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Abstract. Membrane computing (known as P systems) is a novel class of distributed
parallel computing models. In this paper, a partition-based clustering algorithm under
the framework of membrane computing is proposed. The clustering algorithm is based on
a tissue-like P system, which is used to exploit the optimal cluster centers for a data set.
Each object in the tissue-like P system represents a group of candidate cluster centers and
is evolved through simulated annealing mechanism and mutation mechanism. Meanwhile,
communication rules are used to exchange and share the objects between different elemen-
tary membranes and between elementary membranes and the environment. The proposed
clustering algorithm is evaluated over two artificial data sets and two real-life data sets
and is further compared with k-means algorithm and GA-based k-means algorithm respec-
tively. The comparison results reveal the superiority of the proposed clustering algorithm
in terms of clustering quality and stability.
Keywords: Membrane computing, Tissue-like P systems, Clustering algorithm, Simu-
lated annealing, K-means

1. Introduction. Membrane computing initiated by Gh. Pǎun [1] in 2000 is inspired
from the structure and functioning of living cells and the interactions of living cells in
tissues or higher order biological structures. Membrane computing is a novel class of
distributed parallel computing models, and also is known as P systems. Generally, a
P system contains three ingredients: (i) membrane structure, (ii) multisets, and (iii)
evolution rules [2]. Multisets of objects are placed in the compartments surrounded by
the membranes and evolved by some given evolution rules. Therefore, P systems can
process and generate information to accomplish a computation. Cell-like P systems were
introduced and studied firstly, where the membranes were arranged as a rooted tree [1].
Neural-like P systems are another type of P systems, in which spiking neural P systems,
as a class of neural-like P systems, have been widely studied in recent years [3, 4, 5, 6].
Tissue-like P systems were inspired from intercellular communication and cooperation
between cells in tissues [7]. In a tissue-like P system, the communication of objects is
based on symport/antiport rules, which are introduced as communication rules of the P
systems. In the case of symport rules, objects cooperate to traverse a membrane together
in the same direction, whereas in the case of antiport rules, objects residing at both

753



754 Y. JIANG, H. PENG, X. HUANG, J. ZHANG AND P. SHI

sides of the membrane cross it simultaneously but in opposite directions. A tissue-like P
system can be viewed as a net of processors dealing with symbols and communicating these
symbols along channels specified in advance. In recent years, a large number of P systems
and variants have been proposed [8, 9, 10, 11, 12]. These efforts have addressed that P
systems possess maximum parallelism, synchronization and non-deterministic features.
Clustering is a procedure of grouping objects according to the similarity of objects. Any

clustering should have two main characteristics: low inter-class similarity and high intra-
class similarity. Clustering is an unsupervised learning, namely, it learns by observation
rather than from examples. The overall distribution pattern and correlation among data
objects can be discovered by clustering [13]. Clustering analysis has been widely used in
various fields, such as image processing, data analysis, market analysis. k-means algorithm
is a classical partition-based clustering algorithm, in which starting with k random cluster
centers, the centers are updated by the arithmetic means of the points belonging to the
corresponding clusters iteratively [14]. k-means algorithm has been widely used because
of its simplicity and easy implementation. However, Kanugo et al. [15] stated that the
selection of initial cluster centers for k-means has a great impact on clustering results. The
clustering quality will be worsened if the selection of initial cluster centers is flawed. In
addition, k-means easily falls into a local optimum during clustering procedure. In order
to overcome the problems of k-means algorithm, several clustering algorithms based on
genetic algorithms (GAs) have been developed in recent years [14, 16, 17]. Maulik and and
Bandyopadhyay [14] proposed a genetic algorithm based method to process the clustering
problem and experiment on synthetic and real life data sets to evaluate the performance.
Bandyopadhyay and Saha [16] described an evolutionary clustering technique based on
genetic algorithms that used a new point symmetry-based distance measure. Laszlo and
Mukherjee [17] presented a genetic algorithm for selecting centers to seed the popular k-
means method for clustering, where a crossover operator was used to exchange neighboring
centers.
This paper proposes a novel partition-based clustering algorithm, which is based on a

