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Abstract. This paper researches on a special job-shop scheduling problem meeting ca-
pabilities of equipments and different due-dates. Its model is developed, which can accord
process capacity and different due-dates in numerous jobs to select some to process, and
the objective is as far as possible to maximize output. In order to solve complex sched-
uling problems proposed in this paper, a discrete particle swarm optimization algorithm
is presented to optimize it. To test the performance of the novel algorithm, we use some
randomly generated instances to simulate solving the practical problems. Computational
experiments show significant improvement over an existing particle swarm optimization
algorithm.
Keywords: Job-shop scheduling, Due-date, Maximizing, Production volume, Discrete
particle swarm optimization algorithm

1. Introduction. Effective machine scheduling, which involves the allocation of ma-
chines to competing jobs over time, is critical to success in today’s highly competitive
global industries. In the past a huge amount of literature addressed the traditional sched-
uling problems as flow shop, job shop, single-machine scheduling, open shop scheduling
and parallel machines shops. Optimization goals of different scheduling studied by re-
searches are different. Many complex industrial problems are generally modeled as job-
shop scheduling problems (JSSP). The classical JSSP is such a problem, which deals
with the sequencing operation of a set of jobs on a set of machines with the objective to
optimize some criterion or criteria. The job shop scheduling problem is one of the most
difficult production scheduling problems in industry. A. Dolgui et al. in [1] consider single
machine scheduling problems of minimizing the makespan in which the processing time
of a job depends on its position. It considers scheduling models with positional deteriora-
tion or learning under precedence constraints that are built up iteratively from the prime
partially ordered sets of a bounded width. Paper [2] considers single-machine scheduling
problems in which the processing time of a job is a function of its starting time and its
resource allocation. It researches minimizing a cost function containing makespan, total
completion time, total absolute differences in completion times and total resource cost;
minimizing a cost function containing makespan, total waiting time, total absolute differ-
ences in waiting times and total resource cost. D. C. Paraskevopoulos et al. propose a new
solution representation and an evolutionary algorithm namely SAILS in [3], for solving the
Resource Constrained Project Scheduling Problem (RCPSP). Paper [6] considers single-
machine group scheduling problems with effects of earning and deterioration at the same
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time. Its objective of scheduling problems is to minimize the makespan and the sum of
completion times, respectively. J. Qian and G. Steiner in paper [7] researched scheduling
problems with learning/deterioration effects and time-dependent processing times on a
single machine, with or without due date assignment considerations. A hybrid estimation
of distribution algorithm (HEDA) is proposed to solve the resource-constrained project
scheduling problem (RCPSP) in paper [9]. Forward-backward iteration (FBI) and a per-
mutation based local search method (PBLS) incorporated into the EDA based search to
enhance the exploitation ability. Paper [10] proposes a neighborhood-windows technique
for improving searching efficiency as well as a self-parameter updating technique for pre-
venting trapping into a local optimum in high-dimensional problems. It compares PBA
performance against BA and PSO performance in practical facility layout (FL) problem.
M.-Z. Wang and J.-B. Wang in [11] consider the single-machine makespan minimization
scheduling problem with nonlinear shortening processing times. By the nonlinear short-
ening processing times, it means that the processing times of jobs are non-increasing
nonlinear functions of their starting times. Paper [14] researches on an inventory based
two-objective job shop scheduling, in which both the make-span (the total completion
time) and the inventory capacity were as objectives and were optimized simultaneously.
S. K. Nayak et al. in [15] deal with the problem of dynamic task scheduling in grid
environment of multi-processors. It formulates task scheduling as an optimization prob-
lem and then optimizes with a novel hybrid optimization algorithm, which combines the
merits of Genetic Algorithm and Bacteria Foraging optimization. T.-C. Chiang and H.-J.
Lin in [18] address the multiobjective flexible job shop scheduling problem (MOFJSP)
regarding minimizing the makespan, total workload, and maximum workload. The prob-
lem is solved in a Pareto manner, whose goal is to seek for the set of Pareto optimal
solutions. Paper [21] addresses the problem of minimizing the total weighted tardiness
on a single-machine with a position-based learning effect. Several dominance properties
are established to develop branch and bound algorithm and a lower bound is provided to
derive the optimal solution. Paper [22] considers a single-machine common due window
assignment and scheduling problem with batch delivery cost. Finished jobs are delivered
in batches. The objective is to find a job sequence, a delivery date for each job, and a
starting time and a size for the due window that jointly minimize the total cost comprising
earliness, weighted number of tardy jobs, job holding, due window starting time and size,
and batch delivery. In modern manufacturing and operations management, on-time de-
livery is a critical factor towards realizing customer satisfaction. Since then, a significant
number of successful applications of GAs to JSSP have appeared in [4,16].
As due-date-related problems are usually computationally complex, most existing re-

