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Abstract. On the basis of inverse dynamics controller as a nominal control portion,
two types of novel robust adaptive inverse dynamics control schemes are proposed for
the trajectory tracking control of robot manipulator with uncertain dynamics. They are
composed of an adaptive fuzzy control algorithm and a nonlinear H∞ tracking control
model. The adaptive fuzzy control algorithm is employed to approximate the structured
uncertainties, and the nonlinear robust H∞ control model is designed to eliminate the
effects of the unstructured uncertainties and approximation errors. The tuning param-
eters in the adaptive fuzzy control algorithm are derived through the Lyapunov method.
Comparison studies of their control performances with the conventional inverse dynamics
controller are carried out, and their validity is demonstrated by numerical simulations of
a two-link rotary robot manipulator.
Keywords: Inverse dynamics control, Robust H∞ control, Adaptive fuzzy control, Ro-
bot manipulator with uncertain dynamics

1. Introduction. Motion control of robot manipulator is a difficult task, mainly be-
cause of highly nonlinear coupled and time-varying system with uncertainties such as
load variations, friction and external disturbances [1]. These model uncertainties can be
divided into the structured uncertainties stemming from the unknown kinematic param-
eters or nonlinear coupled dynamic model, and the unstructured uncertainties including
changing payload, nonlinear friction and unknown external disturbance. Adaptive and
robust control schemes are one of the most effective and popular means to handle these
model uncertainties [2]. Although adaptive control scheme has the strong learning abil-
ity, its control performance may be affected by some unstructured uncertainties with the
boundless energy [3]. On the other hand, robust control method is applicable to robot
manipulator with the known upper bounds of the uncertainties, and it can also perform
better in rejecting disturbances and compensating the unstructured uncertainties [4]. To
overcome the shortcomings and to take advantage of the attractive features of the robust
and adaptive control methods, some robust adaptive control strategies are proposed. Dou
and Wang [5] proposed a robust adaptive synchronization motion controller for a two-link
robot manipulator. Wu et al. [6] developed an adaptive sliding mode control scheme to
guarantee the globally asymptotic convergence in the presence of unknown kinematic pa-
rameters and external disturbances. Yao et al. [7] presented a robust adaptive controller,
but it neglects the effects of the external disturbances and nonlinear friction forces. Most
robust adaptive control schemes have solely taken into account compensation of either
nonlinear friction or uncertain kinematic parameters, or just provided an overall compen-
sation control for structured and unstructured uncertainties. However, no attention has
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been paid to separate compensation control for the structured and unstructured uncer-
tainties. As a matter of fact, there exist great differences between the structured and
unstructured uncertainties in many ways, for example, the structured uncertainties are
characterized by the existence of an upper bound, but the unstructured uncertainties may
not be bounded, even be of finite energy. Therefore, this paper will develop a novel robust
adaptive control strategy to separately compensate these structured and unstructured un-
certainties in terms of their character.
In addition, the adaptive control law in most robust adaptive control schemes is based

on either the sliding mode control or the backsteping control methods. Under certain
conditions, the sliding mode control is robust with respect to the perturbation and exter-
nal disturbance [8], but it can also produce some drawbacks associated with large control
chattering that may excite undesirable high-frequency dynamics [9]. Moreover, the back-
stepping control method suffers from the so-called problem of “explosion of complexity”,
which is caused by repeated differentiations of certain nonlinear functions, thus inevitably
leads to a complicate algorithm with heavy computation burden [10]. One of the most ef-
fective model-based control approaches is the inverse dynamics controller, which can offer
a large variety of advantages over model-free methods if the dynamic model is accurate
enough [11]. Unfortunately, obtaining an accurate dynamic model is a challenging task,
as simplifications are usually made and some uncertainties, such as friction or backlash,
are not taken into account in the dynamic model [12]. It is well known that a fuzzy logic
system is a particularly powerful tool for modeling uncertain nonlinear systems due to
its universal approximation property [13-15]. Many adaptive fuzzy inverse dynamics con-
trollers have been developed for a wide class of uncertain nonlinear systems. Mohan and
Bhanot [16] conducted an investigation on three kinds of adaptive fuzzy inverse dynamics
controllers; however, they may suffer from a tedious and cumbersome computation bur-
den as it is a lookup table-based control scheme rather than a self-adaptive fuzzy control
algorithm. Li et al. [17] developed an adaptive fuzzy output feedback control approach
combining a fuzzy logic system with an adaptive fuzzy filter; however, the tuning number
is so large that the learning time of the fuzzy logic system tends to become very long. In
order to improve the adaptive control performances of the inverse dynamics controller,
this paper will discuss a novel adaptive fuzzy control algorithm to approximate the struc-
tured uncertainties with the unknown upper bound. The main advantage of the adaptive
fuzzy control algorithm is that no matter how many rules are utilized in the fuzzy logic
system, only one tuning parameter will be adjusted on-line, which significantly reduces the
computation burden. Another advantage is that the fuzzy logic system can approximate
the structured uncertainties with the unknown upper bound.

