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Abstract. A novel approach for online design of optimal control systems based on QR-
tuning, state and action-dependent heuristic dynamic programming, and approximate-LS
solutions of the Hamilton-Jacobi-Bellman (HJB) equation is the main concern of this pa-
per. The QR-tuning for optimal control systems takes into account heuristic variations
in the weighting matrices Q and R of the discrete linear quadratic regulator (DLQR) per-
formance index. These heuristics are guided by an approximate relation of the matrices Q
and R. Specifically, the proposed approximate solutions are based on the least-squares ap-
proach, and applications are performed on the DLQR problem. The parameterizations of
the Bellman equation, utility function and dynamic system assemble a framework for the
solution of the DLQR problem. The approximate solutions of the HJB-Riccati equation
are given by a vectorization of a quadratic form which is the value function of DLQR.
Such formulation allows a least-squares (LS) solution of the discrete algebraic Riccati
equation (DARE). The LS formulation of the problem is based on a transformation of
the state space variables to assemble the regressor vectors, and observations are based on
the utility function and DARE solutions. The computational experiments are provided
to evaluate the efficiency of QR-tuning heuristics to map the stable Z-plane.
Keywords: Heuristic dynamic programming, Discrete linear quadratic regulator, QR-
tuning, Least-squares estimation

1. Introduction. This paper is concerned with the development of a QR-tuning method
and approximate solutions of the Hamilton-Jacobi-Bellman (HJB) equation for online op-
timal control design in the context of reinforcement learning. We propose a methodology
that employs approximate dynamic programming paradigms to assign eigenvalues in the
Z-plane for multiple-input multiple-output (MIMO) systems. The QR-tuning method is
a heuristic method that guides the search of weighting matrices Q and R of the utility
function according to the duality principle of these two matrices in optimal decision rule.

Specifically, the adaptive actor-critic paradigm is presented in the context of approxi-
mate/adaptive dynamic programming (ADP), taking into account the state and action-
dependent heuristic dynamic programming methods to develop online algorithms for dis-
crete linear quadratic regulator (DLQR) design. These algorithms are used to evaluate the
QR-tuning method on a framework for approximate solutions of the HJB equation that
requires no knowledge of the plant model, i.e., the solution of the HJB equation, which ap-
pears in the form of the discrete algebraic Riccati equation (DARE) on the DLQR control
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system, does not depend on the dynamic system model. In the action-dependent heuris-
tic dynamic programming (AD-HDP) paradigm, the decision rule is fully independent
of plant model. On the other hand, in the state heuristic dynamic programming (state
HDP) paradigm, the decision rule computation is model-dependent, but the solution of
the HJB equation is model-free.
The relevance of the HJB equation is observed by theoretical developments and appli-

cations reported in the scientific and technical media. Adaptive dynamic programming
and reinforcement learning for control can be seen in [1] in the perspective of a promising
research field for intelligent controllers that learn on-the-fly, and show optimal behavior.
In [2], the authors present a supervised adaptive dynamic programming algorithm for
adaptive cruise control system. An ADP based strategy for real-time energy control of
hybrid electric vehicles is presented in [3]. The authors developed a fuel-optimal control
that depends on the current system operation and it is not dependent on prior knowledge
of future conditions. Applications of ADP and computational intelligence are presented
in [4], consisting of a fuzzy logic controller with ADP optimization for traffic signals. The
action network and critic network of the ADP approach are trained by the swarm opti-
mization method in [5], and the authors [6] developed a research on a parallel learning
adaptive dynamic programming based on genetic algorithms.
An ADP advantage is its ability to deal with the nonlinear characteristics of the dy-

namic systems. There are many references on this topic reported in recent papers. For
example, an intelligent optimal control scheme for unknown nonlinear discrete-time sys-
tems is proposed in [7]. The authors [8] present an ADP approach as a learning control
method for inverted pendulum control. The problem of finite-horizon optimal tracking
control for a discrete-time nonlinear system is solved by an iterative ADP algorithm [9].
A convergence analysis is presented in [9] with respect to cost function and control

law. The other author [10] presents a convergence analysis for DLQR control system
design. The convergence of the value iteration based HDP algorithm is proven in [11] for
the DLQR. The proposed convergence procedure for convergence analysis is based on the
traces of matrices Q and R that guide the eigenvalue assignment. This method has been
evaluated for DLQR design based on a model [12].
In general, the importance of these investigations is in the scope of theoretic develop-