sults are typically for problems with a simple setting. Paper [27] researched maximizing
the profit with penalty of flow-shop scheduling problem from restrictive due-date. In pro-
duction practice, to obtain more profit, factory does endeavor to process more production
orders and that their complete time does not exceed due-date based on its resource restric-
tion. Many approaches, especially artificial intelligence (AI) based meta-heuristics [17] are
discussed. Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Dr. Eberhart and Dr. Kennedy in [5,12], inspired by social behavior of
bird flocking or fish schooling. In the past decade, two versions of PSO, continuous and
discrete, have been developed by Dr. Kennedy and Dr. Eberhart [8,13]. The continuous
PSO has been applied successfully to many continuous and discrete optimization prob-
lems [19], while the applications of discrete PSO are relatively few. Paper [20] researched
the parameter selection of particle swarm optimization. X. Jin et al. in [25] analyze
the importance of the randomness in the PSO, and then give a PSO variant without
randomness to show that traditional PSO cannot work without randomness. Paper [24]
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proposes a novel Bayesian method based cognitive trust model, and then it proposes a
trust dynamic level scheduling algorithm named Cloud-DLS by integrating the existing
DLS algorithm. Moreover, a benchmark is structured to span a range of Cloud computing
characteristics for evaluation of the proposed method. In recent years there have been
some reported works focused on PSO that has been applied in many fields such as flow-
shop [26] and job-shop [23] scheduling problems. Researchers proposed many algorithms
to solve scheduling, but they have their limitations in practical application. Especially
the PSO algorithm which was applied to solve the discrete problems reported very rare.

Relative to job-shop scheduling problems that optimize makespan or flow time, due-
date-related problems are usually much more computationally complex. In this paper a
job-shop scheduling problem to maximize production from restrictive different due-dates
was developed. For the special scheduling optimization problem proposed in this pa-
per, a discrete particle swarm optimization algorithm is researched to solve the special
scheduling problem. The author has researched A Particle Swarm Optimization Algo-
rithm of Inserting Particles for Flow-Shop Scheduling Problem to Maximizing Production
Order Number, which has been published in Far East Journal of Dynamical Systems.
It is deferent from this paper, the former study on flowshop scheduling, but this paper
researches on jobshop scheduling, and the latter problem is more complex, the novel algo-
rithm more easy to operate. This paper researches a special job-shop scheduling problem
with capabilities of equipments and different due-dates, and it is as follows.

First, its model is developed, which can accord process capacity and different due-dates
in numerous jobs to select some to process, and the objective is as many as possible to
process production orders, and that is the maximum output. There is no documentation
of the study reported on this scheduling problem.

Second, a discrete particle swarm optimization algorithm is presented for this special
scheduling problem. Research on PSO algorithm reported more, but using it to solve
complex scheduling problem in discrete is little. For the special scheduling optimiza-
tion proposed in this paper, authors developed a discrete PSO algorithm. The novel
PSO algorithm provides a new tool for the solution of the discrete problem.

Third, the novel algorithm is examined by using a set of benchmark instances with
various sizes and levels of hardness and compared with other approaches reported in
some existing literature works. Computation experiment shows that the efficiency of the
proposed optimization approaches is efficacious.