2. Problem Formulation and Some Preliminaries.

2.1. Description of robot manipulator dynamic model. The dynamic equation of
an n degrees-of-freedom robot manipulator in joint space coordinates can be expressed as

D(q)q̈ + C(q, q̇)q̇ +G(q) + F (q, q̇) = τ (1)

where q, q̇, q̈ ∈ Rn are the vectors of joint position, velocity and acceleration, respectively;
D(q) ∈ Rn×n is a symmetric positive definite inertia matrix; C(q, q̇)q̇ ∈ Rn expresses a
vector of Coriolis and centrifugal forces; G(q) ∈ Rn denotes a gravity vector; F (q, q̇) ∈ Rn

includes friction terms and external disturbances; and τ ∈ Rn represents a vector of torque
exerted on joints. For convenience, dynamic Equation (1) can be rewritten as follows.

D(q)q̈ +H(q, q̇) + F (q, q̇) = τ (2)
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whereH(q, q̇) = C(q, q̇)q̇+G(q). And, the actual parametersD(q) andH(q, q̇) in Equation

(1) are assumed to be separated as the nominal parts denoted by D̂(q) and Ĥ(q, q̇), and
the uncertain parts defined by ∆D(q) and ∆H(q, q̇). Hence, these actual and nominal
parameters satisfy the following relationships.{

D̂(q) = D(q)−∆D(q)

Ĥ(q) = H(q, q̇)−∆H(q, q̇)
(3)

The inverse dynamics control law can be written as follows.

τ = D̂ (q) (q̈d +Kvė+Kpe) + Ĥ (q, q̇) (4)

where Kv and Kp are derivative and proportional constant matrices, respectively; qd, q̇d, q̈d
∈ Rn are the vector of joint position, velocity, and acceleration in the desired trajectories,
respectively; and e = qd − q denotes as a vector of trajectory tracking error. Substituting
Equation (4) into Equation (2) yields

ë+Kvė+Kpe = ψ (χq) + δ (χq) (5)

where ψ(χq) denotes the structured uncertainties, and its value is equal to ψ(χq) =

D̂(q)−1(∆D(q)q̈ + ∆H(q, q̇)); δ(χq) = D̂(q)−1F (q, q̇) expresses the unstructured uncer-

tainties; and χq =
[
q q̇ q̈

]T
.

From the closed loop tracking error dynamic Equation (5), it can be easily seen that
the structured uncertainties ψ(χq) results from the unknown kinematic parameters or
nonlinear coupled dynamic model, and the unstructured uncertainties δ(χq) includes the
nonlinear friction forces and external disturbance. A compensation control scheme com-
posed of an adaptive fuzzy control algorithm and a robust H∞ control model should be
developed to ensure the control performances of the inverse dynamics controller. In this
way, the compensation control law can be designed as

τ = τ0 + τc (6)

where τ0 denotes the control input torque of the inverse dynamics controller defined
by Equation (4), and τc expresses the control input torque of the compensation control
scheme. Replacing the term τ0 in Equation (6) with Equation (4), and we can get the

following overall control law: τ = D̂(q)(q̈d +Kvė+Kpe) + Ĥ(q, q̇) + τc.
Then, substituting the overall control law τ into the inverse dynamics controller defined

by Equation (4) yields the following closed loop tracking error dynamic equation.

