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Abstract. The basic design supposition for digital signatures in the cryptology domain
is that the attacking and victimized computers have comparable resources. The opera-
tion of electronic commerce is based on this assumption, but the advent of accumulated
networked resources and the changing computing landscape have elevated this risk. How-
ever, if an attacker has powerful computing capabilities compared with the victim, the
attacker will, in given time, crack his password and gain the ability to fraudulently use
the victim’s identity. To avoid this threat, this study presents a plan that is based on
the complexity of the fail-stop signature (FSS) scheme and the discrete logarithm and
factorization of 2 mathematical problems of the digital signature algorithm. The scheme
can be implemented in e-commerce information security environments and provides the
user with the possibility of preventing attacks and enhancing system safety. This fail-stop
scheme can assert a victim’s innocence without exposing the n = p× q secret and guards
against malicious behavior.
Keywords: Digital signature, Fail-stop signature scheme, Dual complexities, E-commer-
ce, Cryptology

1. Introduction. The application of modern cryptology is pervasive in such areas as
the military, business, science, and technology. For example, in electronic commerce,
digital signatures are used in business for contracts and acquisitions, commercial trade,
transactions, and document transmissions. They are also applied in business models for
network banking and online shopping. Thus, cryptology is a cornerstone of technology.
Today, the rise in network applications, accompanied by rampant Internet crime, has
increased the value of cryptology. A longstanding tenet of cryptology states that the
strength of a password is based on the time that it can withstand guesses. When the
resources of an attacker and victim are comparable, a longer password increases the
calculation time to bypass [1].

The basis of traditional digital signatures generally assumes that the attacker and victim
have the same level of computing resources. In reality, the popularity of maliciously
applied distributed computing (e.g., botnets) has given attackers access to many more
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resources than electronic commerce environments, allowing resource-rich malicious groups
to attack and gain access to a system and masquerade as legitimate users for illicit financial
or commercial gain. This lapse in security affects the victim’s finances, causes irreparable
damage to his reputation with regard to credit rating, and affects the overall system
that was attacked. The impact and loss of the attack are extensive and difficult to
estimate [11,12]. Currently, a victim must prove his innocence, and the system’s owner
must ensure its security and that user rights are unaffected – only then can a business
resume normal activities. To protect against this type of attack, fail-stop signature (FSS)
has been proposed [16]. An FSS protects a signer against a forger with even unlimited
computational power, because the likelihood of determining the signer’s private key in
the FSS is negligible [25]. The research on FSS has been extensive [3,6,10,19,20-26].
This study focused on FSS schemes in which the underlying issue is related to problems

regarding integer factorization and the discrete logarithm. In [3], FSS schemes existed
only if the computing discrete logarithms or factoring large integers were hard. In [17], an
efficient FSS scheme was proposed to protect clients in an online payment system. In [27],
an efficient FSS scheme based on discrete logarithm is presented. In [28], FSS schemes
using schemes “bundling homomorphism” is proposed. In [23], Susilo et al. proposed
a new and efficient FSS scheme. In 2004, Schmidt-Samoa proposed an improvement of
Susilo et al.’s work [23] based on the difficulty of factorization [21]. This method can
prove the innocence of the victims, but also expose the secret n = p × q requiring the
whole system to rebuild or replace the system parameters in order to continue operating
properly and securely [2,23]. In this report, we developed a method to prove a victim’s
innocence while safeguarding the n = p × q secret. In addition, this method can also
thwart denial-of-service attacks. To this end, we propose a plan that is based on the
complexity of the fail-stop scheme, which is built on a solution of the discrete logarithm
and factorization problems in the digital signature algorithm.
The paper is organized as follows. The background of digital signature schemes is

introduced in Section 2. Section 3 overviews the FSS. Section 4 presents a novel FSS
scheme and demonstrates that it is an instance of the general construction. Section
5 provides a complete proof and analysis of the scheme’s security. In Section 6, the
corresponding computation of this scheme is discussed, and we compare our scheme and
existing schemes. Finally, Section 7 concludes the paper.