tissue-like P system. Cluster centers are represented by the objects in the elementary
membranes. Simulated annealing mechanism and mutation mechanism are introduced
as evolution rules to evolve the objects, while communication rules between elementary
membranes and between elementary membranes and the environment are used to ex-
change and share the objects. An adaptive modification strategy for initial temperature
is adopted in this system in order to better fit various data sets. The designed tissue-like P
system can automatically search for the optimal cluster centers to achieve data clustering.
We will compare the presented clustering algorithm with classical k-means algorithm and
the clustering technique based on genetic algorithms in terms of both clustering quality
and stability.
The main contribution of this paper is presentation of a new partition-based clustering

algorithm under the framework of membrane computing to solve the clustering problem,
in which the mechanisms of tissue-like P systems are applied to exploit the optimal cluster
centers for data clustering.
The rest of this paper is organized as follows. In Section 2, tissue-like P systems with

symport/antiport rules are reviewed briefly. The presented clustering algorithm based on
tissue-like P systems is described in Section 3 and the experimental results are showed in
Section 4. Finally, conclusions are drawn in Section 5.

2. Tissue-Like P Systems with Symport/Antiport Rules. The proposed clustering
algorithm is based on tissue-like P systems with symport/antiport rules, so we briefly
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review the tissue-like P systems in this section. The more detailed description of the
tissue-like P systems can be found in references [2, 7].

Formally, a tissue-like P system of degree q > 0 with symport/antiport rules is a
structure of the form

Π = (w1, . . . , wq, R1, . . . , Rq, R
′, i0)

where

(1) wi (1 ≤ i ≤ q) is a finite set of strings, representing the multisets of objects associated
with cell i in the initial configuration;

(2) Ri (1 ≤ i ≤ q) is a finite set of evolution rules contained in cell i;
(3) R′ is a finite set of communication rules of the form (i, u/v, j), which represents the

communication rule between cell i and cell j, i 6= j and i, j = 0, 1, 2, . . . , q;
(4) i0 indicates the output region of the system.

A tissue-like P system of degree q can be viewed as a net composed of q cells. The q
cells are labeled by 1, 2, . . . , q respectively, while the environment is labeled by 0. The
communication rule of the form (i, u/v, j) reflects the synapse connection between cell i
and cell j implicitly. Each cell is surrounded by an elementary membrane.

w1, w2, . . . , wq describe the multisets of objects placed in the q cells, respectively. We
assume that any multiset of objects is available in the environment.

Ri is a finite set of evolution rules with the form of u → v, 1 ≤ i ≤ q. Object u will
be evolved into v if the rule is applied. The communication rules of the form (i, u/v, j)
are called antiport rules. The communication rule (i, u/v, j) can be applied over two cells
labeled by i and j if u is contained in cell i and v is contained in cell j. The application
of this rule means that the multisets of objects represented by u and v are interchanged
between the two cells. Note that if either i = 0 or j = 0 then the objects are interchanged
between a cell and the environment. The rules described above with one of i, j being
empty are called symport rules, for example, (i, u/λ, j). Application of the rule means
that object u will be communicated from cell i to cell j.

In tissue-like P systems, each cell is a computing unit (as usual in the framework of
membrane computing), working in a maximally parallel way (a universal clock is consid-
ered). A computation of a tissue-like P system is a sequence of computing steps, which
starts from the q cells containing w1, . . . , wq. At each step, one or more rules are applied to
the current multisets of objects. When the system halts, the computation is accomplished
successfully, and the results are generated in the output cell.