ë+Kvė+Kpe = ψ(χq) + δ(χq)− D̂(q)−1τc (7)

Given that state error vector is defined by x = [e, ė]T , the state space form of the tracking
error dynamic Equation (7) can be rewritten as follows.

ẋ = Ax+B(ψ(χq) + δ(χq)− D̂(q)−1τc) (8)

where A =

[
0 I

−Kp −Kv

]
and B =

[
0
I

]
.

From the above closed loop tracking error dynamic equation, a conclusion can be drawn
that the main goal of this paper is to design a compensation control law τc combining an
adaptive fuzzy control algorithm with a robust control model to eliminate the effects of
the uncertainties on the control performances.
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2.2. Adaptive fuzzy logic system. A fuzzy logic system consists of the following four
parts: the knowledge base, the fuzzifier, the fuzzy inference engine and the defuzzifier.
The knowledge base for a fuzzy logic system is composed of a collection of the following
fuzzy IF-THEN rules:

Rl : If x1 is F l
1 and . . . and xn is F l

n, then y is Gl, l = 1, 2, · · ·,M

where x = (x1, · · · , xn)T and y are the input and output vectors of the fuzzy logic system,
respectively; F l

i and G
l are two fuzzy sets associated with the fuzzy functions µF l

i
(xi) and

µGl(y); and M is the number of fuzzy IF-THEN rules.
Through the singleton function, center average defuzzification and product inference,

the fuzzy logic system can be expressed as follows.

y(x) =

M∑
l=1

(
∏n

i=1 µAl
i
(xi))ȳl

M∑
l=1

(
∏n

i=1 µAl
i
(xi))

(9)

where ȳl = maxy∈R µGl(y). And then, the fuzzy basis functions can be defined as

ξl(x) =

∏n
i=1 µAl

i
(xi)

M∑
l=1

(
∏n

i=1 µAl
i
(xi))

(10)

Let Θ = [ȳ1, ȳ2, · · · , ȳM ]T and ξT (x) = [ξ1 (x) , ξ2 (x) , · · ·, ξM (x)], then Equation (9)
can be rewritten as

y(x) = ΘT ξ(x) (11)

It has been proved that the fuzzy logic system defined by Equation (11) can approximate
any continuous function f(x) over a compact set Ω ⊂ Rn to an arbitrary accuracy [17].

f(x) = Θ∗T ξ(x) + ε(x) (12)

where ε(x) is the fuzzy minimum approximation error, and Θ∗ is an optimal weight matrix
satisfying that

Θ∗ = argmin
Θ∈U

{
sup
x∈Ω

∣∣f(x)−ΘT ξ(x)
∣∣} (13)

In order to approximate the structured uncertainties ψ(χq) with the unknown upper
bound in the closed loop tracking error dynamic Equation (7), an adaptive fuzzy logic
system and its adaptive control law are designed as follows in this paper.

Φf

(
x, Θ̂

)
= ρ

(
x, Θ̂

)
tanh

ρ
(
x, Θ̂

)
BTPx

ε

 (14)

˙̂
Θ = −λΘ̂ + Lξ (x)

∥∥BTPx
∥∥ (15)

where ρ
(
x, Θ̂

)
= Θ̂T ξ (x) is the output vector of the adaptive fuzzy controller defined

by Equation (11); x =
[
q q̇

]T
is the input vector of the adaptive fuzzy controller;

λ ∈ (0,∞), L = diag{l1, l2, · · ·, lp}, li ∈ (0,∞), p is the dimension of the vector Θ, ε is an
arbitrary small positive constant; λ, li, ε are the parameters determined by the designer;
and P is a symmetric positive definite matrix satisfying a Riccati-like equation.
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3. Design of Robust Adaptive Inverse Dynamics Controller. In this section, two
types of robust adaptive inverse dynamics controllers combining an adaptive fuzzy control
algorithm with a nonlinear robust H∞ tracking control model will be developed to deal
with the control problem of robot manipulator with the structured and unstructured
uncertainties.

