for the rigid master arm and the control torque for the flexible slave arm
are generated by a proportional-derivative (PD) controller and a proportional-derivative-
strain (PDS) controller, respectively. These controllers are derived from the candidate
Lyapunov function, which is defined as the total energy. Several numerical simulations
demonstrate the high performance of our bilateral control system.
Keywords: Flexible arm, Bilateral control, Time delay, Master-slave arms, Lyapunov
function, Nonlinear system

1. Introduction. When manipulators are introduced into general environments such as
houses and offices, to support people to work, we must consider their safety operations.
To achieve the above goal, manipulators should be made from light-weight and suit-
able materials. Such manipulators called flexible manipulators have light-weight and low
rigidity of arms. It is well known that this type of manipulators is difficult accurately
to control. Therefore, it is a fundamental technology for introducing manipulators into
general environments that flexible manipulators are accurately controlled. Even if flexi-
ble manipulators collide with obstacles or human operators, objects collided by flexible
manipulators are relatively safe due to the mechanical flexibility. Furthermore, if tele-
operation are carried out through the communication network, it is possible that human
skills are provided to somewhere at a great distance. In past researches, results of studies
have been shown with respect to each field such as flexible manipulators, teleoperation or
networked systems. In our research, the bilateral control system of flexible master-slave
arms with communication networks is considered. Therefore, it is considered that this
study integrates the above fields.

In recent years, many researchers have studied robotic teleoperation systems. If robotic
teleoperation is designed to be used in every environment, it is reasonable to assume that
control should be realized over existing communication networks. Hence, the teleoperation
of robotic systems through communication networks such as LAN, WAN and wireless LAN
is key to the successful implementation of such technology in the modern world. Teleop-
eration systems should be considered as feedback systems, including the communication
networks through which data flows (reference data, control input and observation data
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between the master manipulator and the slave manipulator). Shingin and Ohta discussed
disturbance rejection with information constraints for a first-order system and obtained a
quantitative representation of the trade-off between available information and achievable
performance [1]. Zhang et al. analyzed several fundamental issues in network control sys-
tems and showed that the stability of a network control system can be characterized by
using hybrid system stability analysis techniques [2]. However, these studies have focused
only on the effects of the communication network.
Bilateral control of master-slave manipulators through communication networks is one

of the main problems in teleoperation. A number of researchers have investigated solu-
tions for such kinds of bilateral control problems. However, the bilateral control systems
for which these problems are solved are almost always rigid master-slave manipulators.
For instance, Sipahi et al. proved the passivity of bilateral control of rigid master-slave
manipulators [3]. Spong, Niemeyer et al. showed the stability of teleoperation systems
with time delay based on their passivity [4, 5]. Namerikawa presented the stability of
bilateral systems with the time varying delay on the basis of the Lyapunov theorem [6].
Nurung and Nilkhamhang proved the asymptotic stability of bilateral systems with time
delay, which is controlled by using sliding-mode control designed on the basis of the Lya-
punov function [7]. However, bilateral systems in these studies have been constructed
using rigid master and slave arms.
There are very few studies on flexible slave arms. Flexible arms have many advantages:

they are lightweight, consume little energy and provide collision safety because of their
mechanical flexibility. Thus, employing flexible manipulators as slave manipulators can be
used for developing more useful bilateral control systems. However, flexible manipulators
are also associated with some problems, such as increased complexity of the system and
undesirable vibration. Matsuno et al. proposed a control method for the contact force and
the tip position for flexible manipulators and proved its stability by using proportional-
derivative-strain (PDS) control [8, 9]. Banavar and Dominic presented the synthesis of a
linear-quadratic-Gaussian/H∞ controller with noncolocated sensing for single-link flexible
manipulators [10]. Ge et al. attempted to improve the position accuracy through PD
control with nonlinear strain feedback for single-link flexible manipulators [11], and Saito
et al. proposed nonlinear vibration control of flexible arms using piezo actuators with
hysteresis [12]. Also, one of the authors has reported a using Kalman filter method for
risk-sensitive stabilization of a parallel-structured single-link flexible arm [13]. Hoshino,
Mori et al. proved the passivity of master-slave manipulators with flexible slave arms
controlled by symmetric bilateral controllers [14, 15]. However, communication networks
are not considered in these studies. In our previous work, a linearized model of flexible
master-slave arms (FMSA) was considered taking communication networks into account.
Furthermore, in the case of constant time delay, the stability of our bilateral system was
analyzed by using the Lyapunov theorem.
In this paper, a bilateral control system for FMSA systems with time delay (shown

in Figure 1) is investigated. A flexible slave arm is modeled as a nonlinear system. To
analyze the stability of our bilateral control system, the candidate Lyapunov function is
constructed based on the total energy which includes constant time delay. The reaction
torque for the master arm and the control torque for the slave arm are generated by
the PD and PDS controllers, respectively, by taking the time derivative of the candidate
Lyapunov function. The ranges of the control gains are constrained in such a way that the
candidate Lyapunov function becomes the actual Lyapunov function. Furthermore, the
performance of our bilateral control system is demonstrated through several numerical
simulations.
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Figure 1. Block diagram of a flexible master-slave arm system