3. The Proposed Clustering Algorithm Based on Tissue-Like P Systems.

3.1. The designed tissue-like P system. In this work, a tissue-like P system is de-
signed to realize a partition-based clustering algorithm. The tissue-like P system consists
of q elementary membranes, which are labeled by 1, 2, . . . , q respectively. Figure 1 shows
the membrane structure of the system, where the environment is labeled by 0. As usual,

w1 w2 wq

1 2 q
0

Figure 1. The membrane structure of the designed tissue-like P system
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each elementary membrane contains one or more objects. In the designed system, each
object is a d-dimensional vector, a = (x1, x2, . . . , xd) ∈ Rd.
Formally, the tissue-like P system of degree q can be described as follows:

Π = (w1, . . . , wq, R1, . . . , Rq, R
′, i0)

where:

(1) w1, . . . , wq are the initial objects placed in the elementary membranes labeled by
1, . . . , q, respectively. Each object is a d-dimensional vector;

(2) Ri is a finite set of evolution rules in cell i, 1 ≤ i ≤ q. There are evolution rules of
the following two forms:
(a) Simulated annealing rule: u → v. Simulated annealing mechanism is utilized to

evolve object u, generating the new object v;
(b) Mutation rule: v → v′. A slight mutation on object v is happened to generate

object v′;
(3) R′ is a finite set of communication rules of the form (i, u/v, j), where i, j ∈ {0, 1, . . . ,

q} and i 6= j, and 0 represents the environment;
(4) i0 = 0 indicates that the environment is the output region.

The communication rule (i, u/v, j) expresses the interchange of object u in cell i and
object v in cell j. If v = λ, object u will be communicated from cell i to cell j and vice
versa, where the symbol λ represents the empty object. Assume here that when object u
placed in cell i is transported to cell j, a copy of object u will remain in cell i still.
The sum of the Euclidean distances of the data points to their corresponding cluster

centers is used as clustering metric to evaluate the objects in the system. Suppose that
the data set to be clustered has k cluster centers, z1, z2, . . . , zk, and the corresponding
clustering partitions are C1, C2, . . . , Ck respectively. Thus, the clustering metric M is
given by

M(C1, C2, . . . , Ck) =
k∑

i=1

∑
xj∈Ci

‖ xj − zi ‖

where x1, x2, . . . , xn are the data points to be clustered. Generally, the M is less, the
clustering result or object is better.
In the designed tissue-like P system, each elementary membrane contains only one

object, which represents a group of candidate cluster centers. The cluster centers in the
elementary membranes will be evolved into new cluster centers by using simulated anneal-
ing rules firstly. The optimal object (cluster centers) found in the computing procedure is
always retained in the environment. At the end of each computing step, the best object
in each elementary membrane is transported into the environment to update the optimal
object by using communication rule. After updating, the updated optimal object is sent
back to each elementary membrane to replace the previous object. Then mutation rules
are applied in the q − 1 elementary membranes except for membrane 1. The optimal
object received from the environment takes place slight mutation in the q− 1 elementary
membranes, and the objects are replaced by the generated new objects. The process de-
scribed above repeats until the halt condition is satisfied. The object in the environment
is the final cluster centers when the system halts.

3.2. Partitioning and computing new cluster centers. For k cluster centers z1, z2,
. . . , zk, if the distance of a data point xi to cluster centers zj (j = 1, 2, . . . , k) satisfies

‖ xi − zj ‖<‖ xi − zp ‖, for p = 1, 2, . . . , k, and j 6= p,

then the point xi is assigned to the cluster Cj, i = 1, 2, . . . , n.
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After clustering partitions are determined, new cluster centers are computed by the
arithmetic means of the points in the corresponding cluster. Therefore, if the number of
data points in the k clusters C1, C2, . . . , Ck are n1, n2, . . . , nk respectively, then the new
cluster centers can be computed by

z∗i =
1

ni

∑
xj∈Ci

xj

where i = 1, 2, . . . , k.

3.3. Simulated annealing rule. In the designed tissue-like P system, the objects (clus-
ter centers) in each elementary membrane are evolved by evolution rules, including sim-
ulated annealing rules and mutation rules. Simulated annealing rules are inspired from
the mechanism of the known simulated annealing algorithm [18, 19].