3.1. Robust adaptive inverse dynamics control schemes. Figure 1(a) demonstrates
the robust adaptive control scheme based on feedback compensator (FBC-based), which
takes the actual output commands as the input vectors of the fuzzy logic system, and
utilizes the trajectory tracking errors as the tuning parameters of adaptive fuzzy controller.
Another robust adaptive control scheme based on feedforward compensator (FFC-based)
is illustrated in Figure 1(b). The two types of robust adaptive control schemes have a
common adaptive learning concept, that is, the trajectory tracking errors are employed as
the tuning parameters. Moreover, the output control torque τc in the two control schemes
is used to cancel out the uncertainties. However, a closer investigation reveals many
differences in the two control schemes, such as the type of training signals and the process
of taming uncertainties. The main difference is that the input vectors in the FBC-based
robust adaptive control scheme are calculated as a function of the actual positions q(t)
and velocities q̇(t), while in the FFC-based robust adaptive control scheme, the input
vectors are expressed as a function of the desired positions qd(t) and velocities q̇d(t).

(a) (b)

Figure 1. Configurations of robust adaptive inverse dynamics control
schemes: (a) FBC-based; (b) FFC-based

The corresponding control laws in the two control schemes are depicted as follows.

τff = D̂(qd)(q̈d +Kvė+Kpe+ τc) + Ĥ(qd, q̇d) (16)

τfb = D̂(q) (q̈ +Kvė+Kpe+ τc) + Ĥ(q, q̇) (17)

where τff and τfb are the output control torques of the FBC-based and FFC-based robust
adaptive control schemes, respectively.

For convenience, the control law in the two control schemes are rewritten as follows.

τ = D̂(q̈ +Kvė+Kpe+ τc) + Ĥ (18)

Hence, their closed loop tracking error dynamic equation is denoted as follows.

ë+Kvė+Kpe = D̂−1(∆D (q) q̈ +∆H(q, q̇) + F (q, q̇))− τc (19)

where ∆D(q) = D(q)− D̂(q), and ∆H(q, q̇) = H(q, q̇)− Ĥ(q, q̇).
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As shown in Figure 1, the compensation controller is composed of the adaptive fuzzy
controller, which is utilized to approximate the structured uncertainties ψ(χq), and the
roust H∞ controller, which is designed to eliminate the effects of the unstructured uncer-
tainties δ(χq). Hence, the compensation control torque τc is the sum of the control torque
τf of the adaptive fuzzy controller and the control torque τh of the robust H∞ controller,
and it can be described as follows.

τc = τh + τf (20)

where τh = D̂(q)Φh and τf = D̂(q)Φf , in which Φh and Φf are the output vectors of
the robust H∞ controller and the adaptive fuzzy controller, respectively. In the end, the
corresponding state space tracking error dynamic equation can be derived as follows.

ẋ = Ax+B(ψ(χq) + δ(χq)− (Φh + Φf )) (21)

where Φh = D̂(q)−1τh, Φf = D̂(q)−1τf , ψ(χq) = D̂(q)−1(∆D(q)q̈ +∆H(q, q̇)) and δ(χq) =

D̂(q)−1F (q, q̇).

3.2. Derivation of robust adaptive inverse dynamics controller. In this section,
tuning parameters of the adaptive fuzzy controller are derived, and the stability of the
closed loop control system is proved through the Lyapunov stability theorem. The bound-
aries of the terms D̂(q)−1 and the unknown structured uncertainties ψ(χq) are assumed
as follows. {

bmin ≤
∥∥∥D̂(q)−1

∥∥∥ ≤ bmax

‖ψ(χq)‖ ≤ ΘT ξ(x) + ε
(22)

where ξ(x) is a vector of fuzzy base function; Θ is the tuning parameters of the fuzzy
logic system; and ε denotes an arbitrary small positive constant.

Lemma 3.1. The following inequality holds for any ε > 0 and for any η ∈ R

0 ≤ |η| − η tanh
(η
ε

)
≤ κε (23)

where κ is a constant that satisfies κ = e−(κ+1), i.e., κ = 0.2785.

