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Abstract. Modern microarray technology allows measuring the expression levels of
thousands of genes, under different environmental conditions and over time. Cluster-
ing is, often, a first step in the analysis of the huge amounts of biological data obtained
from these microarray based experiments. As most biological processes are dynamic and
biological experiments are conducted during longer periods of time, the data is continu-
ously subject to change and researchers must either wait until the end of the experiments
to have all the necessary information, or analyze the data gradually, as the experiment
progresses. If the available data is clustered progressively, using clustering algorithms,
as soon as new data emerges, the algorithm must be run from scratch, thus leading to
delayed results. In this paper, we approach the problem of dynamic gene expression data
sets and we propose a dynamic core based clustering algorithm, which can handle newly
collected data, by starting from a previously obtained partition, without the need to re-
run the algorithm from the beginning. The experimental evaluation is performed on a
real-life gene expression data set and the algorithm has proven to perform well in terms
of a series of evaluation measures.
Keywords: Bioinformatics, Gene expression, Unsupervised learning, Dynamic cluster-
ing

1. Introduction. Gene expression refers to the process by which the information from
a gene is converted into functional gene products: proteins or RNA having different roles
in the life of a cell. Modern microarray technology is nowadays used to experimentally
detect the levels of expressions of thousand of genes, across different conditions and over
time. Once the gene expression data has been gathered, the next step is to analyze it and
extract useful biological information. Data mining is the field that offers the necessary
methods to accomplish this task and one of the most used algorithms dealing with the
analysis of gene expression data approaches the clustering problem [1].

Clustering involves partitioning a certain data set in groups. The components of each
group resemble each other according to a certain similarity measure [2]. In the case of
gene expression data sets, each gene is represented by its expression values (features), at
distinct points in time, under the monitored conditions. The process of gene clustering is
at the foundation of genomic studies that aim to analyze the functions of genes [3], because
it is assumed that genes that are similar in their expression levels are also relatively similar
in terms of biological function.

A great number of clustering algorithms have been introduced in the literature, most
of which deal with a given static data set (that is not subject to change during the clus-
tering process). There are also some incremental approaches, meaning that the clustering
algorithm was designed to take into consideration new instances of data as well, as these
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are added to the existing data set. These approaches will be briefly described in Section
3.
In this paper we tackle the dynamic problem of clustering gene expression data. In

our case, the term dynamic indicates that the data set is not static, but it is subject to
change. Still, as opposed to the incremental approaches from the literature, where the
data set is enriched with new genes (instances) during the clustering process, our approach
tackles the cases when new features (expression levels for new points in time) are added
to the genes already existing in the data set. To our knowledge, there is no approach in
the literature that deals with the problem of dynamic clustering of gene expression data,
defined as above.
The rest of the paper is structured as follows. Section 2 presents the problem tackled by

this paper. A previously proposed incremental clustering algorithm, as well as different
approaches existing in the literature for clustering of gene expression data are presented
in Section 3. The dynamic core based clustering model that we propose is introduced in
Section 4. Experimental evaluations of our algorithm are given in Section 5, while analysis
and comparisons of the results with related work from the literature are presented in
Section 6. Section 7 contains some conclusions of our paper and indicates future research
directions.

2. Problem Statement and Relevance. In this section we aim at presenting the prob-
lem of dynamic clustering of gene expression data and its relevance, as well as some
practical applications of solutions to this problem.

2.1. Problem definition and motivation. The emergence of microarray technology,
that allows measuring the levels of expression of thousands of genes has led to an ex-
ponential increase in the amount of gene expression data. Still, all this data would be
useless unless relevant biological information was extracted from it, therefore thorough
exploratory analyses are usually required and performed. One of the most widely used
techniques for these analyses and, most frequently, the first step, is clustering.
Clustering refers to creating a set of groups (clusters) and assigning each instance of a

data set to one of these groups, according to a certain similarity measure. In what concerns
gene clustering, the goal is twofold: firstly, by dividing the huge amount of gene expression
data into clusters, this data becomes easier to process and analyze; secondly, but not less
important, it is assumed that genes having similar expression patterns over time (during
the experiments) are likely to have similar biological functions and therefore clustering
can also be considered an initial stage in the process of determining gene functions.
Gene expression data is usually collected with the goal of investigating the progress

of different biological processes, as they evolve under different conditions and over time.
Since biological processes are dynamic and time varying, they are best described by time
series gene expression data [4]. A time series data set is a collection of data resulted
from a specific type of biological experiment: samples of cells or tissues are extracted
from the same individual at different, known points in time, during the progression of the
biological process. Thus, for each of the targeted genes, the level of expression is measured
at several distinct points in time. The data set will then be composed of thousands of
genes (instances), each gene being characterized by a set of features: its expression levels
(which can be quantified as real numbers) at different points in time.
However, there are some processes worth studying that may take days, or even months

(e.g., diseases that progress over time), as well as experiments that are conducted over
longer durations of time. For such cases, researchers must either wait until the experiment
finishes and the expression levels of the genes are available at all time points, or analyse
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the data gradually, as the experiment progresses. Clustering of gene expression data
might be performed during the evolution of the experiment, at intermediate time steps,
when genes would be characterized by only a subset of the entire set of features (time
points). The main disadvantage is that as the experiments advance and new data becomes
available (expression levels of the targeted genes for new points in time), the clustering
process must once again start from scratch, which requires considerable time (especially
as the number of the genes in such data sets is extremely high), in the end leading to a
slower and more inefficient processing of the data.

