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ABSTRACT. In automatic collision avoidance systems, the ability to detect obstacles is
important. This paper proposes a method of automatic obstacles detection employing a
camera mounted on a vehicle. Although various methods of obstacles detection have al-
ready been reported, they normally detect moving objects such as pedestrians and bicycles.
In this paper, a method is proposed for detecting obstacles on a road, even if they are
moving or static, by the use of background modeling and road region classification. Back-
ground modeling is often used to detect moving objects when a camera is static. In this
paper, we apply it to a moving camera case in order to obtain foreground images. Then
we calculate the camera motion parameters using the correspondence of feature points be-
tween two consecutive images and detect the road region using motion compensation. In
this road region, we carry out regional classification. We can delete all objects which are
not obstacles in the foreground images based on the result of the regional classification.
In the performed experiments, it is shown that the proposed method is able to extract the
shape of both static and moving obstacles in a frontal view from a car.

Keywords: GMM, Motion compensation, Obstacles detection, Road region detection,
Car vision

1. Introduction. Vehicle has brought great convenience to people’s lives as one of the
main tools of transport in modern society. However, because of the substantial increase
of the vehicles in recent years, the phenomenon of traffic congestion has become more and
more serious, and the traffic pollution and accidents have caused social general attention.
To solve these difficulties, the autonomous collision avoidance systems have been develop-
ing rapidly in recent years. These systems are designed to warn the drivers the presence of
obstacles on the road and help them take a necessary action in advance. Among these sys-
tems, a vision-based obstacles detection system is the mainstream of current researchers.
Segmentation of obstacles in video sequences is a basic task in this system. Accurate
obstacles segmentation will improve the performance of obstacles tracking, recognition,
classification and motion analysis.

ey
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Based on the definition of the obstacles, the existing obstacles detection methods can
be separated into the following categories [1]: (i) The method based on optical flow [2,3].
This method is sensitive to vehicle motion, and it fails when obstacles have small or null
speeds. In addition, it cannot detect static obstacles, and it can only be used to detect
moving obstacles. (ii) The method based on features. This method is often used when
the obstacles are defined as a specific kind of objects. It is often used to detect vehicles
or pedestrians. Because these obstacles have some specific and obvious features, this
detection can be based on searching for these features, such as shape [4,5] and symmetry
[6]. (iii) The method based on stereo vision [7,8]. Scene images are captured using
two or more cameras from different angles simultaneously, and then the obstacles are
detected through matching. This method requires a great deal of time in order to make
the necessary calculation.

These existing methods described above have some inadequacies. In the first place,
although the third method uses two or more cameras, it is generally accepted that the
method which uses a monocular camera is much better because of economic aspect and of
processing time. Actually the method using a monocular camera is easier to achieve real-
time processing, since it does not have to find correspondence among camera images. In
the second place, unlike the first method which detects only moving obstacles, a method
which can detect both moving and static objects simultaneously is necessary. It is because
static objects such as boxes fallen on the road from a car are also dangerous for drivers. In
the third place, most of the existing methods cannot extract the shape of obstacles. They
only use a rectangular frame that surrounds an obstacle to represent a detected obstacle.
However, this shape information is important for obstacles recognition and classification.
If the detected obstacles are judged as a pedestrian, for example, we can recognize his/her
motion and may predict his/her next action, if necessary.

In this paper, we propose an obstacles detection method using a vehicle-mounted
monocular camera. This camera records the road environment in front of a vehicle when
the vehicle is moving, and the computer deals with these captured images to realize ob-
stacles detection. The output of this method is the shape of obstacles. After getting the
obstacles information, the drivers can react quickly and make the corresponding actions
accurately to prevent car accidents. In this paper, obstacles are defined as objects which
protrude from the ground plane, such as pedestrians, vehicles and other 3-D objects on
the road (including static and moving objects). Road marks in the road region (e.g., zebra
crossings) and objects outside the road region are considered as incorrect obstacles.

