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ABSTRACT. Recent research has shown that Brain Machine Interface (BMI) can be used
to assist disabled people in navigating a robotic wheelchair by using voluntary mental
intentions. In this paper, we present a novel adaptive method to improve BMI based
robotic wheelchair navigation. The robot is controlled by an adaptive navigation platform
that provides the user with navigation assistance. The platform is able to detect and
avoid collisions by using a laser range finder sensor. Furthermore, by using computer
vision it can read assistive information (tactile paving for visually impaired people) on the
floor and autonomously navigate the robot. Based on user intentions and environment
context, the robot adaptively switches between assisted and unassisted navigation mode.
Ezxperiment results show that with the assistance of the adaptive navigation platform
the robot navigation improves significantly. Furthermore, the user’s mental workload is
reduced, resulting in a higher BMI classification accuracy.
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1. Introduction. Brain Machine Interface (BMI) has attracted a great deal of research
attention. BMI systems enable humans to communicate with machines by using their
brain activity, which is generally measured by Electroencephalography (EEG) [1]. Non-
invasive BMI consists of EEG signals recorded by electrodes placed on the human scalp.
There exist different methods to establish a non-invasive BMI communication channel [2],
depending on the recorded signals and the brain activity. One commonly used BMI com-
munication channel is based on the detection of spontaneous signals, more precisely event
related synchronization/de-synchronization of brain’s motor rhythms, generated while
performing motor imagery of limb movements [3]. In this method, the user voluntarily
performs motor imagery mental tasks, which are later classified and sent to a computer
or a machine. Other signals used for BMI include non-motor imagery spontaneous signals
and also another class of electrophysiological signals called evoked potentials. Typical
examples of the second class are the steady state visually evoked potentials and the P300
[4,5].

The unique ability to communicate with machines only by brain signals opens a very
wide area of applications for BMI. Recently, different research teams have focused on com-
bining BMI capabilities with assistive technologies, to provide solutions that can benefit
patients with motor disability, when no other means are possible. A detailed review of
BMI applications for improvement of assistive technology is shown in [6].

BMI usage to support human’s motor disability is a very important research field.
A very useful application is the combination of BMI with robotic wheelchairs in order
to provide mobility independence to severely disabled people [7]. Although the idea of
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controlling a wheelchair by using only brain signals sounds very appealing, there are two
BMI aspects that make the task of controlling a wheelchair very challenging. First, it is
the low-bitrate nature of the communication channel. BMI can efficiently classify only up
to three or four mental tasks, which limits the user’s available actions and affects directly
the control performance. Second, the brain signals change from one state of a human to
another and from human to human. This makes generalized models inefficient for mental
task classification which directly affects performance [8].

These aspects have been previously investigated in BMI based control of either real
[9,10] or simulated [2,11] robots. In order to deal with the individuality and the dynamic
nature of brain signals, user’s specific predictive models are commonly acquired prior to
BMI operation [8]. Furthermore, during BMI operation the user is asked to repeat the
same exact mental task many times, which leads to a high mental workload and makes
the whole navigation experience tiring [6].

In other works, the researchers have combined residual motor functions with BMI to
improve control of the wheelchairs. For instance, eye gaze is coupled with EEG based
BMI to control a wheelchair in [12] or eye-blinking is used in [13]. This approach requires
the user’s ability to perform motor functions and also his full control over them. In the
case of fully paralyzed patients this is not possible, and the users must rely only on their
brain signals to control the wheelchair.

To increase bitrate, evoked potential based BMIs are proposed in [14,15]. In both these
cases the user is able to navigate the wheelchair, but in order to generate the required
brain signals the user must be continuously focused on a screen (or LED) where the
external stimuli or cues are presented, which results in users getting tired. Furthermore,
the BMI control is fully synchronized.

The shared control or shared autonomy approach [9,14,16-19] is proposed as an effective
way to deal with the low bitrate nature of BMI. In this approach, the robotic wheelchair
is equipped with different assistive modules to reduce BMI control, based on robot intel-
ligence and environment situation. This has shown to improve the navigation experience,
but the user’s mental workload is still very high due to the continuous focus needed to
steer the robot. Furthermore, modules used to assist navigation require prior specific
environment information (e.g., the goal location, environment map) [9,20]. The semi-
autonomous strategy introduced in [9], reduces user’s mental workload, by autonomously
navigating the robot, only requiring user’s involvement for simple yes or no decisions.
Through this method, the user can relax as he is only involved in the process when a
navigation choice has to be made. On the other hand, the user cannot have full control
on navigation when he would like to have it. He can control the robot only when the
semi-autonomous system allows it. The system is always in charge of the navigation and
the user control over the robot is reduced significantly. Furthermore, prior to navigation
the robotic wheelchair has to be trained in the navigation environment, which makes it
highly environment dependent.