2. Modeling of Flexible Master-Slave Arms. Schematic drawings of a rigid master
arm and a parallel-structured single-link flexible slave arm are shown in Figures 2 and
3(a), respectively. Both arms rotate in the horizontal plane. Figure 3(b) shows a sim-
plified model of a parallel-structured flexible slave arm which is the same as the model
investigated in the literature [13]. In our previous work, all nonlinear terms were ignored
so that the flexible slave arm was modeled by a linear system. In this paper, the flexible
slave arm is treated as a nonlinear system. Since both arms rotate in the horizontal plane,
the effects of gravity can be ignored. Moreover, we assume that the flexible slave arm is
not affected by any environmental forces.

2.1. Dynamics of the master arm. The master arm is constructed of a uniform rigid
rod and a hub with an electric motor (shown in Figure 2). Let OmXmYm denote an inertial
Cartesian coordinate system. The master arm is rotated by a servomotor attached at Om.
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Figure 2. Schematic drawing of a rigid master arm

(a) Parallel-structured single-link arm (b) Single-link arm (simplified model)

Figure 3. Schematic drawing of a flexible slave arm

The reaction torque τm(t) is generated in accordance with a PD-based control law. The
master arm has a length `m and a mass mm. Let Jm and Jh denote the moments of inertia
of the master arm and the rotor of the master motor, respectively. µm is the coefficient
of friction of the master motor shaft, θm(t) is the angle of rotation of the master motor,
and τh(t) is the torque generated by the force Fh(t) applied by a human operator. We
express the dynamics of the master arm as(

Jh + Jm +
1

4
mm`

2
m

)
θ̈m(t) + µmθ̇m(t) = τh(t) + τm(t). (1)

2.2. Dynamics of the flexible slave arm. In this paper, a parallel-structured single-
link flexible arm is employed as the slave arm (shown in Figure 3(a)). The flexible slave
arm is constructed by a pair of uniform Euler-Bernoulli beams. One end of each beam is
clamped to a hub unit, and the remaining ends are clamped to a tip mass. The derivation
of an accurate mathematical model for a parallel-structured single-link flexible arm yields
a system of highly complex nonlinear differential equations. However, the displacements
of both beams are almost the same and the centrifugal force is assumed to be sufficiently
small. Thus, the mathematical models for both beams are equivalent. Therefore, for the
sake of simplicity, the flexible slave arm is regarded as an approximated model (shown
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in Figure 3(b)). In addition, we consider a simplified structural model of the flexible
slave arm consisting of a single beam under the same boundary conditions as the original
system approximated as the beams of a parallel-structured single-link flexible arm.

Let OXY denote an inertial Cartesian coordinate system and Oxy, a rotating coordi-
nate system. θ(t) is defined as the angle between the OX and Ox axes, and u(t, x) is
taken as the transverse displacement of the flexible beam from the x axis. The uniform
mass density ρ, the cross section S and the uniform flexible rigidity EI are the physical
parameters of the beam, where E and I are Young’s modulus and the second moment of
cross-sectional area, respectively. J0 is the moment of inertia of the slave motor shaft, µ
is the coefficient of friction of the slave motor shaft, cD is the coefficient of Kelvin-Voigt
type damping, and m is the mass of the tip mass. In this paper, the tip mass is assumed
to be a point mass; and therefore, its moment of inertia is zero. Because the flexible
slave arm is treated as an Euler-Bernoulli beam, the rotary inertia and shear deformation
are negligibly small: |u(t, x)|2 � |x|2 is satisfied. Furthermore, the tip mass is taken as

non-rigid, and the rotational velocity is sufficiently small:
∣∣∣θ̇(t)∣∣∣2 � 1.