The simulated annealing rules used in this work are described as follows:

(1) Generate a new solution by adding a perturbation in current partitions, namely,
changing the partitions of a or several points randomly;

(2) Compute the difference ∆M between the M value of the solution before the pertur-
bation and the M value of the new solution after the perturbation;

(3) If ∆M < 0, then previous solution is replaced by the new solution;
(4) Otherwise, the new solution is accepted with the probability e−∆M/t, where t is the

temperature;
(5) Repeat steps (1)-(4) until the maximum number of iterations is reached or the solu-

tion does not change in a specified number of consecutive iterative steps.

3.4. Mutation rule. In each computing step, environment can transport the current
optimal object (cluster centers) to the q elementary membranes by using communication
rules. And then, the optimal object is mutated in the q − 1 elemental membranes except
membrane 1. The mutated objects will be used as new objects in the next computing
step. The mutation rules used in the tissue-like P system can be described as follows.

If the value of a center at dimension j is v, after mutation it becomes

v′ =

{
v ± 0.1× δ × v, v 6= 0
v ± 0.1× δ, v = 0

where the signs “+” or “−” occur with equal probability, and δ is a real number in the
range [0, 1], generated with uniform distribution.

3.5. Adaptive modification of the initial temperature. Existing works have indi-
cated that simulated annealing algorithms are sensitive to initial temperature t. Thus, in
order to make the proposed clustering algorithm suit various data sets better, an adap-
tive modification method of initial temperature is introduced into the simulated annealing
rules used in this paper.

When ∆M ≥ 0, the new solution is accepted with the probability e−∆M/t during
evolution. Therefore, the acceptance probability of the new solution is associated with
the ratio of ∆M and temperature t closely. However, the values of ∆M often have huge
differences for different data sets. If the values of the points in the data sets are large,
then ∆M is often large, whereas if the values are small, ∆M becomes small.

In order to have a same clustering capability for different data sets, the ratio of ∆M
and t should be the same to some extent. Therefore, different initial temperatures need
to be explored and set up for different data sets.

If the initial temperatures t = β∆M , the probability is related with the factor β only,
having nothing to do with ∆M , namely having nothing to do with data sets. In this way,
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it does not need to set up different initial temperatures for different data sets and has the
same clustering capability at the same time.
Initially, the temperature t is set to be 1. In the first evolution, the absolute values

of ∆M produced in membrane 1 are recorded and their mean value ∆M ′ is calculated.
Thus, the initial temperature t will be modified as t = β∆M ′.

3.6. Clustering algorithm. Based on the tissue-like P system, the proposed clustering
algorithm can be described as follows:

(1) Generate a group of initial cluster centers (object) for each elementary membrane
randomly. And then, determine the clustering partitions according to the cluster
centers and compute the new cluster centers. Let initial temperature be 1;

(2) Simulated annealing rules are applied to evolve the cluster centers (objects) in the
elementary membranes. If it is the first time of evolution, membrane 1 can adaptively
amend the initial temperature according to the evolution results;

(3) The q elementary membranes use communication rules to update the optimal cluster
centers in the environment, and then their previous cluster centers are replaced by
the updated optimal cluster centers;

(4) The elementary membranes labeled by 2, 3, . . . , q use the mutation rules to generate
new objects (cluster centers);

(5) Decrease the temperature by t = αt, where 0 < α < 1;
(6) Repeat steps (2)-(5) until reaching the maximum number of iterations. The system

halts and exports the optimal clustering centers in the environment.

4. Experimental Results and Analysis.

4.1. Experimental data sets. The clustering algorithm presented in this paper is eval-
uated over four data sets respectively, including two real-life data sets (Iris, Vowel) and
two artificial data sets (Data3, Data4 ). These four data sets are described as follows.

4.1.1. Real-life data sets.

• Iris Data. The data set represents different categories of irises, which have four
features. The four features represent the sepal length, sepal width, petal length and
the petal width in centimeters respectively [20]. The data set has three classes with
50 samples per class. There are some overlaps between classes 2 and 3. The number
of the cluster centers k is chosen to be 3 for the data set.