When a car is moving forward, stationary objects in a frontal scene are considered as the
background, and the foreground can be obtained based on the background model. Because
the road has almost no texture, the road can be considered to be static in the frontal video
image. In this condition, the foreground image which is obtained from the background
model contains the shape of the obstacles and the edges of moving buildings. In order
to extract the shape of the obstacles in the foreground image, the following operations
are employed. First, calculation of the camera motion parameters is performed using the
correspondence of feature points between two consecutive images, i.e., time ¢ image and
time t + 1 image. Second, time ¢ image is warped using camera motion parameters, and
it is compared with time ¢ + 1 image. Then the similar region in these two images is
considered as the road region. Third, non-road region in the result of the road region
detection is classified as noise region and obstacles region. After the region classification,
we have three kinds of regions, noise region, obstacles region and road region. Finally, all
objects inside the noise region in the foreground image are considered as noises and can
be deleted using the noise region. Road marks in the foreground image are considered as
incorrect obstacles inside the road region and can be deleted using the road region. The
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shape of the obstacles (e.g., pedestrians) in the foreground image is extracted using the
obstacles region.

The advantages of the proposed method over the existing obstacles detection methods
are that the proposed method employs a monocular camera to detect both static and
moving obstacles on the road, and that it outputs the shape of an obstacle and not a
rectangular frame containing the detected obstacle. It should be added that the proposed
method can be applied for speed up to 40 km/h which is usually the speed limit within
a city.

2. Outline of the Proposed Method. Outline of the proposed method is given in the
following: Given a video image sequence taken by a moving camera, in Section 3, in order
to obtain the shape of obstacles, we employ Gaussian Mixture Model for reconstructing
the background and getting the corresponding foreground images. The obstacles are to be
included in the foreground images. Because some obstacles outside the road region and
noises are also included in the foreground images, we calculate camera motion parameters
in Section 4, and then detect the road region using these camera motion parameters
in Section 5 to delete these incorrect obstacles and noises. Section 6 describes region
classification using the result of road region detection and extraction of obstacles on the
road. Experimental procedures are shown in Section 7 and the results are evaluated in
Section 8. Finally, the paper is concluded in Section 9. The flow of the proposed method
is shown in Figure 1.
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FI1GUrE 1. Flowchart of the proposed method
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3. Background Modeling. In this section, we employ a Gaussian Mixture Model (GM
M) in reconstructing the background from a video image sequence taken by a moving
camera. Using this background model, we get the foreground images.

Detecting obstacles in a video image sequence is an important problem in computer
vision, with applications to several fields, such as video surveillance and target tracking.
A typical method of detecting obstacles is background modeling, by which we can get the
shape of an object directly [9]. Numerous approaches concerning this problem differ in
the type of used background models and the procedure used to update the model. There
are two kinds of background modeling methods: non-adaptive methods and adaptive
methods. Most researches have abandoned non-adaptive methods because of the need
of manual initialization. A standard method of adaptive modeling is Gaussian Mixture
Model (GMM) [10] because GMM is robust to illumination change. The GMM models the
gray value of each pixel on an image by a mixture of K Gaussian distributions. Different
Gaussian distributions in the mixture represent different pixel values. The background
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models are determined by the parameters of these Gaussian distributions. Then we regard
those pixels which do not match the background distributions as foreground pixels. In
order to deal with illumination change, the mixture models are updated frame by frame.

The GMM was always employed in a fixed camera case. However, in this research, since
a camera is mounted on a vehicle, when the vehicle is moving on the road, the camera is
as well moving. In order to employ GMM in a moving camera case, we need to construct
a virtual scene using the realistic scene. In this virtual scene, the camera is regarded as
static. Then we employ the GMM in this virtual scene in reconstructing the background.

3.1. Virtual scene construction. In this research, since a camera is mounted on a
vehicle, when the vehicle is moving, the camera is moving as well. This is the realistic
situation. However, when we see the frontal scene in the frontal video image, the camera
can be considered to be static, and then buildings, the road and static objects are moving
according to the relative motion. Moreover, since the road has almost no texture, we can
assume that the road is static in the frontal video image. Thus, the virtual scene will be
defined as the frontal scene (in the videotaped image) with the assumption of the road
being static. In this virtual scene, the camera is static; the road area which is classified as
the background is static; objects (including static and moving objects) and pedestrians on
the road, buildings, road marks and zebra crossings which are classified as the foreground
are moving. Then we employ the GMM to reconstruct the background in this moving
camera case.