The total kinetic energy T (t) and the potential energy U(t) are given by

T (t) = Th(t) + Tb(t) + Ttm(t) (2)

U(t) =

∫ `

0

1

2
EI {u′′(t, x)}2 dx (3)

Th(t) =
1

2
J0θ̇

2(t) (4)

Tb(t) =

∫ `

0

1

2
ρS

[{
xθ̇(t) + u̇(t, x)

}2

+ u2(t, x)θ̇2(t)

]
dx (5)

Ttm(t) =
1

2
m

[{
`θ̇(t) + ˙̄u(t)

}2

+
{
ū(t)θ̇(t)

}2
]
, (6)

where ū(t) := u(t, `) and the prime denotes a derivative with respect to x. The virtual
work δW (t) due to nonconservative forces is given by

δW (t) = −∂F0(t)

∂θ̇
δθ −

∫ `

0

∂F̂ (t, x)

∂u̇′′ δu′′dx+ τ(t)δθ, (7)

where F0(t) and F̂ (t, x) are dissipation functions with respect to the rotation of the slave
motor and internal damping of the slave arm is described by

F0(t) =
1

2
µθ̇2(t) (8)

F̂ (t, x) =
1

2
cDI {u̇′′(t, x)}2 . (9)

The dynamics of the slave arm can be derived by using the Hamilton’s principle [13].
Therefore, the dynamics with respect to the motor shaft and the flexible beam are given
by the following equations (see Appendix A):

J0θ̈(t) + µθ̇(t)− cDI{u̇′′(t, 0)− u̇′′(t, `)} − EI{u′′(t, 0)− u′′(t, `)}

+mū(t){2 ˙̄u(t)θ̇(t) + ū(t)θ̈(t)}+
∫ `

0

ρS{2u(t, x)u′(t, x)θ̇(t) + u2(t, x)θ̈(t)}dx

+

∫ `

0

ρSxu(t, x)θ̇2(t)dx+m`ū(t)θ̇2(t) = τ(t) (10)
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ρSü(t, x) + cDIu̇
′′′′(t, x) + EIu′′′′(t, x) = − ρSxθ̈(t)−m{`θ̈(t) + ¨̄u(t)}δ(x− `)

+ ρSu(t, x)θ̇2(t) +mū(t)θ̇2(t)δ(x− `). (11)

The fifth to eighth terms on the left-hand side of (10) and the third and fourth terms on
the right-hand side of (11) are nonlinear.
The boundary and initial conditions of (10) and (11) are given by

B.C. : u(t, 0) = u′(t, 0) = u′(t, `) = u′′′(t, `) = 0 (12)

I.C. : u(0, x) = u̇(0, x) = 0, θ(0) = θ0, θ̇(0) = 0. (13)

3. Controller Design. In this section, we derive the controllers, namely the PD con-
troller for the reaction torque of the master arm τm(t) and the PDS controller for the
control torque of the slave arm τ(t). First, the candidate Lyapunov function V (t) is
defined as the sum of the energy of the master arm, the energy of the slave arm and
the pseudo-energy. Then, the PD and PDS controllers are derived as V̇ (t) = dV (t)/dt.
Finally, substituting τm(t) and τ(t) into V̇ (t), we obtain V̇ (t) to verify the stability.
Let us define the candidate Lyapunov function V (t) as

V (t) = a1Th(t) + a2{Tb(t) + Ttm(t) + U(t)}+ a3Tm(t)

+
1

4
a4
[
{θm(t− TD)− θ(t)}2 + {θ(t− TD)− θm(t)}2

]
, (14)

where a1, a2, a3 and a4 are positive constants. TD represents the communication network
delay, which is assumed to be positive constant in this paper. The candidate Lyapunov
function V (t) defined by (14) holds V (t) ≥ 0 for all θm(t), θ̇m(t), θ(t), θ̇(t), u(t, x) and
u̇(t, x) in this case, where a1, a2, a3 and a4 > 0. V (t) holds V (t) = 0 if and only if

θm(t− TD)− θ(t) = 0, θ(t− TD)− θm(t) = 0, θ̇(t) = θ̇m(t) = 0 and u(t, x) = u̇(t, x) = 0.
Next, differentiating (14) with respect to t and substituting (1)-(13) into the resultant
equation, we obtain

V̇ (t) =

[
−(a2 − a1) [cDI {u̇′′(t, 0)− u̇′′(t, `)} +EI {u′′(t, 0)− u′′(t, `)}]

−1

2
a4 {θm(t− TD)− θ(t)}+ a1τ(t)

]
θ̇(t)

+

[
−1

2
a4 {θ(t− TD)− θm(t)}+ a3{τh(t) + τm(t)}

]
θ̇m(t)