• Vowel Data. The data set consists of 871 Indian Telugu vowel sounds [21]. They
were uttered in a consonant-vowel-consonant context by three male speakers in the
age of 30-35 years. The data set has three features, F1, F2, F3, corresponding to
the first, second and third vowel formant frequencies, and six overlapping classes
{δ, a, i, u, e, o}. Therefore, the value of k, representing the number of cluster centers,
is chosen to be 6 for this data set.

4.1.2. Artificial data sets.

• Data3 : The data set has nine overlapping classes and all the classes are assumed to
have an equal priori probability (= 1/9). It has 900 data points with two dimensions,
which obey the triangular distribution. The X − Y ranges for the nine classes are
as follows:
Class 1: [–3.3, –0.7] × [0.7, 3.3]
Class 2: [–1.3, 1.3] × [0.7, 3.3]
Class 3: [0.7, 3.3] × [0.7, 3.3]
Class 4: [–3.3, –0.7]× [–1.3, 1.3]
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Class 5: [–1.3, 1.3] × [–1.3, 1.3]
Class 6: [0.7, 3.3]× [–1.3, 1.3]
Class 7: [–3.3, –0.7] × [–3.3, –0.7]
Class 8: [–1.3, 1.3]× [–3.3, –0.7]
Class 9: [0.7, 3.3] × [–3.3, –0.7]

Thus, the domain for the triangular distribution for each class and for each axis
is 2.6. Consequently, the height will be 1

1.3
(since 1

2
∗ 2.6 ∗height = 1). This data set

is shown in Figure 2. The value of k is chosen to be 9 for this data set.
• Data4 : This is an overlapping data set with ten dimensions generated by a triangular
distribution of the form shown in Figure 3 for two classes. It has 1000 data points.
The value of k is chosen to be 2 for the data set. The range for class 1 is [0, 2] × [0,
2] × [0, 2] . . . 10 times, and that for class 2 is [1, 3]× [0, 2] × [0, 2] . . . 9 times, with
the corresponding peaks at (1, 1) and (2, 1). The distribution along the first axis x
for class 1 may be formally computed by

f1(x) =


0, x ≤ 0,

x, 0 < x ≤ 1,

2− x, 1 < x ≤ 2,

0, x > 2.

Similarly for class 2

f2(x) =


0, x ≤ 1,

x− 1, 1 < x ≤ 2,

3− x, 2 < x ≤ 3,

0, x > 3.

The distributions along the other nine axes (yi, i = 1, 2, . . . , 9) for the both classes
are

f(yi) =


0, yi ≤ 0,

yi, 0 < yi ≤ 1,

2− yi, 1 < yi ≤ 2,

0, yi > 2.

Figure 2. Data 3 (‘1’ – points from class 1, ‘2’ – points from class 2, . . . ,
‘9’ – points from class 9)



760 Y. JIANG, H. PENG, X. HUANG, J. ZHANG AND P. SHI

Figure 3. Triangular distribution along the X-axis

4.2. Experimental parameters. In the experiments, the number of the elementary
membranes, q, is chosen to be 4. The maximum cooling times is 1000, and the cooling
rate α is 0.99. If the solution does not change in 50 consecutive iterations, the system is
considered to be steady and the temperature is reduced. The maximum iteration number
is 100 at a temperature. The initial temperature is 1 at first, and then it is modified
adaptively by t = β∆M ′ for β = 0.24, at the first iteration. Assume that the clustering
partition of one point will be disturbed randomly.