The fourth is to investigate effect of various parameters for algorithm performance, and
computational experiments are performed on different size scheduling problems. For solv-
ing different discrete scheduling problem and making its efficiency be more prominent, it
can refer to the parameters debugging method of this paper to adjustment algorithm per-
formance, and with the best performance is used to solve practical problems more widely.

In short, the literatures have not researched the special scheduling problem this pa-
per presented and no effective algorithm to solve it. This paper researched above two
problems.

2. Job-Shop Scheduling Problem to Maximize Production Restriction from
Capacity and Different Due-Dates Formulation.

2.1. The MPRCDJSSP description. In practice, customers must be on time delivery,
and the productive capacity of the enterprise is limited, and each order processing proce-
dure is not the same, processing consuming hours and delivery time is different, so how
to select processing orders to maximize capacity is a problem. Enterprise chooses com-
bination different orders to process and will form different capacity bottleneck. This is
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a complex selection problem of combinatorial optimization. This paper will solve the
problem. The mathematical description of the problem is as follows.
The MPRCDJSSP description: One factory will choose some jobs (j = 1, 2, · · · , n)

from n and they are to be processed on m machines M1,M2, · · · ,Mm, and others are let
contractor processing. Job j consists of a sequence of jk (k = 1, 2, · · · ,m) operations
O1j, O2j, · · · , Oij, · · · , Omkj, which must be processed in this order. We have precedence
constraints of the form Okj → Ok+1,j (k = 1, 2, · · · ,m − 1). There is a machine µij ∈
{M1,M2, · · · ,Mm} and a processing time Tij (i = 1, 2, · · · ,m, j = 1, 2, · · · , n) associated
with each working procedure Okj, Okj must be processed for Tij time units on machine
µij. All jobs share different due-dates dj, which are to be determined. Preemption of
an operation is not allowed, thus, the operation of each job on a machine requires an
uninterrupted period of time. Each job can be processed on one machine at the same
time and each machine can handle only one production order at a time.
According to above constraint, when the profit of each job order win is equal, which

production orders are selected to process and how to schedule can make the factory more
outputs profit?
The above problem is called job-shop scheduling problem to maximize production re-

striction from capacity and different due-dates, and shortened form MPRCDJSSP, and
this article will solve it.

2.2. The backward sequence drawing GATT of MPRCDJSSP method. MPRC
DJSSP is not tardiness characteristic; if we use traditional former next sort method, of-
ten it will cause some tardiness, and resulted in a lot of invalid selection processing. To
solve the MPRCDJSSP, a backward sequence drawing GATT of MPRCDJSSP method
is proposed. The method produces every sort that is legal and valid, and a large extent
improves scheduling efficiencies. Its steps are as follows.
From the final operator of last job order to the original operator of first job order

in solution sequence backward sequence drawing GATT of MPRCDJSSP, while reverse
order from final job order draw to anterior job order, if job order’s first operator treating
begin time is negative, choice tactics is from it to back all job orders (do not include
the production order that first operator treating begin time is negative). For modeling
convenience, we give the following hypothesis.
C(i, jk), S(i, jk) is working procedure k (k = 1, 2, · · · ,m) of job order j on machine i

processing complete and start time respectively.
The complete time C(i, jk) of job order j on machine i is less than (or equal to) the

minimum of start time S(ik+1, jk+1) of the working operation k + 1 of this job order on
machine ik+1 and start time Si(j+1) of back job order j + 1 on machine i. If working
operation k is last one of job order j, the complete time C(i, jk) of job order j on machine
i is less than (or equal to) the minimum of start time S(i,j+1) of back job order j + 1 on
machine i and due-date dj of job order j; The start time S(i, jk) of job order j on machine
i is equal to its complete time C(i, jk) subtraction processing time Tij of production order
j on machine i; Its mathematic model is as follows:

C(i, jk) = min{S(dj), Si(j+1)} (1)