− a2

∫ `

0

cDI{u̇′′(t, x)}2dx− a1µθ̇
2(t)− a3µmθ̇

2
m(t)

+
1

2
a4{θm(t− TD)− θ(t)}θ̇m(t− TD) +

1

2
a4{θ(t− TD)− θm(t)}θ̇(t− TD)

+ (a2 − a1)

[∫ `

0

ρS{xu(t, x)θ̇3(t) + 2u(t, x)u̇(t, x)θ̇2(t) + u2(t, x)θ̇(t)θ̈(t)}dx

+m
{
2ū(t) ˙̄u(t)θ̇2(t) + `ū(t)θ̇3(t) + ū2(t)θ̇(t)θ̈(t)

}]
. (15)

In this paper, the PDS and PD controllers apply to the control torque for the flexible
slave arm τ(t) and the reaction torque for the rigid master arm τm(t), respectively. The
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controllers are designed as follows:

τm(t) =
1

a3

{a4
2
{θ(t− TD)− θm(t)} − a6θ̇m(t)

}
(16)

τ(t) =
1

a1

{
a4
2
{θm(t− TD)− θ(t)} − a5θ̇(t)

+ (a2 − a1)
[
cDI{u̇′′(t, 0)− u̇′′(t, `)}+ EI{u′′(t, 0)− u′′(t, `)}

]}
, (17)

where a5 and a6 are positive constants. Then, substituting (16) and (17) into (15), we
arrive at

V̇ (t) = − a2

∫ `

0

cDI{u̇′′(t, x)}2dx− a1µθ̇
2(t)

− a3µmθ̇
2
m(t)− a5θ̇

2(t)− a6θ̇
2
m(t) + a3τh(t)θ̇m(t)

+
1

2
a4{θm(t− TD)− θ(t)}θ̇m(t− TD) +

1

2
a4{θ(t− TD)− θm(t)}θ̇(t− TD)

+ (a2 − a1)

[∫ `

0

ρS{xu(t, x)θ̇3(t) + 2u(t, x)u̇(t, x)θ̇2(t) + u2(t, x)θ̇(t)θ̈(t)}dx

+m
{
2ū(t) ˙̄u(t)θ̇2(t) + `ū(t)θ̇3(t) + ū2(t)θ̇(t)θ̈(t)

}]
. (18)

As seen in this equation, the first to fifth terms on the right-hand side are trivial
negative semidefinite and become zero if u̇′′(t, x) = 0, θ̇(t) = 0 and θ̇m(t) = 0. To check
the internal stability, we assume that the operational torque is zero, i.e., τh(t) ≡ 0. The
seventh and eighth terms on the right-hand side of (18) are negative semidefinite, which
has already been proved in [16]. However, it is not obvious that the ninth term on the
right-hand side of (18) is negative semidefinite, that is, the nonlinear term is investigated
regardless of whether it is negative semidefinite. In the next section, it is proved that the
value of the integral of the nonlinear term is negative semidefinite.

4. Stability Analysis. The value of the integral of (18) is written as follows for verifying
the internal stability of the proposed system:∫ t

0

V̇ (τ)dτ = −a2

∫ t

0

∫ `

0

cDI{u̇′′(τ, x)}2dxdτ

− a1µ

∫ t

0

θ̇2(τ)dτ − a3µm

∫ t

0

θ̇2m(τ)dτ − a5

∫ t

0

θ̇2(τ)dτ − a6

∫ t

0

θ̇2m(τ)dτ

+
1

2
a4

∫ t

0

{θm(τ − TD)− θ(τ)}θ̇m(τ − TD)dτ +
1

2
a4

∫ t

0

{θ(τ − TD)− θm(τ)}θ̇(τ − TD)dτ

+ (a2 − a1)

∫ t

0

[∫ `

0

ρS{xu(τ, x)θ̇3(τ) + 2u(τ, x)u̇(τ, x)θ̇2(τ) + u2(τ, x)θ̇(τ)θ̈(τ)}dx

+m
{
2ū(τ) ˙̄u(τ)θ̇2(τ) + `ū(τ)θ̇3(τ) + ū2(τ)θ̇(τ)θ̈(τ)

}]
dτ. (19)

In this equation, the first five terms on the right-hand side are clearly negative, and the
sixth and the seventh terms on the right-hand side are also negative, which is verified in
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our previous work [16]. However, it is not obvious whether the eighth term is negative.
Therefore, the following function is defined:

VN(t) :=

∫ t

0

[∫ `

0

ρS
{
xu(τ, x)θ̇3(τ) + 2u(τ, x)u̇(τ, x)θ̇2(τ)