To overcome this drawback, we propose a dynamic clustering algorithm, based on the
idea of incremental clustering introduced in [5]. Given a previously obtained partition
of a data set and new features for all the genes in this data set, the dynamic clustering
algorithm is able to re-cluster the set of instances, without the need to start from the
beginning, but by using the existing partition. This way, the clustering of genes at
intermediate time points during the experiment can be more efficiently exploited and the
final result could be achieved in smaller amounts of time.

2.2. Practical applications. Nowadays, in this postgenomic era, one of the greatest
concerns of scientists is to deeply understand the functioning of organisms. One step
towards this understanding is the analysis of genes and clustering offers one way to achieve
it.

Among the most important practical applications of gene clustering is the identification
of gene functions. Genes with similar expression profiles will be clustered together, there-
fore facilitating the prediction of the functions of unknown genes or the identification of
gene sets that are regulated by the same mechanism [6]. The information offered by gene
clustering is often used for genome annotation [7]. In practice, gene clustering is used
for different applications. Among these, we mention the study of molecular mechanisms
of plant-pathogen interaction to the goal of determining those genes in certain plants or
vegetables that are resistant to different pathogens [8]. Further, another application is
in the pharmaceutical industry, where biosynthetic gene clusters identified in microbial
genomes could lead to the development of novel pharmaceuticals [9].

A significant application field of the results obtained through clustering of gene expres-
sion data is clinical research – patient classification and diagnosis, classification of different
types of diseases (for instance, cancer) and development of gene expression-based tools
for the personalized treatment and prevention. In the cancer research domain, tumor
prediction and classification is a difficult problem and clustering could offer a manner
of finding similar gene expression patterns, which could be used to discover new cancer
subtypes [10].

Biological systems are inherently dynamic, therefore the gene information is extracted
at different moments in time. Clustering can be used for analysis at any point and thus the
conclusions extracted from the obtained partitions can be practically used as mentioned
in the previous paragraph. The main contribution of our algorithm is that it can obtain
partitions as new data is gathered, using the partitions obtained in a former phase of data
collection, without having to re-apply the clustering algorithm from the beginning and
without losing the quality of the partitions, but even improving it in several cases. The
final goal of the method is to cluster genes. The clustering result can be used to analyze
gene expression data and to apply this analysis for any of the practical purposes described
above.

3. Background. An incremental clustering technique, which serves as the starting point
of our proposal is briefly presented in this section. Moreover, we shortly describe some of
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the existing clustering techniques that approach the problem of clustering gene expression
data.

3.1. Incremental clustering. Generally, existing clustering methods, such as the k-
means algorithm [11], start with a known set of objects, measured against a known set
of features and all features are considered simultaneously when calculating objects’ simi-
larity. However, there are numerous applications where the feature set characterizes the
objects evolves, thus, re-clustering is required. Şerban and Câmpan introduce in [5] an in-
cremental, k-means based clustering method, Core Based Incremental Clustering (CBIC),
that is capable to re-partition the objects set, when the features set increases. The method
starts from the partitioning into clusters that was established by applying k-means be-
fore the feature set changed. This partitioning is adapted considering the newly added
features. The authors [5] show that the result is reached more efficiently than running
k-means again from scratch on the feature-extended object set.
The idea of incremental clustering introduced in [5] is used in this paper and extended

to handle the problem of dynamic clustering of gene expression data.

3.2. Clustering of gene expression data. A great number of algorithms have been
proposed for clustering gene expression data sets that are not subject to change. Among
these, we mention approaches based on the k-means [12] or the fuzzy k-means algorithms
[13], on artificial neural networks [14] or methods using self organizing maps in conjunction
with hierarchical clustering [15], with k-means clustering [16] or with particle swarm
optimisation [17].
Concerning clustering of dynamic gene expression data sets, to our knowledge, there are

no approaches in the literature that deal with the dynamic clustering problem as it was
presented in Section 2.1. Although, as mentioned, no techniques exist that cluster gene
expression data containing instances with an increasing number of features, there are a
series of incremental clustering methods that are designed to work for data sets in which
the number of instances may increase over time. We will present in the following some of
these incremental approaches, as well as other studies that use dynamic or incremental
clustering methods.
Sarmah and Bhattacharyya [18] present a density based approach technique for cluster-

ing gene expression data, which can also be applied for incremental data. Their algorithm,
GenClus [18], obtains a hierarchical cluster solution and has as an advantage the fact that
it does not require the number of clusters as input. InGenClus, the incremental version
of GenClus, uses the result offered by GenClus and is able to update it when new genes
are added to the data set, therefore decreasing the computational time. Both algorithms
are evaluated using real-life data sets and the reported results prove a good performance.
In [19] the authors propose an incremental clustering algorithm for gene expression

data – incDGC, based on a clustering algorithm they had previously introduced. The
main idea is that when a new gene is introduced into the data set, the current clustering
should only be affected in the neighborhood of this gene. This algorithm does not require
as input the number of clusters and it helps avoiding performing the clustering each time
the data set is updated. The algorithm was tested on three data sets and it proved to
outperform other clustering algorithms, such as k-means or hierarchical clustering.
In addition to these techniques, which were designed to handle incremental data sets,

the literature offers other examples of dynamic, or incremental algorithms. Lu et al.
[20] introduce an Incremental Genetic K-means Algorithm (IGKA), which computes an
objective value that the authors define and clusters centroids incrementally under the
condition that the mutation probability from the genetic algorithm part is small, which
leads to high costs of centroid calculation. Bar-Joseph et al. present in [21] a clustering
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algorithm for time series gene expression data that performs the clustering on continuous
curve representations of the data, obtained using statistical spline estimation. In [22] the
authors present a clustering method that uses a dynamically computed threshold value
to determine the membership of a node to a cluster. An and Doerge [4] introduce a novel
dynamic clustering approach that deals with the time dependent nature of the genes
so that the genes in the same cluster may have different starting and ending points or
different time durations.