In this paper, an adaptive navigation platform (ANP) for BMI based control of a
robotic wheelchair is considered. The BMI is based on the voluntary motor imagery
signal classification. The ANP uses a camera to read assistive information (tactile paving
for visually impaired people) in order to autonomously navigate the robot and laser range
finder (LFR) data to avoid collision. Furthermore, no prior environment training or
environment information (i.e., goal position, layout map) is used by ANP during robot
navigation. ANP has a modular architecture that allows it to be flexible and scalable
according to different environment and navigation scenarios. The user is able to accept

or reject assistance offered by ANP at any time by only using his brain activity measured
by EEG.
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Experimental results show that ANP based robot navigation reduced significantly the
number of required mental tasks, the navigation time and the number of collisions. In
addition, the user’s mental workload was reduced since no user input was required during
autonomous navigation.

2. Brain Machine Interface. The EEG signals are recorded on scalp using 15 elec-
trodes mounted on an electrode cap (F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4 and T6) as shown in Figure 1, with ear average reference. The electrodes were
connected to the Mitsar-EEG 201 electrode box/amplifier, and collected at 250Hz on PC.

During robot navigation, an online predictive module (OPM) was used to filter, extract
features and classify the EEG signals. The OPM was built from an offline recording
session. During offline sessions, three cues, representing three different motor imagery
mental tasks (left hand, right hand and foot), were shown on the computer screen. The
user was asked to perform the mental task on the cue for 3s. In total, 120 trials (40
per task) were taken offline. The algorithm used to build the BMI classifier offline is as
follows:

1. Epochs were extracted on the 0.5s — 3s window after each cue.

2. Spatio-temporal filters were optimized for feature extraction with spectrally weighted
common spatial pattern CSP method [21-23].

3. Features extracted from the EEG recordings were used to build a classifier based on
linear discriminant analysis.

The classification is in the form of probability distribution over three tasks, thus the
output is defined by the class with the highest probability and can take one of the fol-
lowing values: left, right, forward (foot) and uncertain. A threshold probability (0.48)
is established to define the output. If this threshold value is not achieved by any of the
classes, classification is labeled ‘uncertain’.

3. Robotic Wheelchair Navigation. The diagram of the system (Figure 1(b)) has two
parts: 1) the robot, that includes the wheelchair equipped with AC motors, laser range
finder (LRF) sensor, camera and the user with the EEG acquisition device, 2) the adaptive
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FIGURE 1. (a) BMI based robotic wheelchair system. (b) System diagram.
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(a)

FIGURE 2. Tactile paving used as assistive information: (a) straight line,
(b) cross section.

navigation platform (ANP), which integrates navigation modules and is responsible for
user-robot interaction.

3.1. Navigation modules. Three modules were created to facilitate the robot naviga-
tion:

a) The direct control module (DCM) is used to navigate the robot in a basic turn-by-turn
style. It can turn the robot left, right or continue straight ahead with a constant speed
of 0.5m/s.

b) The collision detection module (CDM) uses LRF data to avoid collision. The target
sensor distance is set to 0.5m. The measuring area is virtually divided in three subareas:
left, forward and right subarea. When an obstacle is detected in any of the subareas
the robot turns in the opposite direction, to avoid it.

¢) The autonomous navigation module (ANM) is used to navigate the robot autono-
mously, based on the assistive information found on the floor. The assistive information
consists of existing tactile paving used for visually impaired people (Figure 2). The
assistive information is classified into assistive lines and decision points. Decision
points are: the intersection areas, in front of elevators, room entrance, etc. The ANM
uses the tactile lines to navigate the robot autonomously. When a decision point is
detected, the robot stops and allows the ANP to ask the user for the next action.

3.2. Adaptive navigation platform. The role of ANP is to adapt navigation based
on the environment context, in order to reduce the user’s mental workload, eliminate
collisions and facilitate robot navigation experience. The ANP integrates the user’s mental
task predictions with the robot sensing information to navigate the robot. A graphical
user interface is used to send inquiries to the user.

In our experiment navigation is done in two different modes:

1) Unassisted mode, where the robot is navigated turn-by-turn using BMI output. The
user fully controls the robot during navigation. Every mental task translates into a robot
moving direction change following Table 1.

2) Assisted control mode, where the robot navigates autonomously following the assis-
tive information. When a decision point is detected the mental task prediction translates
into a direction change as shown in Table 1.
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TABLE 1. Robot orientation change based on OPM output

Robot Orientation Change
OPM output Unassisted control | Assisted (gjontrol
left W+ m/4 follow left line
right Y —m/4 follow right line
foot/uncertain Y +0 follow line ahead

In both modes, the collision detection module is available and it has the highest priority.
The ANP uses the graphical user interface to ask the user to: 1) activate ANM at the
beginning of navigation, 2) select navigation mode and 3) select next direction.

Changing from unassisted to assisted mode can be done only when assistive information
is available. While in unassisted mode, if a tactile line is detected, the user is asked to
switch mode. If declined, the navigation will continue in unassisted mode. Otherwise,
navigation will change to assisted mode and the robot will follow the assistive information.
Mode selection is done using only mental tasks; left hand or foot means “yes” and right
hand or uncertain means “no”; they are decided by the user.