+ u2(τ, x)θ̇(τ)θ̈(τ)
}
dx+m

{
2ū(τ) ˙̄u(τ)θ̇2(τ) + `ū(τ)θ̇3(τ) + ū2(τ)θ̇(τ)θ̈(τ)

}]
dτ. (20)

If VN(t) is negative semidefinite, the internal stability of our bilateral control system is
guaranteed.
The second term on the right-hand side of this equation becomes∫ t

0

∫ `

0

2u(τ, x)u̇(τ, x)θ̇2(τ)dxdτ =

∫ t

0

∫ `

0

{
d

dτ
u2(τ, x)

}
θ̇2(τ)dxdτ

=

∫ `

0

u2(t, x)θ̇2dx−
∫ t

0

∫ `

0

2u2(τ, x)θ̇(τ)θ̈(τ)dτdx, (21)

and the fourth term on the right-hand side of (20) becomes∫ t

0

2ū(τ) ˙̄u(τ)θ̇2(τ)dτ =

∫ t

0

{
d

dτ
ū2(τ)

}
θ̇2(τ)dτ = ū2(t)−

∫ t

0

2ū2(τ)θ̇(τ)θ̈(τ)dτ. (22)

Substituting (21) and (22) into (20), we obtain

VN(t) = ρS

[∫ t

0

∫ `

0

xu(τ, x)θ̇3(τ)dxdτ +

∫ `

0

u2(t, x)θ̇2(t)dx−
∫ t

0

∫ `

0

u2(τ, x)θ̇(τ)θ̈(τ)}dxdτ

]

+m

[
ū2(t) +

∫ t

0

`ū(τ)θ̇3(τ)dτ −
∫ t

0

ū2(τ)θ̇(τ)θ̈(τ)dτ

]
. (23)

Next, under the assumptions of |u(t, x)|2 � |x|2 and
∣∣∣θ̇(t)∣∣∣2 � 1, (23) can be approxi-

mated as

VN(t) ∼= ρS

∫ t

0

∫ `

0

xu(τ, x)θ̇3(τ)dxdτ +m`

∫ t

0

ū(τ)θ̇3(τ)dτ

� ρS

∫ t

0

∫ `

0

|x|2
∣∣∣θ̇3(τ)∣∣∣ dxdτ +m`

∫ t

0

`
∣∣∣θ̇3(τ)∣∣∣ dτ

=
1

3
ρS`3

∫ t

0

∣∣∣θ̇3(τ)∣∣∣ dτ +m`2
∫ t

0

∣∣∣θ̇3(τ)∣∣∣ dτ ∼= 0. (24)

Therefore, VN(t) is negative semidefinite. As a result, (19) satisfies the following inequal-
ity: ∫ t

0

V̇ (τ)dτ ≤ 0. (25)

Consequently, our bilateral control is asymptotically stable.

5. Passivity Analysis. To consider the passivity of our bilateral control system, (18) is
rewritten as

V̇ (t) = a3τh(t)θ̇m(t)−Ψ(t), (26)
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where Ψ(t) is defined as

Ψ(t) := a2

∫ `

0

cDI{u̇′′(t, x)}2dx+ a1µθ̇
2(t) + a3µmθ̇

2
m(t) + a5θ̇

2(t) + a6θ̇
2
m(t)

− 1

2
a4{θm(t− T )− θ(t)}θ̇m(t− T )− 1

2
a4{θ(t− T )− θm(t)}θ̇(t− T )

− (a2 − a1)

[∫ `

0

ρS{xu(τ, x)θ̇3(τ)− 2u(τ, x)u̇(τ, x)θ̇2(τ) + u2(τ, x)θ̇(τ)θ̈(τ)}dx

−m
{
2ū(τ) ˙̄u(τ)θ̇2(τ) + `ū(τ)θ̇3(τ) + ū2(τ)θ̇(τ)θ̈(τ)

}]
. (27)

Then, the integral in (26) is evaluated as∫ t

0

V̇ (τ)dτ =

∫ t

0

a3τh(τ)θ̇m(τ)dτ −
∫ t

0

Ψ(t)dτ. (28)

Because VN(t) is negative semidefinite, which is shown in (24), the second term on the
right-hand side of (28) becomes a positively valued function. Therefore, the following
inequality is obtained: ∫ t

0

V̇ (τ)dτ ≤
∫ t

0

a3τh(τ)θ̇m(τ)dτ. (29)

Then, performing the integration on the left-hand side of (29), we obtain

V (t)− V (0) ≤
∫ t

0

a3τh(τ)θ̇m(τ)dτ, (30)

which is the dissipation inequality. This means that our bilateral control system satisfies
the passivity condition.