2. Digital Signatures Based on One Assumption. The digital signature scheme
is one of the most important technological applications in modern cryptography and
information security. After many years of evolution, digital signature technologies have
matured and been used widely in electronic commerce. Digital signature algorithms are
categorized according to their secure assumptions: One group comprises digital signature
schemes that are based on discrete logarithm problems, and the other group consists of
digital signatures that are based on the factorization problem. The chief characteristics
of digital signatures are as follows [4,5,7,8,13]:

(1) Authenticity: Determining the source of legality of the information, i.e., that the
information has been sent by the sender rather than a forgery or recycled old messages.

(2) Integrity: Ensuring that the information has not been altered intentionally or unin-
tentionally or replaced with new or deleted text.

(3) Nonrepudiation: After sending messages, the sender is undeniable that information
of transference.

2.1. Digital signature based on discrete logarithm. The earliest digital signature
scheme that was based on the discrete logarithm was proposed by El Gamal [9] in 1985.
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The detailed scheme is described as follows [9].
ElGamal Signature Scheme
• Key Generation Phase

(1) The signer B chooses a large prime number p and a number g such that g is a
primitive element of GF (p). Then, the signer B publishes the 2 numbers p and g.

(2) Signer’s Keys:
(a) Private Keys: x ∈ Z∗

p

(b) Public Keys: y ≡ gx mod p
• Signature Generation Phase

Input m (1 5 m 5 p− 1), which is the message that is to be signed.
(1) The signer B chooses a random integer k with gcd(k, p− 1) = 1.
(2) Then, r ≡ gk mod p is computed, where r ∈ (1, p).
(3) The signer B computes s such that m ≡ xr + ks mod p − 1 (or s ≡ k−1(m − xr)

mod p− 1).
Return (r, s), which is the signature for the message m that is signed by the signer B.

• Signature Verification Phase
To verify that (r, s) is a valid signature of the message m, the verifier A can check the

congruence gm ≡ yr · rs mod p. If it holds, then (r, s) is a valid signature of the message
m, and the scheme returns 1. Otherwise, it returns 0. Note that gm ≡ gxr+ks ≡ gxr ·gks ≡
(gx)r ·

(
gk
)s ≡ yr · rs mod p.

• Cryptanalysis
(1) The ElGamal signature scheme claims that its security is based on the discrete

logarithm problem. If this problem can be solved trivially, the attacker C will compute
the private key x by y and g. Then, the signature scheme is broken.

(2) If the attacker C wants to forge a legal signature, he chooses r (or s) and calculates
s (or r) to comply with the equation gm ≡ yr · rs mod p. The attacker C will encounter
the discrete logarithm problem.

(3) If the attacker C has obtained the signature of plaintext m and (r, s), he will want
to calculate x from Equation (1). However, Equation (1) has 2 unknown values, x and k;
thus, C is unable to calculate x.

(4) The attacker C can forge a legal signature (r, s) from message m, but m cannot be
fixed in advance.

2.2. Digital signature based on factoring. The earliest digital signature scheme that
was based on the factoring problem was proposed by Rivest et al. [18] in 1978. The RSA
scheme can be used in public key encryption and digital signatures. The security of the
RSA signature scheme is based on the problem of solving the factoring of large numbers
[7]. The detailed scheme is described as follows.
RSA Signature Scheme [7]
• Key Setup Phase

The key setup procedure is the same as that for RSA cryptosystems.
(1) The signer B computes n = pq, with p and q being 2 large roughly equal prime

numbers size.
(2) The signer B randomly chooses an integer e such that gcd(e, ø(n)) = 1, where

ø(n) = (p− 1)(q − 1).
(3) The signer B finds an integer d such that ed ≡ 1 mod ø(n) (i.e., d ≡ e−1 mod ø(n)).
[Note: Sometimes, we let d ≡ e−1 mod lcm(p− 1, q − 1).]

(4) The signer B’s keys:
(a) Private Keys: d, p, and q.
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(b) Public Keys: e and n.
• Signature Generation Phase
(1) Input m, which is the message that is to be signed.
(2) To create a signature of message m, the signer B computes the value S such that

S ≡ md mod n.
• Signature Verification Phase
To verify that S is a valid signature of the message m, the verifier A can simply check

the following congruence: Se ≡ m mod n. If it holds, then S is a valid signature of the
message m.
• Cryptanalysis
The security of RSA is based on the difficulty of the factorization.