4. Ego-Motion Estimation. In order to detect the road regions, first we need to calcu-
late the camera motion parameters, we also call it ego-motion estimation. Accurate esti-
mation of the ego-motion of the vehicle relative to the road is important for autonomous
driving and computer vision based on driving assistance. In this section, we will describe
a robust method of computing the ego-motion of the vehicle relative to the road. In this
method, two consecutive images are used at any time, i.e., the image [; taken at time ¢
and the image [, taken at time ¢ + 1.

4.1. Feature points detection. In the image I;, we detect feature points m; using
Harris corner detector [11], then detect the corresponding points myy in the image I;
using Lucas-Kanade method [12]. Next we use RANSAC [13] to delete outliers among
these point pairs. Now we get a number of point pairs my; <> my .

4.2. Fundamental matrix. The fundamental matrix F'is a unique 3*3 rank 2 homoge-
neous matrix which satisfies

mT, Fm;, =0 (1)

for all point pairs m; <> m;,1. In this paper, we use the 8-point algorithm [14] to calculate
the fundamental matrix.

The key to success with the 8-point algorithm is proper careful normalization of the
input data before constructing the equations to solve. In the case of the 8-points algorithm,
the suggested normalization is translation and scaling of each image so that the centroid
of the reference points is at the origin of the coordinates and the distance of the points
from the origin is equal to or less than /2.

4.3. Camera motion parameters. The camera motion parameters consist of a 3*3 ro-
tation matrix R and a 3*1 translation matrix 7. The relationship between the fundamental
and essential matrices is

FE=K'FK (2)
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Here, K is a camera inner parameters matrix, and F is an essential matrix.
The essential matrix can be represented by motion parameters of a camera between
two images, the rotation matrix R and the translation 7.

E=[TxR (3)
Here
0 —tz ty
Tlx = | tz 0 —ix (4)
—ty ix 0

is the corresponding skew-symmetric matrix of the translation 7.
By applying the singular value decomposition to the matrix £, we can calculate the
rotation matrix R and the translation 7.

5. Road Region Detection. Because the camera is moving, the foreground which is
obtained from the background modeling often contains a lot of noises. These noises are
caused by the objects outside the road region. In order to delete these noises, we need to
detect the road region. In this section, we detect a road region using the method based
on motion compensation. This method uses two consecutive image frames, and warps
the first image according to the geometrical relationship between two consecutive images.
This geometrical relationship is expressed by the camera motion parameters. Then the
road region is extracted by comparing the warped image with the second image.

We assume all the 3-D points in the world coordinate system which correspond to the
pixels in the first image are on the road plane. Using the camera motion parameters
and epipolar geometry, we can warp the first image and get the warped image. Then we
compare the second image (real image) and warped image (virtual image). The differences
between these two images are caused by the 3-D points which are not on the road plane.
So a similar region in these two images is regarded as a road region.

5.1. Motion compensation. In this road region detection, two consecutive images are
used at any time, i.e., the image [; taken at time ¢ and I, taken at time ¢ + 1 are used
to estimate the road region at time £ + 1. Because a camera is moving in this research,
the camera is in different locations in these two moments. The camera locations and
coordinates at time ¢ and ¢ + 1 are shown in Figure 2. Here, two blue points are camera
lens at time ¢ and time ¢ + 1, respectively; (X;, Y, Z;) and (X1 1, Y1, Ziy1) are camera
coordinates at time ¢ and time ¢ + 1, respectively; (X, Y, Zw) is the world coordinate
which coincides with the camera coordinate at time £ M is a 3-D point in the world
coordinate system: m; and m;,; are the 2-D points in the virtual image planes which
correspond to the 3-D point M: Matrix R and matrix 7 are camera motion parameters
from time ¢ to time ¢t + 1 which have been calculated by the method explained in Section
4.