6. Numerical Simulations. The flexible slave arm is assumed to be made of phosphor
bronze. Its length and cross-sectional area (= thickness × width) are ` = 0.3[m] and
S = 1.0 × 10−3[m] × 4.0 × 10−2[m], respectively. The other physical parameters of the
master and slave arms are listed in Tables 1 and 2.

The state space model developed on the basis of the modal expansion method is em-
ployed for the numerical simulations. The number of modes N of our system was taken

Table 1. Physical parame-
ters of the master arm

Symbol Value
Jh 0.70 [kg ·m2]
µm 3.03× 10−2 [kg ·m2 · s]
mm 0.57 [kg]
`m 0.30 [m]
Jm 0.7172 [kg ·m2]

Table 2. Physical parame-
ters of the slave arm

Symbol Value
J0 0.70 [kg ·m2]
µ 3.03× 10−2 [kg ·m2 · s]
` 0.30 [m]
ρ 8.8× 103 [kg/m3]
S 8.0× 10−5 [m2]
E 1.1× 1011 [Pa]
I 2.67× 10−11 [m4]
cD 4.82× 104 [N · s/m2]
m 0.245 [kg]
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Table 3. Resonance frequency [Hz]

Mode Frequency [Hz]
1 20
2 109
3 269
4 501
5 804
6 1.178 ×103

7 1.623 ×103

8 2.140 ×103

9 2.728 ×103

10 3.387 ×103

as 10. Hence, the displacement u(t, x) is expressed as follows:

u(t, x) ∼=
N∑
k=1

uk(t)φk(x), (31)

where uk(t) (k = 1, 2, · · · , N) is the modal displacement. φk(x) (k = 1, 2, · · · , N) is
the eigenfunction corresponding to each eigenvalue λk (k = 1, 2, · · · , N). The eigen-
function φk(x) is the solution of the eigenvalue problem A φk(x) = λkφk(x), A :=
{(EI)/(ρS)}d4/dx4, which is conditioned by φk(0) = φ′

k(0) = φ′
k(`) = φ′′′

k (`) = 0. By
using (31), the left-hand side of (11) can be rewritten as the mode equation for uk(t) as
follows:

(Left-hand side of (11)) = ük(t) +
cD
E

λku̇k(t) + λkuk(t). (32)

This equation describes a second-order system. Hence, the damping ratio of each mode
ζk is represented as

ζk =
cD
2E

√
λk. (33)

Therefore, the resonance angular frequency ωk is given by

ωk = ω0k

√
1− ζ2k (34)

where ω0k(:=
√
λk) is the natural angular frequency of each mode. Table 3 indicates the

resonance frequency of each mode, which is calculated by (34).
The numerical simulations are performed by using Matlab and Simulink. Instead of a

human operator, we use a virtual operator controlled by the PD controller for driving the
master arm in the numerical simulations. The virtual operator generates an operation
torque τh(t) as follows:

τh(t) = KP {θh(t)− θm(t)}+KD

{
θ̇h(t)− θ̇m(t)

}
, (35)

where θh(t) is the desired angle of the master arm. KP and KD are the proportional
gain and the derivative gain, respectively. Next, we set KP = 10 and KD = 15. In these
numerical simulations, θh(t) is taken as

θh(t) = us(t− ts), (36)

where us(t) is the unit step function and ts represents the time at which the virtual
operator commenced operation. The initial conditions of our system are set as follows:
θm(0) = 0[rad], θ̇m(0) = 0[rad/s], θ(0) = 0[rad], θ̇(0) = 0[rad/s], u(0, x) = 0[m] and
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u̇(0, x) = 0[m/s]. The delay time of the communication network is set to TD = 0.1, 0.5[s],
and the starting time of the virtual operator is set to ts = 1.0[s]. Furthermore, the weight
coefficients of the Lyapunov function are chosen as a1 = 0.1, a2 = 2.1, a3 = 20, a4 = 4.0,
a5 = 0.7 and a6 = 20. The gains of the reaction torque of the master arm τm(t) and the
control torque of the slave arm τ(t) are set by using (16) and (17).