3. Preliminaries. In this section, we briefly review the theory and requirements of FSS
and refer the reader to [6,10,21,23,24] for a more complete account.

3.1. Notations. The length of a number n is a positive integer, and |n| 2 denotes the
bit-length of n. p| q means p divides q. Zn means the ring of integers modulo a number
n. Z∗

n is Zn’s multiplicative group, which includes only the integers that are relatively
prime to n.

3.2. Review of FSS schemes.
Prekey generation
A recipient, C, chooses 2 large safe prime numbers p and q. Then, C finds a large prime

p1, such that a factor of p1−1 is the product of 2 large primes p and q, i.e., n|p1 − 1 and
n = pq. Finally, C selects an element g whose order modulo p1 is p that satisfies:

g
1
2
p ≡ −1(mod p1) (1)

The public and secret keys of the trusted center are given by (p1, g, n) and (p, q), respec-
tively [4,15].
Key Generation
The signer A chooses 2 integers x1, x2 ∈ zn and calculates:

yi ≡ gxi(mod p1), 1 ≤ i ≤ 2 (2)

The signer A uses {y1, y2} in a trusted center. Thus, the public key is (yi), and the private
key is (xi) from 1 ≤ i ≤ 2.
Algorithm for signing a message m
Suppose the signer A wants to sign a message m to receiver B. A computes:

m1 ≡ mx1 + x2(mod n) (3)

Then, the signer A produces {m1} as a signature of message m.
Algorithm for verifying the signature
The receiver B confirms the validity of the signature {m1} by testing whether the

following equation holds:
gm1 ≡ ym1 y2(mod p1) (4)

If the algorithm that generates the parameters, keys, and signing messages is successful,
then the confirmation of the signature in the signature verification algorithm is the same.
Proof of Forgery
Assume that receiver B uses the signature {m2}, which is an acceptable signature

on m that signer A wants to forge. To do so, signer A calculates his own signature
m1 ≡ mx1 + x2(mod n) and GCD(m,−m2, n), and GCD(a1, a2). GCD(a1, a2) means
that two numbers a1 and a2 of the greatest common factor. Then, the composite number
n could be factorized by the signer A. Therefore, the signature {m2} is proof of forgery.
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3.3. Schmidt-Samoa attack. Schmidt-Samoa proposed an attack mode in 2004 [21]
as follows. Assume that an attacker E, who received signer A’s signature, and per the
method of producing {m,m1}, chooses an integer x′

1 ∈ zn and calculates:

y1 ≡ gx
′
1(mod p1) (5)

and E chooses another integer x′
2 that satisfies:

m1 ≡ mx′
1 + x′

2(mod n) (6)

Then, E selects an integer t ∈ z∗n and calculates:

s0 ≡ (m1 + tp)x′
1 + x′

2(mod p) (7)

s0 ≡ (m1 + tp)x′
1 + x′

2(mod q) (8)

Using the Chinese remainder theorem (CRT), m0 can be calculated, and the attacker
E can send the forged messages: m0 ≡ (m1+ tp(mod n)). In addition, the attacker E can
send the same digital signature s0 with signer A. To resolve these weaknesses of Susilo
et al.’s scheme [23], Schmidt-Samoa proposed another model, in which n = p2q. If the
reader is interested, specifics are provided in [21].

4. The Proposed Scheme. In this section, we introduce a novel fail-stop scheme that
is based on a discrete logarithm and factorization difficulties and also show that it is an
instance of the general construction. In this scheme, the recipient C generates public and
secret keys, as in the previous section. In addition, C selects an element g1 whose order
modulo p1 is n that satisfies:

g
n
2
1 ≡ −1(mod p1) (9)

(g1) also is a public key.
Key Generation

This step is the same as above. The signer A chooses 2 integers x1, x2 ∈ zn and
calculates:

yi ≡ gxi(mod p1), 1 ≤ i ≤ 2 (10)

Signer A uses {y1, y2} in a trusted center. Thus, the public key is (yi) and the private key
is (xi) from 1 ≤ i ≤ 2.
Algorithm for signing a message m

Suppose the signer A wants to sign a message m to receiver B. The calculations are as
follows:

(1) Calculations

a ≡ (m)x1 + x2(mod n) (11)

s1 ≡ ga(mod p1) (12)

s2 ≡ ga1(mod p1) (13)

(2) The signer A chooses 3 integers ki ∈ z∗m, 1 ≤ i ≤ 3 and calculates:

r1 ≡ gk1(mod p1) (14)

r2 ≡ gk21 (mod p1) (15)

s1 ≡ ar1 + k1b1(mod n) (16)

s2 ≡ ar2 + k2b2(mod n) (17)

r2s1 ≡ ar1r2 + k1b1r2(mod n) (18)

r1s2 ≡ ar1r2 + k2b2r1(mod n) (19)
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Let

r2s1 + r1s2 ≡ s3(mod n) (20)

s3 ≡ a(2r1r2) + (k1b1r2 + k2b2r)(mod n) (21)

(3) Then, signer A sends {ri, bi, sj} to receiver B (1 ≤ i ≤ 3, 1 ≤ j ≤ 2).
Algorithm for verifying the signature
B receives {ri, bi, sj} and then tests the following equations to determine whether they

hold:

s1 ≡ y
(m2+1)
1 y2(mod p1) (22)

gs1 ≡ sr11 rb11 (mod p1) (23)

gs21 ≡ sr22 rb22 (mod p1) (24)

If the equations above are established, the message is accepted; otherwise, it is rejected.
Proof of Forgery
Assume that receiver B uses the message {r′i, b′i, s′j} (1 ≤ i ≤ 3, 1 ≤ j ≤ 2), which is an

acceptable signature on m that signer A wants to forge. Therefore, signer A calculates
the steps of the signature stage, and receiver B calculates the steps of the verification
stage. Between both probabilities is (1 − q−1), and s1 6= s′2(mod n); thus, the innocent
signer A can be restored. The operational processes are shown in Figure 1 and Figure 2.
Figure 1 shows that receiver B uses Equation (4) to verify the message m in the tra-

ditional proof-of-forgery phase. Figure 2 shows receiver B using Equations (22)-(24) to
verify the message m in the new proof-of-forgery phase.

Figure 1. Traditional operational processes
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Figure 2. The proposed scheme’s operational processes

5. Proof of Security.

Lemma 5.1. a ≡ b(mod m) and d|m, d > 0. ⇒ a ≡ b(mod d).
We usually apply the concept of congruencies, which is a special type of relation in

cryptography, instead of equality. The definition of congruence is as follows. Please refer
to the proof (5) of Definition 5.1 [15].

Definition 5.1. [15] Let a, b, c, d denote integers. Then:
(1) a ≡ b(mod m), b ≡ a(mod m) and a− b ≡ 0(mod m) are equivalent statements.
(2) If a ≡ b(mod m) and b ≡ c(mod m), then a ≡ c(mod m).
(3) If a ≡ b(mod m) and c ≡ d(mod m), then a+ c ≡ b+ d(mod m).
(4) If a ≡ b(mod m) and c ≡ d(mod m), then ac ≡ bd(mod m).
(5) If a ≡ b(mod m) and d |m , d > 0, then a ≡ b(mod d).
(6) If a ≡ b(mod m) then ac ≡ bc(mod mc) for c > 0.

Lemma 5.2. Assume that there are 3 integers wl ∈ z∗m (1 ≤ l ≤ 3), where the numbers
of wi and wj are known and the number of wk is unknown and satisfies the following
equations:

wi 6= wj(mod n) (25)

t1 ≡ gw1(mod p1) (26)

t2 ≡ gw2
1 (mod p1) (27)

t1t2 ≡ (gg1)
w3(mod p1) (28)

⇒ (1) wk 6= wi(mod n) (29)

(2) wk 6= wj(mod n) (30)

(3) To solve the complexity that wk is equal to is at least solving the discrete logarithm
problem with the same complexity.
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Proof:
Case (1)
For k = 3, w3 is unknown and w1 and w2 are known numbers. Thus, we have the

following relationships:

t1 ≡ gw1(mod p)

t2 ≡ gw2
1 (mod p)

t1t2 ≡ (gg1)
w3(mod p)