The proof was given by Polycarpou and Ioannou [18].

Lemma 3.2. The following inequality holds for any two matrices X ∈ Rn×m and Y ∈
Rn×m

2XTY ≤ εXTX + ε−1Y TY (24)

where ε denotes an arbitrary small positive constant.

Theorem 3.1. If there exists a continuous function V (•) : Rn → R+ for a nonlinear
system described by Equation (8) with the following properties: (1) there are scalars q ≥ 1,
ω1 > 0 and ω2 > 0 such that ω1‖x‖q ≤ V (x) ≤ ω2‖x‖q for all x(t) ∈ Rn; (2) there are
scalars V̄ and V , such that whenever 0 < V ≤ V (x) ≤ V̄ < ∞; (3) V is continuously
differentiable and V̇ = ∂V

∂t
f(x, t) ≤ −qα[V (x) − V ] for all t ∈ R+, then, the nonlinear

control system is uniformly exponentially convergent towards a residual set S = Φ(r) with
rate α.

The proof was given by Corless and Leitman [19].
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Theorem 3.2. If the control laws Φf and Φh of the adaptive fuzzy controller and robust
H∞ controller is designed as follows.

Φf = ρ
(
x, Θ̂

)
tanh

ρ
(
x, Θ̂

)
BTPx

ε

 (25)

˙̂
Θ = −λΘ̂ + Lξ (x)

∥∥BTPx
∥∥ (26)

Φh = R−1BTPx (27)

where ρ
(
x, Θ̂

)
= Θ̂T ξ (x) is the output vector of the adaptive fuzzy controller defined

by Equation (11); x =
[
q q̇

]T
is the input vector of the adaptive fuzzy controller;

λ ∈ (0,∞), L = diag{l1, l2, · · ·, lp}, li ∈ (0,∞), p is the dimension of the vector Θ, ε is an
arbitrary small positive constant; λ, li, ε are the parameters determined by the designer;
and P is a symmetric positive definite matrix satisfying the following Riccati-like equation.

ATP + PA+Q+ PB

(
1

ε
I −R−1

)
BTP = 0 (28)

where Q > 0 is chosen by the designer; and ε is an arbitrary small positive constant.
Then, the proposed robust adaptive control law can guarantee the closed loop system

to convergent towards a residual set Φ(r) with rate µ/2, where µ = 1
2
min

{
λmin(Q)
λmax(P )

, λ
}
,

r =
√

ε
µ
, ε̄ = γ

[
λ‖Θ‖
2lmin

+ ε
]
+ 1

2
ε ‖F‖2, lmin = min {l1, l2, · · ·, lp}.

Proof: Define a Lyapunov function candidate as follows:

V =
1

2
xTPx+

1

2
γΘ̃TL−1Θ̃ (29)

where Θ̃T = Θ̂T −ΘT .
The derivative of the Lyapunov function V with respect to time along the tracking

error dynamic Equation (21) is given by

V̇ =
1

2
xT (ATP + PA)x− xTPBΦf + xTPBψ(χq)

− xTPBΦh + xTPBδ(χq) + γΘ̃TL−1 ˙̃Θ

(30)

where ψ (χq) = D̂(q)−1(∆D (q) q̈ +∆H (q, q̇)) and δ(χq) = D̂(q)−1F (q, q̇).
From the boundaries of the structured uncertainties in Equation (22), we can derive

the third term in Equation (30) as xTPBψ (χq) ≤ ‖ψ (χq)‖
∥∥BTPx

∥∥ ≤ ΘT ξ (x)
∥∥BTPx

∥∥.
According to the adaptive fuzzy control law Φf in Equation (25), the second term in

Equation (30) can be derived as follows: −xTPBΦf = −xTPBΘ̂T ξ(x) tanh( Θ̂
T ξ(x)BTPx

ε
).

Then, using Lemma 3.1 with η = Θ̂T ξ(x)BTPx, we can get the following inequality of
the two terms of −xTPBΦf + xTPBψ (χq) in Equation (30).