4. Methodology. In the following, we introduce our approach for dynamic clustering of
gene expression data. The starting point for our proposal is the incremental clustering idea
previously introduced in [5] that is extended to handle the problem of dynamic clustering
of gene expression data.

4.1. Model. Let X = {G1, G2, . . . , Gn} be the set of genes to be classified. Each
gene is measured m times and is therefore described by an m-dimensional vector Gi =
(Gi1, . . . , Gim), Gik ∈ <, 1 ≤ i ≤ n, 1 ≤ k ≤ m. An element Gik from the vector
characterizing the gene Gi represents the expression level of gene Gi at time point k.

Let {K1, K2, . . . , Kp} be the set of clusters discovered in data by applying the k-means

algorithm. Each cluster is a set of genes, Kj = {Gj
1, G

j
2, . . . , G

j
nj
}, 1 ≤ j ≤ p. The centroid

(cluster mean) of the cluster Kj is denoted by fj, where fj =

 nj∑
k=1

Gj
k1

nj
, . . . ,

nj∑
k=1

Gj
km

nj

.

Two of the most used similarity measures or distances for gene expression data are
the Euclidean distance and the Pearson correlation [23]. The measure used in our
paper for discriminating genes is the Euclidian distance: d(Gi, Gj) = dE(Gi, Gj) =√

m∑
l=1

(Gil −Gjl)2. We have chosen this type of distance for the present study because

it takes into account the magnitude of the changes in gene expression [23], therefore
preserving more data.

The set of features consisting of the m expression levels of the genes coming from m
consequent measurements is afterwards extended with s (s ≥ 1) new features, coming
from new measurements, numbered as (m+1), (m+2), . . . , (m+ s). After extension, the
genes’ vectors become G′

i = (Gi1, . . . , Gim, Gi,m+1, . . . , Gi,m+s), 1 ≤ i ≤ n.
We want to analyze the problem of recalculating the genes’ grouping into clusters,

after the extension of the genes and starting from the current partitioning. Our aim is
to achieve an increased performance in comparison with the process of partitioning from
scratch.

We start from the fact that, at the end of the initial k-means clustering process, all
genes are closer to the centroid of their cluster than to any other centroid. So, for any
cluster j and any gene Gj

i ∈ Kj, Inequality (1) below holds

d(Gj
i , fj) ≤ d(Gj

i , fr), ∀j, r, 1 ≤ j, r ≤ p, r 6= j. (1)

We denote by K ′
j, 1 ≤ j ≤ p, the set containing the same genes as Kj, after the

extension. By f ′
j, 1 ≤ j ≤ p, we denote the mean (center) of the set K ′

j. These sets K ′
j,

1 ≤ j ≤ p, will not necessarily represent clusters after the feature set extension. The newly
arrived features can change the genes’ arrangement into clusters, formed so that the intra-
cluster similarity is high and inter-cluster similarity is low. Taking into account that the
genes’ features have equal weights (and normal data distribution) there is a considerable
change when adding one or few features to the genes, for the old arrangement in clusters
to be close to the actual one. The actual clusters could be obtained by applying the
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k-means classification algorithm on the set of extended genes. However, we try to avoid
this process and replace it with one less expensive but not less accurate. In the following,
we continue to refer the sets K ′

j as clusters.
Considering the partitioning into clusters obtained on the set of genes before the feature

set extension, our focus is to identify conditions in which an extended gene Gj′
i is still

correctly placed into its cluster K ′
j. For that, we express the distance of G

j′
i to the center

of its cluster, f ′
j, compared with the distance to the center f ′

r of any other cluster K ′
r.

Starting from the approach introduced in [5] it can be easily proven that when Inequality
(2) holds for an extended gene Gj′

i and its cluster K ′
j, for each new added feature (∀l ∈

{m+ 1,m+ 2, . . . ,m+ s}), then the gene Gj′
i is closer to the center f ′

j than to any other
center f ′

r, 1 ≤ j, r ≤ p, r 6= j.

Gj
il ≥

nj∑
k=1

Gj
kl

nj

. (2)

We have to notice that the inequality in (2) imposes only intra-cluster conditions. A
gene is compared against its own cluster in order to decide its new affiliation to that
cluster.

4.2. The core based dynamic clustering of gene expression (CBDCGE) ap-
proach.

4.2.1. Centroids identification. It is well known that a problem with the k-means algo-
rithm is that it is sensitive to the selection of the initial centroids and may converge to a
local minimum of the squared error value if the initial centroids are not properly chosen.
In order to accurately evaluate our algorithm, we considered the same initial centroids
when running k-means for the initial and feature-extended gene set (m and m + s num-
ber of features). For identifying the optimal number of clusters in the data set with m
features, as well as the initial centroids, the heuristic proposed below will be used.
In order to determine the appropriate number p of clusters, we are focusing on deter-

mining p representative entities, i.e., a representative entity for each cluster.
The main idea of CBDCGE ’s heuristic for choosing the representative genes and the

number p of clusters is the following:

(i) The initial number p of clusters is set to 0.
(ii) The first representative gene chosen is the most “distant” gene from the set of all

genes (the gene that maximizes the average distance from all other genes). The
number p of chosen representatives becomes 1.