Virtual M Virtual

image plane image plane

Camera Camera

lens v~ / lens

Time ¢ X, Time 7+1

FIiGURE 2. Camera locations and coordinates



722 S. QIAN, J. K. TAN, H. KIM ET AL.

A projection equation indicates the relationship between 2-D points in the image plane
and 3-D points in the world coordinate system. Projection equations at time ¢ and time
t+ 1 are given by

Amy = K[I 0]X (5)
Amys = K[R T|X (6)

Here m; and my,, are the 2-D points in the virtual image planes which correspond to the
3-D point M. X is the coordinate of M in the world coordinate system. Matrices R and T
are camera motion parameters from time ¢ to time ¢+ 1. A is a constant. K is the camera
internal parameters matrix, which can be obtained from camera calibration.

Equations (5) and (6) can be rewritten in terms of the known coordinates m; and m;4
as follows:

-Ut-l kll klg k13 -1 00 O-I A;f

A Vi1 = k21 k22 k23 01 00 7 (7)
i 1 J \‘kg,l k3o k33J _0 01 OJ 1
- - X
Ugi1 ki k2 k| [ra T2 Tzl v

A | = [kar koo kos| |21 Te2 To3 2y 7 (8)
|1 kar ka2 Kaa| a1 Ta2 Taz L] |

Here (u, ;,v,,,1) is the coordinate of 2-D point in the warped image corresponding to
(ug, vg, 1) in the first image.

Because we assume that all 3-D points in the world coordinate system are on the road
plane at time ¢, Y is equal to the height of a camera above the ground in (15). Based
on (15) and (16), we can calculate the coordinates of 2-D points (uy,;,v,,,1) in the
warped image. Then we use the coordinates (“::+1’ v;H) to create the warped image. In
the warped image, the pixel value of the coordinate (u;ﬂ, v;+1) is assigned to the pixel
value of the coordinate (uy, v;) in the image ;.

5.2. Normalized cross-correlation. The obtained warped image assumes that all 3-D
points in the world coordinate are on the road plane. According to this assumption, we
can compare the real image and the warped image and all differences between these two
images are caused by the points which are not consistent with the above assumption. It
also means that these points are not located on the road plane. So we define the road
region as the high similarity region between the real image and the warped image.

Here we use normalized cross-correlation (denoted as NCC) [15] to measure the simi-
larity of two images. NCC is a method of measuring similarity of two signals.

6. Obstacles Extraction. In order to extract the shape of obstacles in the foreground
images, we need to delete two kinds of things: road marks and noises outside the road.
For road marks, we can use the result of the road region detection to delete them. For
the noises outside the road, when we use the result of the road region detection to delete
noises, it also deletes the obstacles outside of the road. In order to solve this problem
(reserving the obstacles and deleting the noise outside the road), we need to divide the
non-road region into obstacles region and noise region. Then we use this noise region to
delete the noise outside the road in the foreground image.
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(b) (c)

FIGURE 3. (a) The result of road region detection, (b) road region template
image, (c) the result of region classification
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FIGURE 4. Pixel values distribution of the 160" row in the road region
template image

6.1. Region classification. Here we want to divide the non-road region into obstacles
region and noise region. Figures 3(a) and 3(b) show the result of road region detection and
the corresponding road region template image. In this road region template image, black
pixels are road pixels, whereas white pixels are non-road pixels. If we check the pixels
of one particular row in this image, we get a curve as shown in Figure 4. Based on this
curve, we consider white regions (high values) which have two adjacent black regions (low
values) both on the left and right sides as the obstacles region. We check each row in the
road region template image to carry out region classification. Because, in this research,
the obstacles which we want to detect are defined as the 3-D objects located on the road,
other 3-D objects located outside the road are no danger to the driving (classified as noise
outside the road). Based on this definition, we know the obstacles must be located in the
road region (surrounded by a road region) or have adjacent road regions on both left and
right sides. Figure 3(c) shows the result of the region classification.