− xTPBΦf + xTPBψ (χq)

≤ Θ̂T ξ (x)
∥∥BTPx

∥∥− xTPBΘ̂T ξ (x) tanh

(
Θ̂T ξ (x)BTPx

ε

)
− Θ̃T ξ (x)

∥∥BTPx
∥∥

≤ γε− γΘ̃T ξ (x)
∥∥BTPx

∥∥
(31)

where γ is an arbitrary small positive constant.
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Since 1
2
(Θ̃ + Θ)TL−1(Θ̃ + Θ) ≥ 0, such that Θ̃TL−1Θ̃Θ̃TL−1Θ ≥ 1

2
(Θ̃TL−1Θ̃ΘTL−1Θ).

And, the term ˙̃Θ = −λ
(
Θ̃ + Θ

)
+Lξ (x)

∥∥BTPx
∥∥ can also be inferred from the adaptive

fuzzy control law in Equation (26). Hence, the final term of γΘ̃TL−1 ˙̃Θ in Equation (30)
can be rewritten as

γΘ̃TL−1 ˙̃Θ = −γλΘ̃TL−1
(
Θ̃ + Θ

)
+ γΘ̃T ξ (x)

∥∥BTPx
∥∥

≤ −1

2
γλΘ̃TL−1Θ̃

1

2
γλΘTL−1Θ+ γΘ̃T ξ (x)

∥∥BTPx
∥∥ (32)

Substituting Equations (31) and (32) into Equation (30) yields the following inequality.

V̇ ≤ 1

2
xT
(
ATP + PA

)
x+ γε− 1

2
γλΘ̃TL−1Θ̃

1

2
γλΘTL−1Θ− xTPBΦh + xTPBδ (33)

Taking into account Lemma 3.2, the term of xTPBδ (χq) in Equation (30) can be
rewritten as follows.

xTPBδ (χq) ≤
1

2

(
εδ (χq)

T δ (χq) + ε−1xTPBBTPx
)

(34)

Substituting Equation (34), the robust control law Φh = R−1BTPx in Equation (27),
and the Riccati-like Equation (28) into Equation (33), the derivative of the Lyapunov
function V̇ can be bounded as

V̇ ≤ 1

2
xT
(
ATP + PA

)
x+ γε− 1

2
γλΘ̃TL−1Θ̃

1

2
γλΘTL−1Θ

− xTPBΦh +
1

2

(
εδ (χq)

T δ (χq) + ε−1xTPBBTPx
)

≤ 1

2
xT
(
ATP + PA+ ε−1PBBTP − PBR−1BTP

)
x+ γε

− 1

2
γλΘ̃TL−1Θ̃

1

2
γλΘTL−1Θ+

1

2
εδ (χq)

T δ (χq)

≤ − 1

2
xTQx+ γε− 1

2
γλΘ̃TL−1Θ̃

1

2
γλΘTL−1Θ+

1

2
εδ (χq)

T δ (χq)

≤ 1

2

(
−xTQx− γλΘ̃TL−1Θ̃

) 1

2
γλΘTL−1Θ+ γε+

1

2
ε
∥∥∥D̂ (q)−1

∥∥∥2 ‖F (q, q̇)‖2

(35)

Given that Q̄ = 1
2

[
Q 0
0 γλL−1

]
, the above expression can be given as follows

˙̄V ≤ −zT Q̄z + ε̄ (36)

where z =
[
x, Θ̃

]T
and ε̄ = 1

2
γλΘTL−1Θ+ γε+ 1

2
ε
∥∥∥D̂ (q)−1

∥∥∥2 ‖F (q, q̇)‖2.
Substituting the parameters given in Theorem 3.1 into the above expression, we get

˙̄V ≤ −2µV̄ + ε̄ (37)

Then, using Theorem 3.1, one can see that the tracking error converges towards a
residual set Φ(r) with the convergence rate µ/2.