(iii) In order to choose the next representative gene we have reason as follows. For each
remaining gene (that was not already chosen), we compute the average distance
(davg) from the gene and the already chosen representative genes. The next rep-
resentative gene is chosen as the gene g that maximizes davg and this distance is
greater than a positive given threshold (distMin), p is increased, and step (iii) is
performed again. If such a gene does not exist, it means that g is very close to all
the already chosen representatives and should not be chosen as a new representative.
In this case, the iterative process of selecting the initial centroids stops.

We have to notice that step (iii) described above assures that near genes (with respect
to the given threshold distMin) will be merged into a single cluster, instead of being
distributed in different clusters.
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4.2.2. The algorithm. We will use Inequality (2) in order to identify inside each cluster
K ′

j, 1 ≤ j ≤ p, those genes have a considerable chance to remain stable in their cluster,
and do not move into another cluster as a result of the feature set extension. These
objects form the core of their cluster. The idea of our approach is to compute, for each
cluster Kj, its core, denoted by Corej.

Let us denote StrongCorej = {Gj′
i |G

j′
i ∈ K ′

j, G
j′
i satisfies Inequality (2) ∀l ∈ {m +

1,m + 2, . . . ,m + s}}. We denote WeakCorej the set of genes in K ′
j satisfies Inequality

(2) for at least the average number of features (computed from all genes belonging to K ′
j)

for which (2) holds.
For each new feature l, m + 1 ≤ l ≤ m + s, and each cluster K ′

j there is at least one
gene that satisfies Inequality (2) with respect to the feature l. Namely, the object that
has the greatest value for feature l between all genes in K ′

j certainly satisfies the relation
(the maximum value in a set is greater than or equal to the mean of the values in the
set). However, it is not sure that there is in cluster K ′

j any gene that satisfies relation
(2) for all new features m + 1, . . . ,m + s. If there are such genes (StrongCorej 6= ∅),
we know that they are closer to the cluster center f ′

j than to any other cluster center f ′
r,

1 ≤ r ≤ p, r 6= j. Then, Corej will be taken to be equal to StrongCorej and will be
the seed for cluster j in the incremental algorithm. However, if StrongCorej = ∅, then
we will choose as seed for cluster j other genes, the most stable ones between all genes in
K ′

j. These genes (WeakCorej) could be less stable than the genes in StrongCorej. This
is not, however, a certain fact: the genes in the “weaker” set WeakCorej can be as good
as those in StrongCorej. This comes from the fact that Inequality (2) holding for each
new added feature, gives a sufficient condition for the genes in K ′

j to be closer to f ′
j than

to any other f ′
r, but not a necessary condition too.

The cluster cores, chosen as we described, will serve as seed in the incremental clustering
process. All genes in Corej will surely remain together in the same group if clusters do
not change. This will not be the case for all core genes, but for most of them.

We give next the Core Based Dynamic Clustering of Gene Expression algorithm.
We mention that the algorithm stops when the clusters from two consecutive itera-

tions remain unchanged or the number of steps performed exceeds the maximum allowed
number of iterations.

Algorithm Core Based Dynamic Clustering of Gene Expression is

Input: - the set X = {G1, . . . , Gn} of m-dimensional genes

- the set X ′ = {G′
1, . . . , G

′
n} of (m+ s)-dimensional extended genes

G′
i has the same first m components as Gi,

- the metric d between objects in a multi-dimensional space,

- K = {K1, . . . ,Kp} the partitioning of X,

- noMaxIter the maximum number of iterations allowed.

Output: - the re-partitioning K ′ = {K ′
1, . . . ,K

′
p} for the genes in X ′.

Begin

For all clusters Kj ∈ K

Calculate Corej = (StrongCorej 6= ∅)?StrongCorej : WeakCorej
K ′

j = Corej
Calculate f ′

j as the mean of objects in K ′
j

EndFor

While (K ′ changes between two consecutive steps) and

(there were not performed noMaxIter iterations) do

For all clusters K ′
j do
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K ′
j := {G′

i | d(G′
i, f

′
j) ≤ d(G′

i, f
′
r), ∀r, 1 ≤ r ≤ p, 1 ≤ i ≤ n}

If K ′
j = ∅ then

@ remove K ′
j from the partition K ′

EndIf

EndFor

For all clusters K ′
j do

f ′
j := the mean of objects in K ′

j

EndFor

EndWhile

End.

The algorithm starts by calculating the old clusters’ cores. The cores will be the new
initial clusters from which the iterative process begins. Next, the algorithm proceeds in
the same manner as the classical k-means method does. We have to mention that if at
a certain iteration a cluster from the partition becomes empty, it is removed from the
partition, and consequently the number of clusters in the partition is decreased.

5. Experimental Evaluation. In this section we aim at experimentally evaluating our
dynamic core based clustering algorithm on gene expression data. The case study used
in our experiment, the evaluation measures, as well as the obtained results are presented
in the following subsections.

5.1. Case study. For the computational experiments developed in order to test the
performance of our method we used a real-life data set, taken from [24] and chosen for
the following reasons:

• It is publicly available.
• It is a time series gene expression data set.
• It has been experimented by several works approaching the clustering problem, thus
giving us the possibility to compare our results with other results existing in the
literature.