4.3. Performance comparison and analysis. The performance of the presented clus-
tering algorithm based on tissue-like P system is compared with two representative clus-
tering algorithms, which are the classical k-means algorithm and genetic algorithm-based
clustering algorithm [14] (GA-k-means for short), respectively. Because the clustering
algorithm proposed in this paper is a clustering algorithm in the framework of membrane
computing, it is called membrane clustering algorithm (MC for short). For the GA-k-
means, the parameters of the GA are chosen as follows: the population size is 100, the
crossover probability is 0.8, the mutation probability is 0.001 and the number of iterations
is 1000.
In the experiments, we independently execute the three clustering algorithms 10 times

over each data set, and then obtain their optimal M values. In addition, we compute
the mean values and variances 10 times for the three clustering algorithms over each data
set. The variances are used to compare the stabilities of the three clustering algorithms,
while other results are used to evaluate the clustering qualities of the three clustering
algorithms over data sets.
Table 1 shows the experimental results of the three clustering algorithms over Iris for

10 times. The comparison results indicate clustering quality of MC is more excellent
than that of other two algorithms for every time. Meanwhile, the worst value, best value,
average value and variance of MC for 10 runs are all superior to that of k-means and
GA-k-means.
The comparison results of the three algorithms over Vowel are provided in Table 2. It

can be found that the MC in terms of M values is superior to k-means and GA-k-means
for every time of 10 runs. In addition, the worst value, best value and mean value of MC
are all better than that of other two algorithms obviously. The variance of MC is little
worse than that of GA-k-means, but much better than that of k-means.
The comparison results for Data3 are listed in Table 3. The comparison results show

that MC has one bad value and nine stable values that outperform the values of k-
means and GA-k-means obviously. In terms of the worst value, best value, mean value
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Table 1. The comparison results of M values for k-means, GA-k-means
and MC over Iris

k-means GA-k-means MC
run = 1 97.325924 96.875570 96.662134
run = 2 97.346220 96.929054 96.666562
run = 3 97.346220 96.925511 96.658938
run = 4 97.346220 96.936318 96.657933
run = 5 97.325924 96.920160 96.657690
run = 6 97.346220 97.159438 96.656597
run = 7 97.346220 96.907061 96.661683
run = 8 97.325924 96.927979 96.662329
run = 9 97.346220 96.860877 96.656245
run = 10 97.346220 96.896913 96.664151
Worst 97.346220 97.159438 96.666562
Best 97.325924 96.860877 96.656245
Mean 97.340131 96.933888 96.660426

Variance 0.000096 0.006890 0.000012

Table 2. The comparison results of M values for k-means, GA-k-means
and MC over Vowel

k-means GA-k-means MC
run = 1 151318.839537 149343.289938 149085.792884
run = 2 150397.667727 149297.756410 149086.381404
run = 3 154443.846766 149315.881433 149065.448492
run = 4 149446.887122 149319.662329 148988.994027
run = 5 161006.605287 149326.084239 149085.349820
run = 6 150360.497492 149276.366603 149066.885054
run = 7 158967.269527 149305.861467 149096.103505
run = 8 150469.895346 149248.785820 149088.133764
run = 9 151469.254956 149360.703439 149084.200723
run = 10 149708.671061 149295.692895 148998.086522
Worst 161006.605287 149360.703439 149096.103505
Best 149446.887122 149248.785820 148988.994027
Mean 152758.943482 149309.008457 149064.537620

Variance 16665013.263863 1033.998796 1492.314283

and variance, the performance of MC has a great improvement compared with k-means.
Although the worst value of MC is not superior to that of GA-k-means, MC outperforms
GA-k-means distinctly at most of times.

Table 4 shows the comparison results over Data4. The results indicate that whether
the every M value of MC for 10 runs or the worst value, best value and mean value of MC
are all better than that of k-means and GA-k-means. Meanwhile, the variance of MC is
also less than that of other two algorithms.