6.2. Post-processing. In the foreground image, black pixels mean the pixels of fore-
ground objects. These black pixels contain the pixels of obstacles, the pixels of road
marks and the noises. In order to extract the shape of obstacles, we should change the
black pixels which represent the road marks and noises to white. We check each black
pixel’s position in the result of region classification (shown in Figure 3(c)). If the current
black pixel is located in the noise region (white region), this black pixel is considered as
the noise and is changed to white in the foreground image. If the current black pixel
is located in the road region (black region), this black pixel is considered as the road
mark and is changed to white in the foreground image. Because the road region detection
method based on motion compensation uses the 2-D and 3-D information, the result of
this road region detection is actually the road plane region detection. The road marks
are located on the road plane. So the results of road region detection contain the road
marks region. Using this road region, we can delete the road marks in the foreground
image. If the current black pixel exists in the obstacle region, it is left unchanged. By
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this operation, road marks and other noises are deleted. Then we carry out an erosion
operation and regional expansion as in the post-processing.

7. Procedures. The camera, which is fixed in front of the vice driver’s seat, records the
road conditions in front of the car when the car moves forward. Because correct obstacles
are defined as arbitrary objects that protrude from the ground plane in the road region,
including static and moving objects. Road marks in the road region (e.g., zebra crossings)
and objects outside the road region are considered as incorrect obstacles. According to
this definition, a correct object in video 1 is a pedestrian; correct objects in video 2 are
two pedestrians and a box.

We reconstruct the background model using a Gaussian mixture model in the input
images. In Figure 5, the first row shows the input images and the second row shows the
corresponding foreground images. Because the camera is moving, the foreground images
as shown in Figure 5 contain a lot of noises. This noise is mostly caused by the objects
outside the road region. In order to delete this noise, we need to detect the road region.
Next, we calculate the camera motion parameters using the correspondence of feature
points between two consecutive images, time ¢ image and time ¢ + 1 image. Then we
detect the road region in the time ¢ 4+ 1 image using motion compensation. The third
row of Figure 5 shows the results of road region detection. In these resultant images, the
purple color region means the road region. Finally, we carry out region classification in
the road region template image, and then delete road marks and noises in the foreground

I I PR

(b) Video 2

FiGURE 5. Experimental results. First row: input images, second row:
foreground images, third row: the result of road region detection, fourth
row: the result of obstacles detection.
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(b) Video 2

Ficure 6. Comparative experiment. First row: input images, second row:
foreground images obtained from GMM, third row: foreground images ob-
tained from nonparametric kernel density estimation, fourth row: the result
of obstacles detection obtained from the proposed method, fifth row: the re-
sult of obstacles detection in which nonparametric kernel density estimation
is employed for the background modeling.

image using the result of the region classification. In Figure 5, the fourth row shows the
results of obstacles detection. In these resultant images, the obstacles are represented by
shape.

Figure 6 shows the results of comparative experiment. In comparative experiment, we
reconstruct the background model using nonparametric kernel density estimation [16].
The second row and the third row of Figure 6 show the foreground images obtained
from two different background modeling methods. The fourth row of Figure 6 shows the
results of obstacles detection using the proposed method. The fifth row shows the results
of obstacles detection of comparative experiment.

8. Results. In order to evaluate the effectiveness of the proposed obstacles detection
method, we compare the result of obstacles detection (shown in Figure 7(b)) with the
Ground Truth (shown in Figure 7(a)). In the resultant image of comparison (shown in
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1} {

(a) Ground truth (b) Obstacles (c) Resultant image

FI1GURE 7. Images employed for evaluation

TABLE 1. The results of evaluation

Evaluation Values

Videos | The Proposed Method | Comparative Experiment
Precision Recall Precision Recall

Video 1| 92.9% 80.0% 89.3% 75.5%

Video 2 | 94.9% 74.6% 91.9% 62.0%

Figure 7(c)), the red area means the overlap part of (a) and (b), this part is called True
Positive; Blue means the part which is included in (b) but not in (a) and this part is
called False Positive; Green means the part which is included in (a) but not in (b) and
this part is called False Negative. We calculate ‘recall’ using the following formula:

TP
recall = o7 > 100[%) (9)

where TP is the number of pixels in the True Positive area; GT is the number of black
pixels in the Ground Truth image. If ‘recall’ is larger than 0.5, we consider this object has
been extracted. Then we calculate ‘Recall’ and ‘Precision’ using the following formulas:

N
Recall = =2 x 100[%) (10)
Ner
Precision = _ Nre x 100[%)] (11)
Nrp + Npp

where Npp is the number of correct objects in the resultant images; Npp is the number of
objects in the GT images; Ngp is the number of incorrect objects in the resultant images.
‘Precision’ can be seen as a measure of exactness or fidelity, whereas ‘Recall’ is a measure
of completeness. The results of evaluation are shown in Table 1.