Microarray technology was used by the authors of [24] to measure the levels of expression
of 6400 genes belonging to the organism Saccharomyces cerevisiae, during its metabolic
shift from fermentation to respiration. Gene expression levels were measured at seven
time points during the diauxic shift: 0, 9, 11.5, 13.5, 15.5, 18.5 and 20.5 hours.
Before proceeding with the evaluation of the dynamic clustering algorithm, a pre-

processing step must be applied on this data. First, we exclude those genes that have
missing expression levels for certain time points. Then, we filter out the genes that are not
expressed or whose expression values do not change. To this purpose, we used the MAT-
LAB Bionformatics Toolbox [25], which offers functions that allow us to remove genes
having small variance over time or very low absolute expression values, as well as genes
whose profiles have low entropy. Following this pre-processing, the data set is reduced to
a total number of 614 genes.

5.2. Evaluation measures. We present in the following a set of evaluation measures
that will be further used to compute the quality of the partitions provided by the clustering
algorithms used in our approach. The first three measures (IntraD, Dunn and Dist)
evaluate a partition from the clustering point of view and the last one (Z-score) evaluates
a partition from a biological point of view.
In the following, let us consider a partition K = {K1, . . . , Kp}, where each cluster

consists of a set of genes.
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A. Intra-cluster distance of a partition – IntraD. The intra-cluster distance of a partition
K, denoted by IntraD(K), is defined as:

IntraD(K) =

p∑
j=1

nj∑
i=1

d(Gj
i , fj)

where the cluster Kj is a set of genes {Gj
1, G

j
2, . . . , G

j
nj
} and fj is the centroid (mean) of

Kj.
From the point of view of a clustering technique, smaller values for IntraD indicate

better partitions, meaning that IntraD has to be minimized.

B. Dunn Index – Dunn. The Dunn index [26] of a partition K is defined as:

Dunn(K) =
dmin

dmax

where dmin represents the smallest distance between two genes from different clusters and
dmax is the largest distance among two genes from the same cluster. The Dunn index
takes values from the interval [0,∞]. The greater the value of this index, the better a
partition is, therefore the Dunn index should be maximized.

C. Overall distance of a partition – Dist. The overall distance of a partition K, denoted
by Dist(K), is defined as:

Dist(K) =

p∑
j=1

dj

where dj is defined as the distance between all pair of genes from the cluster Kj, i.e.,

dj =
∑

G1,G2∈Kj

d(G1, G2)

From the point of view of a clustering technique, smaller values for Dist indicate better
partitions, meaning that Dist has to be minimized.

D. Z-score. Z-score [27] is a figure of merit, indicating the relationship between a clus-
tering result and the functional annotation of the used genes, within the gene ontology
developed by the Gene Ontology Consortium [28]. A higher value of the Z-score indicates
that the obtained clusters are more biologically relevant and therefore a more accurate
clustering. To compute the Z-score for a partition we used the ClusterJudge software,
which implements the algorithm described in [27].

5.3. Results. Considering an initial number of features (denoted by m) characterizing
the genes from the considered data set (Subsection 5.1), and different values for the
threshold distMin used for determining the initial centroids in the k-means process (see
Subsection 4.2.1), the experiments are conducted as follows:

1. The number of clusters nc and the initial centroids are identified in the data set
using the heuristic presented in Subsection 4.2.1. The k-means clustering algorithm
is applied on the data set consisting of m-dimensional genes, starting from the iden-
tified centroids and a partition K is provided. In our implementation if at a certain
iteration in the k-means clustering algorithm a cluster from the partition becomes
empty, it is removed from the partition, and consequently the number of clusters in
the partition is decreased.
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2. The set of features is now extended with s (s ≥ 1) new features, numbered as
(m+1), (m+2), . . . , (m+ s). The CBDCGE adaptive algorithm (Subsection 4.2.2)
is now applied, by adapting the partition K and considering the instances extended
with the newly added s features.

3. The partition into clusters provided by CBDCGE algorithm (denoted by KCBDCGE)
is compared with the one provided by the k-means algorithm applied from scratch
on the m + s-dimensional instances (denoted by K′). We mention that the initial
centroids considered in the clustering process are the centroids identified at step
1. The comparison of the obtained partitions is made considering the evaluation
measures presented in Subsection 5.2 (both from the clustering and biological point of
view), as well as the number of iterations are performed by the clustering algorithms.

5.3.1. First experiment. In our first experiment, we are initially considering 5 features
(i.e., m = 5) and afterwards the set of features is extended with 2 features (i.e., s =
2). Table 1 presents the results obtained in our experiment. For different values of the
distMin threshold we indicate the initial number nc of clusters (heuristically determined
as indicated above), and for the partitions KCBDCGE and K′ we indicate: the number of
clusters in the partition, the number of iterations performed by the algorithm and the
values of the evaluation measures (indicated in Subsection 5.2). We mention that the
values reported for Z-score are averaged over 10 repeated experiments, for each value of
distMin.
Analyzing the results indicated in Table 1, we observe the following:

Table 1. Results for the first experiment

No.
No. of No.of

IntraD Dunn Dist Z-score
clusters iterations

1 distMin = 3.231 nc = 63
K′ 62 21 411.7653 0.1345 13604.5546 5.4240

KCBDCGE 49 12 421.0210 0.1632 11319.7105 7.1500

2 distMin = 3.233 nc = 62
K′ 61 21 417.6670 0.1472 15449.8604 5.2920

KCBDCGE 49 25 417.4004 0.1945 11119.4377 8.0740

3 distMin = 3.26 nc = 61
K′ 60 19 423.3145 0.1356 15811.1460 5.6460

KCBDCGE 49 20 423.1767 0.1957 11976.0106 7.3780

4 distMin = 3.44 nc = 47
K′ 47 24 440.9141 0.1586 17209.7174 6.2650

KCBDCGE 43 23 437.4579 0.18087 16150.0690 7.3010

5 distMin = 3.45 nc = 46
K′ 46 26 444.9301 0.1586 18100.0294 6.0810

KCBDCGE 43 20 433.2875 0.1923 15451.7017 8.0780

6 distMin = 3.47 nc = 44
K′ 44 21 448.1514 0.1586 17251.2868 7.8660

KCBDCGE 43 14 445.0609 0.1848 17734.6491 9.2680

7 distMin = 3.51 nc = 42
K′ 42 23 451.5669 0.1655 19597.3680 7.7190

KCBDCGE 40 15 436.4608 0.1664 15665.8960 10.5900
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1. Excepting the second case and third case (lines 2 and 3 in Table 1) the number
of iterations performed by the CBDCGE method is smaller than the number of
iterations performed by k-means applied from scratch.

2. The partitions obtained by the CBDCGE method are better (considering all the eval-
uation measures presented in Subsection 5.2) than the partitions obtained applying
k-means from scratch. In all the cases the Dunn index computed on the results
obtained by the CBDCGE is greater than the one obtained by applying k-means
from scratch, which denotes more compact and well separated clusters. The same
holds for the Z-score measure, implying that the partitions obtained by CBDCGE
are biologically more relevant. In what concerns the IntraD and Dist measures, they
also indicate better partitions, exception of only two cases when either one or the
other are greater for the k-means algorithm applied from scratch (line 1 – for IntraD
and line 6 for Dist).

Considering the previous analysis, we can conclude that for the first experiment the
partitions obtained adaptively (applying CBDCGE method) are better than the ones
obtained by applying k-means from scratch. Also, the number of iterations performed by
the clustering algorithm (excepting one case) is smaller for the CBDCGE method.

5.3.2. Second experiment. In the second experiment we have performed the evaluation of
the CBDCGE method, by initially considering 6 features (i.e., m = 6) and afterwards
extending the set of features with 1 feature (i.e., s = 1). Table 2 presents the results
obtained in this experiment. For different values of the distMin threshold we indicate
the initial number nc of clusters (heuristically determined as indicated in Subsection
4.2.1) and for the partitions KCBDCGE and K′ we indicate: the number of clusters in
the partition, the number of iterations performed by the algorithm and the values of the
evaluation measures (indicated in Subsection 5.2). As in the case of the first experiment,
the values reported for Z-score are averaged over 10 repeated experiments, for each value
of distMin.

Analyzing the results indicated in Table 2 we observe the following:

1. Excepting the first case (line 1 in Table 2) and the fourth case (line 4 in Table 2)
the number of iterations performed by the CBDCGE method is smaller than the
number of iterations performed by k-means applied from scratch.

Table 2. Results for the second experiment

No.
No. of No. of

IntraD Dunn Dist Z-score
clusters iterations

1 distMin = 4.38 nc = 63
K′ 62 21 411.7653 0.1345 13604.5546 5.6500

KCBDCGE 54 22 401.7995 0.1763 9276.8868 8.5700

2 distMin = 4.401 nc = 62
K′ 61 21 417.6670 0.1472 15449.8604 5.5350

KCBDCGE 53 18 406.4398 0.1525 10003.3949 7.5120

3 distMin = 4.6 nc = 45
K′ 45 26 446.8450 0.1586 18359.2485 6.5640

KCBDCGE 40 12 437.5520 0.1896 14658.3710 9.6970

4 distMin = 4.66 nc = 42
K′ 42 23 451.5669 0.1655 18757.3680 7.8520

KCBDCGE 40 23 438.2164 0.1615 14074.2680 8.2860



1062 M. I. BOCICOR, A. SÎRBU AND G. CZIBULA

2. The partitions obtained by the CBDCGE method are better (considering all the
evaluation measure presented in Subsection 5.2) than the partitions obtained apply-
ing k-means from scratch. Excepting the second case (line 4 in Table 2) the Dunn
index computed on the results obtained by the CBDCGE is greater than the one
obtained by applying k-means from scratch. The Z-score is always greater and both
the IntraD and Dist measures are lower, all these indicating a better clustering result
obtained by CBDCGE.

Considering the previous analysis, we can conclude that for the second experiment the
partitions obtained adaptively (applying CBDCGE method) are better than the ones
obtained by applying k-means from scratch. Also, the number of iterations performed by
the clustering algorithm (excepting two cases) is smaller for the CBDCGE method.

6. Discussion. Considering the experimental results presented in Section 5, an analysis
of the method proposed in this paper is provided in this section. Furthermore, we present
a study on the relevance of the considered features, as well as a comparison of our method
with similar approaches in the literature.