6.1. Numerical results. Figures 4 and 5 present the results of the numerical simula-
tions. In these simulations, we assume that the master arm is controlled to follow a
step-like trajectory. In Figures 4 and 5, (a) shows the angles of the master arm and the
slave arm; (b) shows the displacement u(t, `) of the tip of the slave arm; (c) shows the
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Figure 4. Numerical simulation results for the proposed bilateral control
system with time delay. (Input: step signal; time delay: TD = 0.1[s].)
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Figure 5. Numerical simulation results for the proposed bilateral control
system with time delay. (Input: step signal; time delay: TD = 0.5[s].)

reaction torque of the master arm τm(t) and the control torque of the slave arm τ(t); and
(d) shows the time derivative of the Lyapunov function V̇ (t). Figure 6 shows the result
for the tip’s displacement u(t, `) with the PD controller.
As seen in Figures 4 and 5, the angle of the flexible slave arm tracks the angle of the

rigid master arm with a constant time delay TD = 0.1 or 0.5 [s]. With respect to the
displacement of the tip of the flexible slave arm, overshoot can be confirmed at t = 2 [s].
However, the vibration of the tip quickly converges to zero due to the effect of the PDS
controller. Thus, the controllers as designed in this paper are suitable for application to
master-slave arms systems (see the lower middle panel of Figures 4 and 5). Furthermore,
in Figure 6, the tip’s displacement vibrates during the simulation regardless of the no
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Figure 6. The result of the simulation with time delay. (Input: step
signal; TD = 0[s]; controller: PD.)

delay. Hence, the effectiveness of the PDS controller is also indicated. However, it is
not clear whether the reaction torque of the master arm τm(t) is practical. Also, the
time derivative of the Lyapunov function V̇ (t) remains negative during the numerical
simulations, ensuring the stability of our bilateral control system.

7. Conclusions. A bilateral control system for flexible master-slave arms controlled over
a communication network was investigated. The flexible arm was modeled as a nonlinear
system, and the communication network was assumed to have a constant time delay.
The stability of the proposed bilateral control system was proved as follows. First, the
candidate Lyapunov function was constructed from the total energy of our FMSA. Then,
controllers which generate the reaction torque of the rigid master arm and the control
torque of the flexible slave arm were derived by taking the time derivative of the candidate
Lyapunov function. Finally, the stability of our bilateral control system was verified by
using the reaction and control torques. The range of the gains of these controllers was set
such that the candidate Lyapunov function became the actual Lyapunov function. From
the viewpoint of the Lyapunov function theory, the stability and passivity of our bilateral
control system were proved under some assumptions. The performance of the proposed
bilateral system was demonstrated through numerical simulations.

By this research, it was confirmed that the flexible arm was accurately controlled
through the communication network having the constant time delay in the numerical
simulations. In the future, we should confirm it by experimental studies. As a result,
the proposed bilateral control system will be very useful to help people who live in the
distance place, when this system will be introduced into general environments.
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Appendix A. Derivation of the Mathematical Model of the Slave Arm. The
mathematical model of the slave arm is derived by using the Hamilton’s principle. The
position vectors of the arm and the tip mass are given by

r(t, x) =

[
x cos θ(t)− u(t, x) sin θ(t)

x sin θ(t) + u(t, x) cos θ(t)

]
(37)

p(t) =

[
` cos θ(t)− ū(t) sin θ(t)

` sin θ(t) + ū(t) cos θ(t)

]
, (38)

where ū(t) = u(t, `). The total kinetic energy T (t) and the position energy U(t) are
defined as follows:

T (t) = T0(t) +

∫ `

0

T̂ (t, x)dx (39)

T0(t) =
1

2
J0θ̇

2(t) +
1

2
m[ṗT (t)ṗ(t)], T̂ (t, x) =

1

2
ρS[ṙT (t, x)ṙ(t, x)] (40)

U(t) =

∫ `

0

Û(t, x)dx, Û(t, x) =
1

2
EI{u′′(t, x)}2, (41)

u, u̇, u′′, u̇′′ and θ̇ are selected as the generalized coordinates. The variation of (39)-(41)
is written as

δT (t) =
∂T0

∂θ̇
δθ̇ +

∂T0

∂ ˙̄u
δ ˙̄u+

∫ `

0

(
∂T̂

∂θ̇
δθ̇ +

∂T̂

∂u̇
δu̇

)
dx (42)

δU(t) =

∫ `

0

∂Û

∂u′′ δu
′′dx. (43)
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The virtual work δW (t) due to nonconservative forces and the dissipation functions F0(t)

and F̂ (t, x) are given by

δW (t) = −∂F0(t)

∂θ̇
δθ −

∫ `

0

∂F̂ (t, x)