9. Discussion and Conclusion. In this paper, we proposed an obstacles detection
method using a video taken by a vehicle-mounted monocular camera.

The performance of the proposed method depends on the size of an obstacle in an image
or the distance between the obstacle and the car. If the size of an obstacle in an image is
too small, it is recognized as noise and deleted. According to the performed experiments,
the maximum feasible distance of detecting a pedestrian is about 70m.

The distance that a car moves during the period from the detection system starts
detecting obstacles until the car stops is defined as a stop distance. When this stop
distance is larger than the maximum feasible distance, the obstacle detection makes no
sense as the car crashes against the obstacle. We calculate the stop distance using the
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following formula:
d = vty +vt, +d, (12)

where vis the speed of a car; ¢f is the processing time of each frame; ¢, is the driver reaction
time; d, is the distance needed to stop the car from the instance of brake application
begins. The term vt; means the distance that the car moves during the processing time
of the detection; vt, is the distance that the car moves during the driver reaction time.
The processing time of the detection method ¢/ is 695ms/f. The parameters ¢, and d, can
be found in [17]. Then the stop distance can be calculated and the results are shown in
Table 2.

TABLE 2. Stop distance

Speed of a car (km/h) | 20 | 30 | 40 | 50 | 60
Stop distance (m) |24 |41 58|75 |97

Because the stop distance must be smaller than the maximum feasible distance, the
proposed method can be applied to a vehicle driving up to 40km/h. This obstacles
detection method can be applied to the real driving condition of a vehicle in the city.

In Section 3, we applied a GMM in the moving camera scene. The GMM is an effective
background modeling method which was often used in the static camera scene. However,
we expanded so that it can be applied to a moving camera case. This expansion is impor-
tant to the industrial applications of a vehicle-mounted camera based obstacle detection
system.

In Section 5, the proposed method detected road regions using motion compensation.
This detection method is independent of road marking and lanes and can be applied to
both marked and unmarked roads. Moreover, this method can not only be used in the
road detection, but it can also be used in 2-D and 3-D objects classification, because, when
2-D objects are lying on the road (such as papers), they have the same characteristics
with the road plane. We can use this method to classify 2-D objects as the road region
and classify 3-D objects as the non-road region. This feature is important to an obstacle
detection system, because 2-D objects on the road are not dangerous to driving. We
should avoid these 2-D objects being detected as much as possible, because these 2-D
objects will raise a false positive.

The proposed method has some advantages over the existing obstacles detection meth-
ods. In the first place, the proposed method uses a monocular camera. This realizes
an economic system and smaller computation time. It is also advantageous for achiev-
ing real-time processing. In the second place, the proposed method can detect arbitrary
objects which may pose a threat to safe driving on the road, not just to detect specific
objects. In the third place, the proposed method can also detect both static and moving
objects simultaneously. To the best of our knowledge, no researches have ever proposed
a method which detects both static and moving objects simultaneously. This is helpful
because static objects such as boxes fallen on the road from a car are dangerous for dri-
vers. Most of the existent methods concentrate only on detecting moving objects such as
pedestrians, bicycles and cars. In the fourth place, the output of the proposed method is
the shape of obstacles. Currently most of the existing obstacles detection methods cannot
extract the shape of obstacles. They only use a rectangular frame which surrounds an
obstacle to represent a detected obstacle. We understand that extraction of the shape of
an obstacle is important for obstacle recognition. If the detected obstacle is a pedestrian,
we can also use the shape to carry out the recognition of his/her motion. The proposed
method is now under improvement so that it may be applicable to a slightly curved road.
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