S(i, jk) = C(i, jk)− Tij j = (n, n− 1, · · · , n′) (2)

According to the backward sequence drawing GATT of MPRCDJSSP method, we have:

C(i, nk) = S(ik+1, nk+1), S(i, nk) = C(ik+1, nk+1)− Tin,
for i = 1, · · · ,m; k = 1, · · · ,m− 1;
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C(im, jm) = min{dj, S(im, j + 1)}, S(im, jm) = C(im, jm)− Timj;
j = 1, 2, · · · , n− 1

C(i, jk) = min{S(ik, j), S(i, j + 1)}, S(i, jk) = C(i, jk)− Tij

for j = n, n− 1, · · · , n′; i = 1, 2, · · · ,m.

(3)

Selected job orders start processing time is as follows:

Smin = S(i1, n
′
1) (4)

So, selected all job orders satisfy following condition:

j = {n, n− 1, · · · , n′|Smin = S(i1, n
′
1) >= 0, Smin = S(i1, (n− 1)′1) < 0} (5)

2.3. The model of MPRCDJSSP. On the basis of before description, the MPRCD-
JSSP involves the following constraints.

À Due Dates Constraints: These constraints ensure that the job order would be ready
at its due date.

Cimjm ≤ dj (6)

Á Duration Constraints: These constraints ensure that the complete time C(i, jk) of
job order j on machine i is less than(or equal to) the minimum of start time Simjk+1

of
working operation k + 1 of this job order and start time Si(j+1) of back job order j + 1
on machine i; The beginning time of job order j on machine i is that its complete time
subtracts processing time Tij on this machine. And its model can be seen in (6).

Based on the backward sequence drawing GATT of MPRCDJSSP method, the math-
ematic model of MPRCDJSSP is as follows:

max(n− n′)

s.t.

 C(im, jm) ≤ dj (j = n, n− 1, · · · , n′ − 1)
S(i1, j1) ≥ 0 (j = n, n− 1, · · · , n′ − 1)
C(i1, n

′
1) < 0

(7)

3. Discrete Particle Swarm Optimization Algorithm for MPRCDJSSP.

3.1. Original particle swarm optimization algorithm. The system of particle swarm
optimization algorithm (PSO) is initialized with a population of random solutions and
searches for optima by updating generations. Each individual or potential solution flies in
the problem space with a velocity which is dynamically adjusted according to the flying ex-
periences of its own and its colleagues. Suppose that the searching space is N -dimensional
and m particles form the colony. The ith-particle represents an N -dimensional vector Xi

(i = 1, 2, · · · ,m), and it means that ith-particle locates at Xi = (xi1, xi2, · · · , xiD) (D =
1, 2, · · · , N) searching space. The ith-particle’s “flying” velocity is also an N -dimensional
vector, denoted as Vi = (vi1, vi2, · · · , viD). Denote the best position of ith-particle as
Pi = (pi1, pi2, · · · , piD), and the best position of the colony as Pg = (pg1, pg2, · · · , pgD)
respectively. The original particle swarm optimization algorithm (OPSO) could be per-
formed by the following equations [5,12].

vid(k + 1) = vid(k) + c1r1(pid(k)− xid(k)) + c2r2(pgd(k)− xid(k)) (8)

xid(k + 1) = xid(k) + vid(k + 1) (9)

where k represents iterative number, c1, c2 are learning factors, usually c1 = c2 = 2. r1,
r2 are random numbers between (0, 1).

The OPSO algorithm generally is used to solve continuous optimization problems, and
rarely to scheduling problem. This paper presents a discrete particle swarm optimization
algorithm for MPRCDJSSP.
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3.2. The discrete particle swarm optimization algorithm.