The 3 equations above are based on Equations (26)-(28), and Lemma 5.1. If Proof (1)
is invalid, i.e., for i = 1, w3 = w1(mod n). For i = 2, the discussion is similar and is
omitted.
Then,

t1t2 ≡ (gg1)
w1(mod p)

≡ gw1
1 gw2

2 (mod p)

6= t1g
w2
2 (mod p)

on the basis of Equations (25) and (26); thus, t1t2 6= t1t2(mod p), based on Equation (27).
By the law of contradiction [15], Proof (1) is valid. For the same reason, Proof (2)

can be obtained. Proof (3) is a discrete logarithm problem. The attacker has to solve
the factorization problem of the composite number [14,19]. Thus, the proposed scheme’s
conclusion is valid. The proofs of Cases (2) and (3) for k = 2 and k = 1, respectively, are
similar and omitted.

Lemma 5.3. Equation (23) is true.

Proof: gs1 ≡ gar1gk1b1(mod p1), based on Equation (16), and Lemma 5.1, gs1 ≡
sr11 rb11 (mod p1), based on Equations (12) and (14). Thus, this lemma has been proved.
The proof of Equations (22) and (24) is similar to that of Equation (23) and is omitted.

6. Discussion.

Theorem 6.1. The probability of s2 6= s′2(mod n) is (1− 1
q
).

Proof: From Lemmas 5.2 and 5.3, we know that signer A has the same value a in
signing a message m and that attacker E has the same value a′ in signing a message m.
From [23], we know that a′ ≡ a+ lp(mod n), (0 ≤ l < q − 1) and that the probability of
a′ ≡ a(mod n) is 1

q
. According to Equation (13), the probability of s2 is equal to s′2 and

is 1
q
. Thus, Theorem 6.1 is proven.

From the discussion above, in [6,10,21,23,24], there are proofs that the algorithms are
secure for the signer. However, assuming that attacker E intercepts s2 from signer A,
based on Equation (13) in the proof-of-forgery stage, the attacker E can calculate the
value of a. If the signer A does not change the private key {(x1) or (x2)} or public key
{(y1) or (y2)} after the proof-of-forgery stage, then A is going to send message m to the
receiver B and calculates:

a1 ≡ (m)x1 + x2(mod n) (31)

s2
′′′ ≡ ga11 (mod p1) (32)

From Equations (31), (32), and (11), the attacker E can calculate the values of {x1, x2}.
Then, attacker E can intercept the correlation data from Equation (3) in [21,23] and
send any forged message m2 to any receiver B′. In the future, signer A will be unable to
establish his innocence. Establishing a situation in which signer A does not need to replace
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his private and public keys in the proof-of-forgery stage after restoring his innocence is
the chief proposal of this paper.
A comparison

Table 1 compares the 3 FSS schemes. Due to the interactions between parameters, a
general evaluation was difficult to perform. To explain the computational complexity, we
define certain operation symbols as follows:

σ: related to the signer’s security
k: related to the recipient’s security
K: max(k, σ)

Ḱ: Ḱ ≈ 2K

Table 1. Comparison of computational and efficiency parameters

Susilo et al.’s Schmidt-Samoa’s Proposed
scheme [23] scheme [21] Scheme

PK (mult) 4K k 4K
Sign (mult) 1 ρ = max(σ, k/3) 2
Test (mult) 4K 4ρ = max(4σ, 4k/3) 3K
Length of PK 2 6ρ = max(6σ, 2k) 2
Length of SK 4K 6ρ = max(6σ, 2k) 4K

Length of a signature 2K 3ρ = max(3σ, k) 2K
Underlying hard problem DL & Factoring Factoring DL & Factoring

Although, the proposed scheme performs as well as the FSS scheme of [23], the security
of our scheme is higher.

7. Conclusion. We have proposed a novel plan, based on the complexity of the fail-stop
scheme, which is built on a solution to the discrete logarithm and factorization problems
in digital signature algorithms. This fail-stop scheme will not expose the n = p × q
secret and proves the victim’s innocence, guarding against malicious behavior and denial-
of-service attacks. In the networked space, electronic commerce activities are frequent,
for which existing protection mechanisms must be improved and secure environments
established. The proposed scheme provides a degree of support in maintaining signatures
for e-commerce transactions.
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