∂u̇′′ δu′′dx+ τ(t)δθ (44)

F0(t) =
1

2
µθ̇2(t), F̂ (t, x) =

1

2
cDI {u̇′′(t, x)}2 . (45)

By using the Hamilton’s principle:∫ t2

t1

{δT (t)− δU(t) + δW (t)} dt = 0, (46)

substituting (42)-(45) into (46), we obtain∫ t2

t1

{
− ∂

∂t

(
∂T0

∂θ̇

)
−
∫ `

0

∂

∂t

(
∂T̂

∂θ̇

)
dx− ∂F0

∂θ̇
+τ(t)

}
δθdt

+

∫ t2

t1

∫ `

0

[
− ∂

∂t

(
∂T̂

∂u̇

)
− ∂2

∂x2

(
∂Û

∂u′′

)
− ∂2

∂x2

(
∂F̂

∂u̇′′

)]
δudxdt−

∫ t2

t1

∂

∂t

(
∂T0

∂ ˙̄u

)
δūdt

+

∫ t2

t1

[{
∂

∂x

(
∂Û

∂u′′

)
+

∂

∂x

(
∂F̂

∂u̇′′

)}
δu

]x=`

x=0

dt−
∫ t2

t1

[(
∂Û

∂u′′ +
∂F̂

∂u̇′′

)
δu

]x=`

x=0

dt = 0,

(47)

where

T0(t) =
1

2
J0θ̇

2(t) +
1

2
m

[{
`θ̇(t) + ˙̄u(t)

}2

+
{
ū(t)θ̇(t)

}2
]

(48)

d

dt

(
∂T0

∂θ̇

)
= J0θ̈(t) +m

{
`2θ̈(t) + `¨̄u(t) + 2ū(t) ˙̄u(t)θ̇(t) + ū2(t)θ̈(t)

}
(49)

d

dt

(
∂T0

∂ ˙̄u

)
= m

{
`θ̈(t) + ¨̄u(t)

}
(50)

T̂ (t, x) =
1

2
ρS

[{
xθ̇(t) + u̇(t, x)

}2

+ u2(t, x)θ̇2(t)

]
(51)

d

dt

(
∂T̂

∂θ̇

)
= ρS

{
x2θ̈(t) + xü(t, x) + 2u(t, x)u̇(t, x)θ̇(t) + u2(t, x)θ̈(t)

}
(52)

d

dt

(
∂T̂

∂u̇

)
= ρS

{
xθ̈(t) + ü(t, x)

}
(53)

∂Û

∂u′′ = EIu′′(t, x),
∂

∂x

(
∂Û

∂u′′

)
= EIu′′′(t, x),

∂2

∂x2

(
∂Û

∂u′′

)
= EIu′′′′(t, x) (54)

∂F0

∂θ̇
= µθ̇(t),

∂F̂

∂u̇′′ = cDIu̇
′′(t, x) (55)

∂

∂x

(
∂F̂

∂u̇′′

)
= cDIu̇

′′′(t, x),
∂2

∂x2

(
∂F̂

∂u̇′′

)
= cDIu̇

′′′′(t, x). (56)
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Then, for considering ū(t), we have

ū(t) = u(t, `) =

∫ `

0

u(t, x)δ(x− `)dx (57)

δū(t) = ū(t+∆t)− ū(t)

=

∫ `

0

{u(t+∆t, x)− u(t, x)} δ(x− `)dx =

∫ `

0

δu(t, x)δ(x− `)dx. (58)

Substituting (48)-(56), (58) into (47), we obtain the following dynamics of the slave arm:

J0θ̈(t) + µθ̇(t)− cDI{u̇′′(t, 0)− u̇′′(t, `)} − EI{u′′(t, 0)− u′′(t, `)}

+mū(t){2 ˙̄u(t)θ̇(t) + ū(t)θ̈(t)}+
∫ `

0

ρS{2u(t, x)u′(t, x)θ̇(t) + u2(t, x)θ̈(t)}dx

+

∫ `

0

ρSxu(t, x)θ̇2(t)dx+m`ū(t)θ̇2(t)− τ(t) = 0 (59)

ρSü(t, x) + cDIu̇
′′′′(t, x) + EIu′′′′(t, x) + ρSxθ̈(t) +m{`θ̈(t) + ¨̄u(t)}δ(x− `)

− ρSu(t, x)θ̇2(t)−mū(t)θ̇2(t)δ(x− `) = 0 (60)

B.C. : u(t, 0) = u′(t, 0) = u′(t, `) = u′′′(t, `) = 0. (61)