6.1. Analysis of the results. The clustering technique that we proposed in this paper is
generally suitable for dynamic data sets, in which the features characterizing the instances
are continuously subject to change. Particularly, as biological processes and experiments
are dynamic, clustering the gene expression data resulting from these led to the need of
a dynamic approach.
Our dynamic core based clustering algorithm has two main advantages over the tradi-

tional k-means algorithm applied from the beginning: less iterations and better clustering
accuracies. As can be seen from Tables 1 and 2, the number of iterations used by our
dynamic algorithm for finding the solution is, on average, smaller than the one needed by
k-means, run from the beginning for the whole set of features.
In what concerns the clustering accuracy, we used four evaluation measures (see Sub-

section 5.2) to help us evaluate each clustering result. Regarding the measures IntraD and
Dist we mention that a decrease in their values signifies better partitions, while for the
Dunn and for the Z-score greater values result from better clustering. The fact that our
CBDCGE algorithm leads, in most cases, to better partitions than the k-means algorithm
applied on the whole set of features, is illustrated in Figures 1 and 2. By analysing the
top two plots of each of these figures, it can be clearly observed that, except for one case
(Figure 2, Dunn, case 4), both the Dunn and the Z-score of our algorithm are higher than
those obtained for k-means. The last two plots of the same figures show that, in almost
all cases (except for Figure 1, IntraD, case 7 and Dist, case 6), the values of IntraD and
Dist for CBDCGE are lower than those computed for k-means.
Another benefit of our approach, is that by using the heuristic described in Subsection

4.2.1, it does not require apriori knowledge about the number of clusters. This number
is automatically computed by the algorithm, using a positive threshold, distMin, which
represents the minimum distance to be used when deciding whether to assign genes to the
same or to different clusters. By its definition, an increase in the threshold distMin leads
to a decrease in the number of clusters. From Table 1 we note that the most biologically
relevant clustering for the first experiment is obtained for distMin = 3.51, while Table 2
indicates that for the second experiment, the best value of distMin is 4.6.
Regarding the number of new features, corresponding to new measurements at different

time points, as the data set we used is composed of genes which were measured during
a total of seven time points, we chose to use the first five time points for the initial
partition and then incrementally add two features, in the first experiment or use the first
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Figure 1. Illustration of the evaluation measures’ values for the first experiment

Figure 2. Illustration of the evaluation measures’ values for the second experiment

six time points and then add one feature, in the second experiment. Table 3 presents
the average values of the four evaluation measures for both algorithms (k-means applied
from scratch and our adaptive algorithm CBDCGE ) and for each of the two experiments.
We remark that for the second experiment three out of the four considered evaluation
measures, computed for CBDCGE, indicate that when only one feature is added the
obtained clustering is more accurate: apart from the Dunn, whose value is lower for
the second experiment, compared with the first, the values of both the IntraD and Dist
measures decrease and the Z-score is greater. The same table also demonstrates that the
CBDCGE algorithm outperforms the k-means applied from scratch, as all the evaluation
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Table 3. Average values of the considered evaluation measures obtained
for both the k-means and the CBDCGE algorithms, after the two experi-
ments

Experiment Algorithm IntraD Dunn Dist Z-score

First experiment
K′ 434.0442 0.1513 16717.7089 6.3276

KCBDCGE 430.5522 0.1826 14202.4964 8.2627

Second experiment
K′ 431.9611 0.1515 16542.7579 6.4003

KCBDCGE 421.0019 0.1700 12003.2302 8.5163

measures’ values indicate better partitions: the values for IntraD and Dist are smaller,
while those for the Dunn and the Z-score are greater.

6.2. Study on features’ relevance.

6.2.1. Information gain. In the following we aim at analyzing how the information gain
(IG) of the newly added features influences the efficiency of the dynamic clustering pro-
cess. The information gain measure is a measure from information theory and expresses
the expected reduction in entropy caused by partitioning the instances according to a
given feature [29]. In order to compute the information gain of the features the partition
obtained by applying k-means on the extended (m+ s-dimensional) genes is used.
As gene expression levels take values in the < space, in order to compute the information

gain of the features we have to discretize their values. This was achieved by dividing their
interval of variation into several sub-intervals.
In Table 4 we present, for each experiment and each different number of sub-intervals

we used, the features in decreasing order of their information gain (the new features are
emphasized), as well as a percentage indicating the information gain of the new features
with respect to the one of the existing features.

Table 4. The information gain measure for the features

Experiment
No. of

Order of features
IG of new features /

sub-intervals IG of old features (%)

First experiment

3 7 6 5 4 1 2 3 92.20%
4 7 6 4 5 1 2 3 88.20%
5 7 6 5 4 1 2 3 82.45%
6 7 6 4 5 1 2 3 76.69%

Second experiment

3 7 6 5 4 1 2 3 51.37%
4 7 6 4 5 1 2 3 50.78%
5 7 6 5 4 1 2 3 51.25%
6 7 6 4 5 1 2 3 50.66%

From Table 4 we can notice that the IG of the newly added features is rather high,
when compared with the IG of the first set, especially for the first experiment. This
may lead to a greater difficulty in adapting the partition (obtained by using the first set
of features) for the CBDCGE algorithm. As mentioned before, the second experiment
indicates that when only one feature is added the obtained clustering is more accurate
and this could be explained by the fact that in the second experiment the information
gain introduced in the system is lower. Another conclusion is that the IG of the features
is monotonically related to the number of sub-intervals considered for the variation, as
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for both the existing and the new features the IG generally increases as the number of
sub-intervals increases.

We have to mention two characteristics of the CBDCGE algorithm. First, the time
complexity for calculating the cores in the clustering process does not grow the complexity
of the global calculus. The second characteristic is that the method for calculating the
core of a cluster (using Inequality (2)) depends only on the current cluster (does not
depend on other clusters).

Considering the above analysis of the experimental results, we can conclude that apply-
ing the adaptive CBDCGE method is effective for dynamic clustering of gene expression
data.