3.2.1. Model of DPSO algorithm. This subsection presents a discrete PSO algorithm to
solve MPRCDJSSP, shortened form DPSO. Suppose that searching space is n-dimensional
and m particles form the colony. The ith-particle represents an n-dimensional vec-
tor Xi (i = 1, 2, · · · ,m), and the position of each particle is a potential result. We
could calculate the particle’s fitness by putting its position into a designated objec-
tive function. The ith-particle’s “flying” velocity is also an n-dimensional vector, de-
noted as Vi = (vi1, vi2, · · · , vin). The best position of ith-particle pbest is denoted as
Pi = (pi1, pi2, · · · , pin), and the best position of global colony gbest as Pg = (p1, p2, · · · , pn)
respectively. Introduce it into qM new particles, at the same time with rN and sW best
particle of every generation and global colony respectively displace random selecting par-
ticles in every generation. Its model expression is as follows:

vid(k + 1) = wvid(k) + c1r1(pid(k)− xid(k)) + c2r2(pgd(k)− xid(k)) (10)

xid(k + 1) = xid(k) + vid(k + 1), (i = 1, 2, · · · ,m; d = 1, 2, · · · , n) (11)

X(k + 1) = D(Xq1 , Xq2 , · · · , XqM , Xr1 , Xr2 , · · · , XrN , Xs1 , Xs2 , · · · , XsW ) (12)

where k represents the number of iterative generation, and qM , rN , sW (0 ≤ qM , rN , sW <
psize) is random integer which denote numbers of displaced particles. D(Xq, Xr, Xs) is
denoted using qM new particles, rN best particle in every generation population and sW
best particle of global colony displace M +N +W particles of X, and M +N +W denote
whole number of every generation displacing particle. And others parameters are same as
in (2) and (3). In DPSO algorithm, each particle of the swarm benefits from discoveries
and previous experiences of all other colleagues during the search process.

3.2.2. Coding scheme in DPSO algorithm. For solving discrete MPRCDJSSP, the smallest
position value (SPV) rule is employed in DPSO algorithm. In DPSO algorithm this
working procedure coding is used, which gives birth to all children is flexible scheduling.
1) Sorting the weight X = [x1, x2, · · · , xn] from small to large get X ′ = [x′

1, x
′
2, · · · , x′

n],
and using yi to denote the position of x′

i in X = [x1, x2, · · · , xn]. Obtain the new sequence
Y ′ = [y′1, y

′
2, · · · , y′n].

2) Every weight of sequence Y divides working procedure M , and then round towards
plus infinity to get final one feasible solution sequence Y = [y1, y2, · · · , yn].
3) Working procedure coding: suppose n ×m JSSP, randomly give birth to following

sequence:
se(sequence) = [1, 3, · · · , n, 5, 3, · · · , n, · · · , 1, 2, · · · , n],

where the number indicates the job and the same number denotes different working pro-
cedure of same job according to their order of appearance in se, so the same number of
job 1, 2, · · · , n is m in se respectively.
In the following we will use one 2× 4 (four jobs and every job has two working proce-

dures) JSSP example to explain above working procedure coding.

Dim, n 1 2 3 4 5 6 7 8
X 0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469
X ′ 0.0975 0.1270 0.2785 0.5469 0.6324 0.8147 0.9058 0.9134
Y ′ 6 3 7 8 5 1 2 4
Y 3 2 4 4 3 1 1 2

Above working procedure coding makes real coding X = [0.8147, 0.9058, 0.1270, 0.9134,
0.6324, 0.0975, 0.2785, 0.5469] transform natural number Y = [3, 2, 4, 4, 3, 1, 1, 2]. For
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above 2 × 4 JSSP, solution sequence se = [3, 2, 4, 4, 3, 1, 1, 2], which denotes to in turn
process working procedure 1 of job 3, working procedure 1 of job 2, working procedure 1
of job 4, working procedure 2 of job 4, working procedure 2 of job 3, working procedure 1
of job 1, working procedure 2 of job 1, lastly process working procedure 2 of job 2. Using
this working procedure coding scheme make every particle be feasible scheduling.