Figures 4-7 show the average trends of 10 runs for the three algorithms over the four
data sets, respectively. Figure 4 shows the average trend over Iris, and Figure 5 shows
the average trend over Vowel. The average trends for Data3 and Data4 are showed in
Figure 6 and Figure 7, respectively.
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Table 3. The comparison results of M values for k-means, GA-k-means
and MC over Data3

k-means GA-k-means MC
run = 1 603.094514 600.017769 599.760894
run = 2 660.769499 600.016007 599.778260
run = 3 600.538031 600.028848 599.780606
run = 4 603.094514 600.013967 640.861715
run = 5 663.778316 600.077222 599.780754
run = 6 600.756731 600.013897 599.775377
run = 7 644.667212 600.026851 599.782653
run = 8 603.243637 600.022140 599.661831
run = 9 600.402814 600.093488 599.785860
run = 10 600.494550 600.067858 599.781371
Worst 663.778316 600.093488 640.861715
Best 600.402814 600.013897 599.661831
Mean 618.083982 600.037805 603.874932

Variance 724.044847 0.000891 168.893002

Table 4. The comparison results of M values for k-means, GA-k-means
and MC over Data4

k-means GA-k-means MC
run = 1 1256.160089 1256.142306 1256.113775
run = 2 1256.164154 1256.151663 1256.115184
run = 3 1256.164154 1256.151663 1256.112702
run = 4 1256.164154 1256.145110 1256.114176
run = 5 1256.164154 1256.142268 1256.117655
run = 6 1256.160089 1256.153977 1256.117133
run = 7 1256.164154 1256.150406 1256.115940
run = 8 1256.160089 1256.141780 1256.115069
run = 9 1256.164154 1256.140485 1256.114227
run = 10 1256.164154 1256.147206 1256.115322
Worst 1256.164154 1256.153977 1256.117655
Best 1256.160089 1256.140485 1256.112702
Mean 1256.162935 1256.146686 1256.115118

Variance 0.000004 0.000025 0.000002

In Figures 4-7, the black lines, blue lines and red lines represent the average trends of
10 runs for k-means, GA-k-means and MC, respectively. As can be seen from the figures,
there is a fluctuation situation in each trend of MC, meaning the process of searching for
the optimal object (cluster centers) at the high temperature. At a high temperature, the
bad objects have high acceptance probabilities. It helps to avoid falling into local optimal
solution. The acceptance probabilities of the bad objects decrease as the temperature
reduces and the trends become stable. It can be seen that the convergence speed of MC
is slower than that of k-means and GA-k-means. However, the optimal solution obtained
by MC is more superior to the other two algorithms.

5. Conclusions. This paper presented a novel partition-based clustering algorithm based
on tissue-like P systems. We designed a tissue-like P system that consisted of q elementary
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membranes to exploit the optimal cluster centers. There were an object, which represented
a group of candidate cluster centers, and two types of evolution rules (simulated annealing
rules and mutation rules) in each elementary membrane. The simulated annealing rules
were inspired from the principle of the known simulated annealing algorithm and an
adaptive modification strategy was utilized to reduce the sensitivity of initial temperature.
The communication rules between the elementary membranes and between the elementary
membranes and environment were used to control the sharing of the best objects.

The presented clustering algorithm based on tissue-like P systems was evaluated over
two real-life data sets (Iris and Vowel) and two artificial data sets, and was compared with
classical k-means algorithm and GA-based k-means algorithm. The comparison results
indicated that the presented clustering algorithm was superior to other two algorithms
in the aspect of clustering quality and had a good stability. However, the presented
clustering algorithm had a slower convergence speed than k-means algorithm and GA-
based k-means algorithm due to the use of simulated annealing mechanism. In our further



764 Y. JIANG, H. PENG, X. HUANG, J. ZHANG AND P. SHI

0 100 200 300 400 500 600 700 800 900 1000

600

605

610

615

620

625

630

635

interation

M

data3 data set

 

 
k−means
GA−k−means
MC with 4 membranes

Figure 6. The average trend for Data3

0 100 200 300 400 500 600 700 800 900 1000

1256.15

1256.2

1256.25

1256.3

1256.35

interation

M

data4 data set

 

 
k−means
GA−k−means
MC with 4 membranes

Figure 7. The average trend for Data4

works, other evolutionary strategies will be considered to overcome the weakness of the
results.
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