6.2.2. Features’ correlation. To study how the sets of features are correlated with each
other and to analyze how the correlation of the newly added attributes to the existing
ones could influence the result of the clustering algorithm, we used the Pearson correlation
coefficient [30]. The Pearson correlation is a statistical measure of the linear correlation
between two random variables indicating how highly correlated the variables are. A
Pearson correlation of 0 between two variables X and Y indicates that there is no linear
relationship between the variables. A Pearson correlation of 1 or −1 results when the two
variables being compared are linearly monotonically related. A Pearson correlation of 1
implies that a linear equation describes the relationship between X and Y, with all data
points lying on a line for which Y increases as X increases. A correlation of −1 implies
that all data points lie on a line for which Y decreases as X increases.

For each feature, we computed the Pearson correlation coefficient with the rest of the
features. Figure 3 illustrates the average correlations among each feature and all the other
features. By computing the mean value M of the average correlations of initial features
(the first five), we notice that the average correlations of the last two features (the new
ones) are both higher than M . From this we can conclude that the adaptation process
occurs in a simpler manner.

Figure 3. Illustration of the average correlations of the features



1066 M. I. BOCICOR, A. SÎRBU AND G. CZIBULA

Table 5. Features’ correlations

Experiment
Mean correlation of new features
Mean correlation of old features

First experiment 0.97
Second experiment 1.17

Table 5 illustrates the ratios between the mean of the average correlations of the newly
added features and the mean of the average correlations of the existing ones. We notice
that in the case of the second experiment this ratio is higher, thus indicating that when
only one feature is added, the correlation between the new information and the existing
one is stronger. This could be yet another reason for which the results obtained in the
second experiment are more accurate than those obtained by the first.

6.3. Comparison to related work. To our knowledge, in the literature, there are no
similar techniques that approach the problem of clustering a dynamic gene expression
data set, that changes in the sense that new features (values of the gene expression levels
at new time points) are added to the instances (genes). For this reason, we cannot provide
a thorough comparison of our results to others. However, we note that the biological rele-
vance of the partitions obtained using CBDCGE, quantified in the Z-score, is significant.
Although our algorithm was designed with the purpose of providing an adaptive clustering
technique for dynamic gene expression data sets, instead of a novel clustering method,
we remark that, in terms of Z-score, it outperforms other existing incremental clustering
algorithms proposed for gene expression data sets, which are subject to change, in the
sense that they are enriched with new instances [18, 19]. Figure 4 illustrates the values of
the Z-score reported by the algorithms GenClus [18] and incDGC [19] for the same data
set that we used in our experiments. The same figure shows the averaged Z-score over all
the experimental evaluations of our algorithm CBDCGE.
Compared with applying the traditional k-means algorithm from the beginning over

and over each time new values of gene expression become available, our dynamic core
based clustering algorithm generally obtained better clustering accuracies, in terms of

Figure 4. Comparative Z-score
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Table 6. Reduction of the number of iterations

Experiment Algorithm
No. of No. of Reduction of the
clusters iterations no. of iterations (%)

Experiment 3

KCBDCGE 176 36
2.77%K′ 175 35

KCBDCGE 185 59
47.45%K′ 184 31

Experiment 4

KCBDCGE 118 51
7.84%K′ 118 47

KCBDCGE 128 54
12.96%K′ 127 47

the considered evaluation measures. Moreover, our algorithm needs a smaller number of
iterations to achieve the solution, in most cases. This can be seen in Tables 1 and 2. Still,
to see how the number of iterations is being modified even for larger gene expression data
sets, we experimented on the data set described in Subsection 5.1, without applying all the
pre-processing steps. More specifically, from the 6400 existing genes, we only eliminated
the ones that have missing expression levels for certain time points, thus remaining 6276
instances. For this data set, we applied both the traditional k-means and our CBDCGE
algorithms, similar to what we have presented in the two experiments in Subsection 5.3.
In Experiment 3 we begun with 5 features and subsequently added the last 2 and in
Experiment 4 we started with 6 features and then added the last one. Table 6 illustrates
the percent by which the number of iterations is reduced, showing two considered cases for
each experiment. From this table we can conclude that by using our CBDCGE algorithm
the number of iterations is reduced in all four cases and in one case by up to almost 50%.

A large number of clustering algorithms that have been used to cluster gene expression
data need the number of clusters as a priori information. Among these, we mention k-
means [12], self organizing maps [31] or genetic algorithms [32]. Compared with these
techniques, our approach has the advantage that the number of clusters is not required
as input information, but is computed according to the heuristic described in Subsection
4.2.1. We remark, however, that there exist other algorithms in the literature that do not
need this number of a priori: GenClus [18] and incDGC [19].

7. Conclusions. In this paper we proposed a new method for adapting a clustering of
gene expression data when expression levels for new points in time are added to the genes.
To the best of our knowledge, our technique is the first in the literature which approaches
the problem of dynamic clustering gene expression data sets from this point of view.

The experimental evaluations we performed on a real-life gene expression data set show
that, in most cases, the clustering result is reached more efficiently and is also more
accurate by using the proposed method than by running the k-means algorithm from
scratch on the feature-extended data. As opposed to some clustering algorithms existing in
the literature, our algorithm does not need the number of clusters as a priori information.
In addition, when compared with other incremental clustering algorithms, the method
that we introduced proves to obtain partitions that are more biologically relevant.

Further work can be done in order to study how the results described for dynamic
clustering could be applied for other clustering techniques. We will also investigate an
extension of the CBDCGE method to a fuzzy clustering [33] approach. Moreover, we
plan to examine practical applications of the proposed method.
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