3.2.3. Step of DPSO algorithm. The detailed steps of DPSO algorithm are as follows.
Step 0: Let swarm population size be PS; iterative number iter be 0; terminate genera-

tion number be G and initialize others parameters that will be used in DPSO algorithm.
Use (10), (11) and SPV to generate initialization particle population pop and velocity vel;

Step 1: Use (2) backward sequence drawing GATT of MPRCDJSSP (backward se-
quence schedule). When all production order start processing time is positive, use (7) to
evaluate each particle’s fitness (selected production order number); Initialize gbest posi-
tion with the best fitness particle in the swarm; Initialize pbest position with a copy of
particle itself;

Step 2: Generate next swarm population with Equations (10)-(12) and SPV; iter = iter
+ 1;

Step 3: Use (7) to compute each particle’s fitness in the swarm; find new Pg of the
swarm and Pi of each particle by comparison; update Pi and Pg, introduce it into qM new
particles and use rN best particle Pl of every generation population and sW best particle
Pg of global colony displaced random selecting particles in population; if iter = = G, go
to Step 4, or else go to Step 2;

Step 4: Output optimization result Pg.
The searching is a repeat process, and the stop criteria are that the end iteration number

is reached or the minimum error condition is satisfied. The stop condition depends on the
problem to be optimized.

In next section, the above DPSO algorithm will be used to solve a randomMPRCDJSSP
example and validate it effective.

4. Computation Experiments. To testing the efficiency of DPSO algorithm applied
to solve MPRCDJSSP, we use a set of benchmark instances with various sizes and levels of
hardness and compare with other approaches reported in some existing literature works.
A MPRCDJSSP example is randomly produced as follows.

There are selective production orders j (j = 1, 2, · · · , 20) and is performed by machine
i (i = 1, 2, · · · , 5) with fixed processing times. Production order j’s due-date is dj, and
dj = [450, 500, 400, 500, 250, 400, 450, 500, 450, 500, 350, 500, 400, 350, 450, 400, 500, 450, 3
50, 200]. The working procedure k (k = 1, 2, 3, 4, 5) of production order j (j = 1, 2, · · · , 20)
process to take how much time Tij and by which machine is as follows:

Oij =


5 1 4 1 5 2 3 2 3 1 3 3 2 5 5 1 5 5 1 4
1 3 3 5 3 1 2 1 4 5 5 4 3 4 1 4 2 3 2 1
3 5 5 3 2 4 1 3 5 3 1 1 5 2 4 3 1 1 5 2
4 2 2 4 1 3 4 4 2 4 4 5 4 1 3 5 4 2 4 3
2 4 1 2 4 5 5 5 1 2 2 2 1 3 2 2 3 4 3 5



Tij =


16 30 4 32 38 20 14 8 6 22 28 12 24 18 10 40 36 26 34 2
8 22 2 10 14 20 38 12 18 4 32 26 30 36 16 40 24 6 34 28
4 30 20 22 26 18 34 8 16 12 28 40 6 24 32 14 10 2 38 36
16 24 18 14 30 36 2 20 34 28 40 8 12 38 32 22 10 6 26 4
24 38 22 10 28 16 14 34 30 36 6 32 20 2 18 8 26 4 12 40


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According to factory’s production capacity and different production order’s due-dates,
which will be chosen and what sequence can process more production? On the mathemat-

ical theory, the problem exists in
20∑
i=1

C(20, i) = 1048575 select methods to process. There

are
20∑
i=1

C(20, i) ∗ (i ∗ 5)! = 9.3326 ∗ 10157 organization production schemes of small size

selected production scheduling problem. Handwork cannot solve the practical problems.
We use the novel algorithm proposed earlier to completely resolve the complex issues.
For testing the efficiency of DPSO algorithm, we compare their effectiveness of DPSO,

OPSO and GA to solve above random MPRCDJSSP. In GA we use mutation operation
M1∼M9 and crossover operation C1, because these operations’ efficiency is better shown
in paper [28]. The probability displaced randomly select particles with new particles, the
best particle of every generation population and the best particle of global colony is 1/3
respectively in DPSO algorithm. The crossover and mutation probability is 0.85, 0.15
respectively. To get the average performance of each algorithm twenty running on above
instance are performed and the solution quality is averaged, and let the best of them be the
solution of this algorithm. The paper uses the upper bound, lower bound, arithmetic mean
of fitness value in twenty and running one times taking time (microsecond) four indexes
to estimate these three algorithms. The computation comparing results of DPSO, OPSO
and GA to solve MPRCDJSSP are as the following Table 1, in which value in form takes
one radix point respectively.