4. Numerical Simulation and Discussions. In this section, the proposed control
schemes are applied to a two-link planar rotary robot manipulator (shown in Figure 2)
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gripping an unknown load. Through the Euler-Lagrangian approach, its dynamic equation
is derived as follows.[

D11(q2) D12(q2)
D21(q2) D22(q2)

] [
q̈1
q̈2

]
+

[
−C12(q2)q̇2 −C12(q2)(q̇1 + q̇2)
C12(q2)q̇1 0

] [
q̇1
q̇2

]
+

[
G1(q1, q2)g
G2(q1, q2)g

]
=

[
τ1
τ2

]
(38)

where D11(q2) = (m1 + m2)r
2
1 + m2r

2
2 + 2m2r1r2 cos q2, D12(q2) = D21(q2) = m2r

2
2 +

m2r1r2 cos q2, D22(q2) = m2r
2
2, C12(q2) = m2r1r2 sin q2, G1(q1, q2) = (m1 +m2)r1 cos q2 +

m2r2 cos(q1 + q2), G2(q1, q2) = m2r2 cos(q1 + q2), in which qi (i = 1, 2) denote angular
position (rad), mi (i = 1, 2) are the links masses (kg), and ri (i = 1, 2) represent the links
length (m).

Figure 2. A two-link planar rotary robot manipulator

The kinematics parameters of the two-link planar rotary robot manipulator are defined
as follows: r1 = 0.115(m), m1 = 2.74(kg), r2 = 0.130(m), m2 = 2.01(kg), and their
corresponding nominal values are assumed as: r̂1 = 0.08(m), m̂1 = 1.9(kg), r̂2 = 0.1(m),
m̂2 = 1.2(kg). Furthermore, an uncertain payload δ(t) = [10 sin(t), 10 cos(t)]T is assumed
to be attached to the second link, and a viscous friction force F (q, q̇) = 80sgn (q̇) + 10q̇
is added to each joint. In the following four simulation cases, all initial joint positions are
assumed as q1(0) = q2(0) = 4(rad), and initial joint velocities are zeros.
Case 1: conventional inverse dynamics controller. Firstly, the conventional
inverse dynamics controller is applied to robot manipulator with uncertain dynamics. In
other words, the control scheme is designed according to nominal kinematic parameters
instead of actual kinematic parameters. In order to prevent the robot manipulator from
exhibiting overshoot when a desired trajectory terminates at the surface of a work piece,
the control parameters are usually selected for the critical damping; hence, the control
parameters are picked as Kv = diag{20, 20} and Kp = diag{100, 100}. A set of simulation
results of the two-link planar rotary robot manipulator are illustrated in Figure 3.

As shown in Figure 3, a large tracking errors occur at the initial stages, and after the
transient response, the actual trajectories severely deviate from the desired trajectories.
Especially, a large gap between the actual and desired trajectories in the second joint may
destroy the stability of the closed loop system. Therefore, in order to eliminate the effects
of the uncertainties, some additional compensation controllers should be appropriately
added to the inverse dynamics controller.
Case 2: an improved inverse dynamics controller. In this case, an improved
inverse dynamics controller including an adaptive fuzzy compensator proposed by Chen
et al. [20] is used to control robot manipulator with uncertain dynamics. The uncertain
payload and viscous friction forces in this case are the same that in the first case. The
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Figure 3. Control performances in the first case: (a) position of the first
joint; (b) position of the second joint; (c) velocity of the first joint; (d)
velocity of the second joint

Figure 4. Control performances in the second case: (a) position of the
first joint; (b) position of the second joint; (c) velocity of the first joint; (d)
velocity of the second joint
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input vector of the adaptive fuzzy compensator is defined as X = {xi |i = 1, 2, · · ·, 4} =
{q1, q̇1, q2, q̇2}, the universe of discourse of each fuzzy input vector is divided into five
fuzzy labels, i.e., NB, NS, ZO, PS, PB, and their corresponding membership functions

are defined as µAl
i
(xi) = exp

[
− (xi−Ci)

2

2σ2
i

]
, where Ci are −1, −0.5, 0, 0.5, and 1, σi is equal

to 0.2124. Figure 4 demonstrates the control performances of two joints when the inverse
dynamics controller plus adaptive fuzzy compensator is applied to the two-link planar
rotary robot manipulator with uncertain dynamics.