Changing from assisted to unassisted mode can be done when a decision point is de-
tected; the user is asked to switch between modes. When the line is lost (i.e., line is
covered or is not available anymore) or an obstacle is detected during autonomous nav-
igation, the navigation will immediately switch to unassisted mode, without asking the
user.

4. Experiments and Results. The experimental environment (Figure 3) is an office
building floor. During the experiments, if the robot encounters any static object, moving
obstacle or human, the collision detection module is automatically activated.

First, the subject used a pushbutton interface (instead of BMI) to navigate the robot
(around 10min) in order to become familiar with the wheelchair navigation. The task is
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FIGURE 3. Experimental environment
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to navigate the robot from start to the goal (Figure 3). Sessions are approximately two
hours, including cap installation, electrode impedance correction and navigation trials.
Longer sessions cause fatigue and the subject’s focus declines; headache may occur due
to pressure on scalp caused by electrodes.

In order to evaluate the adaptive navigation platform, we conducted the same number
of assisted and unassisted experimental trials in each session. At the beginning of each
trial, the subject was able to select ANP assistance by using BMI. The trials’ sequence
was evenly distributed over the three sessions with random control modes.
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4.1. Brain machine interface results. For every pair of mental tasks, spatial-temporal
patterns (filters) corresponding to the three biggest/smallest eigenvalues were optimized
(Figure 4). Then, the linear classifier was trained with filtered signals. Pattern optimiza-
tion and classifier training were done simultaneously.

The mean BMI online classification accuracy results are shown in Figure 5. The BMI
accuracy during assisted navigation trials is higher compared to unassisted navigation
trials. Although there is no direct correlation between BMI classification algorithm and
ANP, the results show that in assisted navigation the classification rate is higher than
in unassisted navigation. This is because the mental tasks performed during assisted
navigation are less than those performed during unassisted navigation; the subject can
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FIGURE 6. Assistive information extraction: (a) tactile paving line, (b)
decision point

TABLE 2. Robot navigation results

Mental Detected
Mode Sessions | predictions | collisions
mean | std | mean | std | mean | std
31.3 | 7.1 | 16.0 | 5.3 | 298.2 | 61.9
30.7 | 3.2 | 9.7 |3.1] 262.6 | 29.4
173 | 3.5 ] 5.3 | 3.8 | 157.8 | 24.9
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relax longer between mental tasks during assisted navigation which results in improved
BMI accuracy.

4.2. Navigation results. The camera input was processed online to extract assistive
information (Figure 6). The online navigation results are summarized in Table 2. In
total, 18 trails (9 assisted and 9 unassisted) were performed. The navigation performance
metrics are: 1) the number of mental tasks or BMI predictions, 2) the navigation time,
3) the number of collisions detected.

Robot e’

Trajectory \

Ll 1=

S A

BmMmI
prediction
(double)

Robot N

Trajectory AN

L 11 C Detected
m ‘ﬂ Collision
- | ‘\
ey aa——
S
BMI
prediction
(single)

(b)

FIGURE 7. A navigation trial conducted in (a) assisted mode (b) unassisted mode
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The assisted mode outperformed unassisted mode in all three metrics (Table 2). The
average number of mental tasks was reduced by more than 34%, the navigation time
decreased by more than 14% and the number of collisions was reduced by more than
77%. This shows that ANP with assistive information improves the navigation quality
significantly by navigating the robot on a good trajectory and avoiding collision.

Figure 7(a) shows the robot navigation in assisted mode. The navigation started in
unassisted mode and after the first mental task the camera detected the tactile paving.
The subject switched to assisted mode at point ‘S’. In total there are two mental tasks
(double MI task) at the same place. At the first decision point (A), the robot stopped
and the subject was asked again to switch control mode. Assisted control was selected
again. Immediately after, the movement direction was asked and forward direction was
selected (double MI task again). Following navigation according to the dotted line, the
robot arrived at the goal location ‘G’.

Figure 7(b) shows the robot navigation route in a trial conducted only in unassisted
mode. In this trial, we have only one mental task at each location since the subject was
never asked to switch mode. During this trial, a collision was detected at ‘C1” and avoided
utilizing the collision detection module.

5. Conclusions. The paper proposed an adaptive platform for the BMI navigation of a
robotic wheelchair. The advantages of the proposed platform were proved experimentally.
It was found that by using the ANP, the number of mental tasks, the number of collisions
and the navigation time improved significantly. Furthermore, the BMI classification ac-
curacy was improved in assisted navigation. In addition, the navigation performance was
improved considerably when the users gained experience.

The navigation assistance used in our method is not restrictive thus the user is able to
reject it, and directly control the robot. In our approach, the assistive information helps
to autonomously navigate the robot without any prior training.
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