Remark 4.1. In Table 1, when DPSO, OPSO algorithm and GA optimize MPRCDJSSP
obtain the best fitness and value use black bold to show; Max/Min/Mean/Time denote
the upper bound, lower bound and arithmetic mean of fitness value respectively. Time
shows running one times taking time. V denotes every generation displacing particle
whole number.

This section investigates the feasibility and effectiveness of the DPSO algorithm to
solve MPRCDJSSP. Through the simulation experiment, from Table 1 we can see that

Table 1. The comparisons of DPSO, OPSO algorithm and GA for MJNRDDJSSP

Algorithm (population size: 150, terminate generation number: 800)

Max/Min/Mean/Time

w DPSO (with the Pl displace) DPSO (with the Pg displace)

V=psize/8 V=psize/12 V=psize/16 V=psize/10 V=psize/15 V=psize/20

.1 17/14/15.5/20.5 16/14/15.1/20.6 16/12/15.1/20.8 17/11/14.4/20.1 17/13/14.7/20.7 16/14/15.1/23

.2 17/14/15.4/20.6 17/13/15.3/20 17/15/15.8/19.9 18/13/15.3/20.2 17/15/15.6/21.6 17/13/15.3/20.8

.3 18/14/15.3/20 17/15/15.8/21.2 17/13/14.9/23.3 17/15/15.7/20.7 17/15/15.9/22.7 17/15/16.1/21.9

.4 17/14/15.6/20.8 17/13/15.8/21.8 17/14/15.8/21.8 18/14/15.9/20.9 17/14/15.6/23.5 17/15/16/20.5

.5 18/14/15.5/20.9 17/14/15.9/22.2 17/14/15.7/20 16/13/14.9/20.9 17/14/15.5/20 17/14/15.5/20

.6 15/13/14.3/23.5 16/11/14.2/21.7 16/12/14.2/21.1 14/10/11.9/21 16/12/13.5/25.8 17/12/14.4/20.1

.7 15/11/12.6/19.8 15/10/12.4/21.6 15/11/12.5/20.9 13/9/11.2/21.2 13/10/11/20.3 14/10/11.8/21.2

w
DPSO (randomly with the new

OPSO GA
particle and Pl, Pg displace)