As can be seen from Figures 3 and 4, the oscillations of the tracking errors in this
case are remarkably smaller than the first case, which verifies that the adaptive fuzzy
compensator can effectively compensate some uncertainties. However, it can be obviously
seen from Figure 4 that there is a big error between the desired and actual trajectories.
Thus, only adaptive fuzzy compensator cannot completely eliminate the effects of the
structured and unstructured uncertainties, and a novel compensation controller should be
developed to separately eliminate the structured and unstructured uncertainties on the
control performances.
Case 3: robust adaptive inverse dynamics controller. In this case, the proposed
FFC-based robust adaptive inverse dynamics controller combining an adaptive fuzzy con-
trol algorithm with a nonlinear robust H∞ controller is utilized to control the two-link
planar rotary robot manipulator with uncertain dynamics. Here, the adaptive fuzzy con-
trol algorithm is designed to approximate the structured uncertainties, and the robust
H∞ control model is employed to eliminate the effect of the unstructured uncertainties.
The exclusive difference between the second case and this case is that a nonlinear robust
H∞ control model in this case is employed to eliminate the unstructured uncertainties.

Figure 5 illustrates the control performances of two joints when the proposed controller
is applied to the robot manipulator with uncertain dynamics. It can be seen that the
proposed FFC-based robust adaptive inverse dynamics controller performs much better
than the inverse dynamics controller plus adaptive fuzzy compensator in the previous
case.
Case 4: comparison studies between FBC-based and FFC-based controllers.
In this case, comparison studies between FBC-based and FFC-based controllers are carried
out. In order to show the effectiveness of the proposed controller, the tracking errors of
the position and velocity are calculated by the following tracking error equations over one
training cycle of a trajectory.

Ep =
1

N

N∑
i=1

‖qdi − qi‖2 (rad)2 , Ev =
1

N

N∑
i=1

‖q̇di − q̇i‖2 (rad/ sec)2 (39)

where Ep is the tracking error of the position; Ev is the tracking error of the velocity; N
is the number of the position vectors; and qdi, qi are the desired and actual trajectories,
respectively.

From these calculation results summarized in Table 1, one can see that the proposed
two controllers demonstrate extremely good control performances compared with the con-
ventional inverse dynamics controller. Moreover, the FFC-based robust adaptive inverse
dynamics controller performs slightly better in the circular trajectory than the FBC-
based robust adaptive inverse dynamics controller. It can also be observed that the
tracking errors of the position and velocity in the first joint under the proposed FFC-
based robust adaptive controller are reduced by 66.39% and 78.06% compared with the
FBC-based robust adaptive inverse dynamics controller. Hence, the proposed FFC-based
robust adaptive inverse dynamics controller exhibits better tracking performances than
the FBC-based controller.
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Figure 5. Control performances in the third case: (a) position of the first
joint; (b) position of the second joint; (c) velocity of the first joint; (d)
velocity of the second joint

Table 1. Comparison results of tracking error

Control schemes
Errors

First joint Second joint
Ep(rad)

2 Ev(rad/sec)
2 Ep(rad)

2 Ev(rad/sec)
2

FFC-based robust adaptive 0.00099324 0.00034113 0.0029166 0.0008082
FBC-based robust adaptive 0.0029552 0.0015551 0.025762 0.007903
Inverse dynamics controller 0.024389 0.009591 0.30657 0.11172

5. Conclusion. This paper addresses trajectory tracking control problems of robot ma-
nipulator with the structured and unstructured uncertainties. On the basis of inverse
dynamics controller as a nominal control portion, two types of novel robust adaptive
inverse dynamics control schemes combining an adaptive fuzzy control algorithm with
a nonlinear H∞ tracking controller are designed to handle these inevitable uncertain-
ties. Comparison studies of the control performances of the proposed controllers with
the conventional inverse dynamics controllers in the presence of model uncertainties are
carried out, and comparison results demonstrate that the robust adaptive inverse dynam-
ics control schemes are an effective approach to improve control performances in terms
of uncertainties. The stability of the two control schemes are also proved through the
Lyapunov method. Computer simulation of a two-link rotary robot manipulator is car-
ried out. Simulation results demonstrate the proposed FFC-based robust adaptive control
scheme is the most effective and superiority.
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