.1
V=psize/10 V=psize/14 V=psize/18

15/12/14.2/21.2
C1, M1 16/12/14/4

17/13/15.2/21.7 17/14/15.5/22.8 17/15/15.6/20.2 C1, M2 16/14/14.6/4.1

.2 17/14/15.7/20.4 18/14/15.8/20.6 17/15/15.6/20.8 17/12/15.3/23.2 C1, M3 16/13/14.6/4.2

.3 17/15/15.7/21.1 18/14/15.7/20.5 17/14/15.7/21.1 17/14/15.4/20.5 C1, M4 16/13/14.6/4.2

.4 17/15/15.7/22.2 18/15/15.8/20.8 17/14/15.5/20.1 17/14/15.4/20.8 C1, M5 16/13/14.3/4

.5 17/13/15.6/20.6 17/14/15.7/21.2 17/14/15.6/20.5 17/13/15.3/22.2 C1, M6 17/13/14.4/4.1

.6 17/12/14/20.2 16/12/14.3/20.1 16/12/13.8/20.4 16/12/14.8/21.6 C1, M8 16/13/14.7/4.1

.7 15/10/11.4/21.1 14/11/11.8/19.8 15/11/12.6/20.5 14/11/12.3/21.1 C1, M9 16/13/14.4/4.2
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using DPSO algorithm displaced randomly selected particles with new particles, the best
particle of every generation population and the best particle of global colony to solve
MPRCDJSSP obtained the upper bound, average and lower bound of production order
number is better. The effectiveness of DPSO algorithm displaced randomly selected par-
ticles with the best particle of every generation population or the best particle of global
colony takes second place, the OPSO takes third place; GA is the worst when we do not
think taking time. The effectiveness of DPSO and OPSO algorithm optimizing MPRCD-
JSSP with inertia coefficient w ∈ [0.1 0.5] is the best. In DPSO algorithm, the number
of displaced particles should be N ∈ [PS/15 PS/10]. MOPSO and OPSO algorithms op-
timize MPRCDJSSP that running one times taking time is more than GA, because they
coding process from real to integer takes much time, and the GA using natural number
taking time is small.

Use DPSO algorithm to optimize above MPRCDJSSP and obtained the best product
scheme is choice 18 production orders to process. The best scheduling is 9 as the following

Figure 1. GATT of MPRCDJSSP select and scheduling
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Figure 2. Convergence figure of DPSO, OPSO algorithm and GA for MPRCDJSSP

respectively: {20, 9, 8, 5, 7, 13, 1, 14, 4, 6, 15, 19, 3, 18, 11, 12, 10, 2}; {5, 14, 17, 2, 20, 6, 3, 10,
1, 11, 9, 8, 7, 13, 4, 12, 15, 18}; {11, 20, 1, 5, 10, 7, 8, 9, 2, 14, 3, 4, 13, 6, 15, 18, 17, 12}; {16, 4,
5, 14, 8, 18, 20, 12, 13, 1, 9, 7, 11, 15, 6, 3, 17, 10}; {20, 10, 1, 11, 15, 3, 5, 6, 13, 12, 17, 9, 7, 8, 4,
14, 2, 18}; {5, 6, 20, 15, 11, 2, 17, 1, 19, 8, 12, 9, 13, 7, 18, 4, 3, 10}; {5, 12, 10, 7, 6, 14, 20, 3, 4,
9, 17, 13, 1, 8, 16, 18, 15, 2}; {13, 10, 5, 20, 2, 19, 14, 11, 3, 9, 1, 6, 12, 15, 7, 8, 18, 17};{20, 7, 16,
5, 14, 15, 18, 6, 8, 3, 10, 13, 2, 1, 12, 9, 4, 17}. The two best schedulings with DPSO algo-
rithm to optimize above the MPRCDJSSP see Gantt in Figure 1. According to the opti-
mal scheduling results to organize production, otherwise 18 the same orders of production
selected to process will also cause the tardiness.
DPSO algorithm the convergence contrast of DPSO, OPSO algorithm and GA with

their best parameter and operation respectively solving above MPRCDJSSP is shown by
Figure 2.
From simulation solution we can see clearly that the optimal processing production

order number got by DPSO algorithm is more than OPSO algorithm and GA. The
convergence rate of former to optimize MPRCDJSSP is faster than both in the latter.
Computational experiments show the DPSO algorithm for MPRCDJSSP is very valid,
especially for many production orders and few machines problem.

5. Conclusion. In many research scheduling literatures, they usually study minimizing
the makespan and obtaining great harvest. In this paper we present a job-shop sched-
uling problem to maximize production restriction from capacity and different due-dates,
whose objective is to process as much as possible production orders according to factory’s
production capacity and different due-dates. The model of this special problem is set up,
which selectively produces production order and cannot exceed each production order’s
due-dates. According to its special, the DPSO algorithm is proposed to solve it. Experi-
ments show the high performance of DPSO algorithm and the efficiency of the proposed
solving approaches.
There are a number of research directions that can be considered as useful extensions

of this research. Future works will investigate applying the developed DPSO algorithm
to other optimization problems such as discrete scheduling problem and TSP.
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