ments and applications of the HJB equation in the form of algebraic Riccati equation
(ARE). In reference [13], the authors present a positive stabilizing solution to algebraic
Riccati equations with an indefinite quadratic term via a recursive method. An investiga-
tion on the existence and representation of stabilizing solutions to a class of generalized
ARE that appears in analysis and synthesis problems of continuous-time descriptor sys-
tems is presented in [14]. The research on the ARE solution is important for H∞, LQR
and LQG controllers which are designed with Riccati equations, as can be seen in [15, 16].
Further readings on DARE solutions and convergence issues are given on [17, 18, 19].
In the control context, this paper focuses on a methodology to assign eigenstructures

based on the traces of weighting matrices Q and R of the DLQR control system, where
the weighting matrices play the role of design parameters. In a conservative manner,
those matrices are used to penalize the cost of control policy and state variable devia-
tions, but here they are taken as design parameters [12, 20]. Any proposed convergence
improvement of the HJB-Riccati equation solution based on a model-free paradigm is
challenging, because viable approximate solutions are not guaranteed for all deviations of
DLQR weighting matrices. The proposed strategies to improve the approximate solution
of the HJB-Riccati equation are based on QR-tuning and least-squares methods.
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This article presents a general theory on approximate dynamic programming, the prob-
lem formulation and characterization, and applications on the DLQR control and com-
putational experiments. These topics are organized in several sections and an appendix.
Initially, the ADP formulations and the approximations based on state value function and
QL learning are presented in Section 2. In Section 3, the basic concepts on Hamilton-
Jacobi-Bellman equation are presented for the discrete linear quadratic regulator problem.
The characterization and formulation of the approximate HJB solution via parametric es-
timation problem are presented in Section 4 for the DLQR design. The approximate
solution of the discrete algebraic Riccati equation is formulated in the least-squares sense,
where the observation consists of value function, and regressor vectors are built from the
state space variables of the dynamic system.

The HDP algorithms of Section 5 are procedures that have their development based
on the DLQR parameterizations presented in Section 3. The state and action-dependent
heuristic dynamic programming algorithms are developed to evaluate the skills of the
proposed method for eigenstructure assignment of multivariable systems. The QR-tuning
and approximate solutions of the HJB-Riccati equation for the DLQR design via state
and action-dependent heuristic dynamic programming results are presented in the com-
putational experiments of Section 6. The proposed approximation algorithms are il-
lustrated in a third-order dynamic system. The accuracy is compared with admissible
Riccati solutions and the convergence rates are compared with the state (state HDP)
and action-dependent (AD-HDP) approximations that generate regressor vectors by the
state variables Kronecker product and vectorization of the HJB-Riccati solution, taking
into account the ADP approaches. The HJB equation solution is performed by strategies
that are based on the least-squares (LS) methods. The final remarks are presented in
Section 7. Appendix A shows the dynamic system models and the initial conditions of
the algorithms.

2. Approximate Dynamic Programming. The dynamic behavior of the system is
represented by models in state space and the Bellman equation. The system model is
given by

xk+1 = f(xk, uk) (1)

uk = g(xk), (2)

where xk+1 denotes the system state at instant k+1 (sampling points), and according to
a control policy g, uk is the control action to be taken at current instant k.

The representation of trade-offs for purposes of evaluating the control objective is per-
formed by the model of long term reward (often called the value function), which is given
by

Vg(xk) =
N∑
i=k

γi−kr(xi, g(xi)), (3)

where r is a utility function that establishes the reward r(.) of the transition from xi to
xi+1, and 0 < γ ≤ 1 is a discount factor. In the form of the Bellman equation, it follows
that the value function (3) is given by

Vg(xk) = r (xk, g(xk)) + γVg (f(xk, g(xk))) (4)

= r(xk, g(xk)) + γVg(xk+1). (5)
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The optimal control policy is defined as the mapping g∗ that promotes the largest
possible set of rewards, which satisfies

Vg∗(x) ≥ Vg(x), ∀{g, x}, (6)

where Vg∗ is the optimal value function due to control policy g∗. According to Bellman’s
Optimality Principle, the optimal value function, denoted by V ∗, must satisfy the discrete
time Hamilton-Jacobi-Bellman equation or the Bellman optimality equation, i.e.,

V ∗(xk) = max
g(·)

{r(xk, g(xk)) + γV ∗(f(xk, g(xk)))} , (7)

and the optimal control policy g∗ is given by

g∗(xk) = argmax
g(·)

{r(xk, g(xk)) + γV ∗(f(xk, g(xk)))} . (8)

The supervised learning can be introduced in Equation (5) using an iterative scheme
which has Vg approximated by parameterized models. In their general form, these models
have as starting point the parameterized model given by

Θ(x, r, f, θ) = r(x, g(x)) + γV (f(x, g(x)), θ), (9)

where θ is the parameter vector of the approximation. This vector should minimize the
mean square error between the estimated value V (x, θ) and the measured value Θ(·),
which is given as

θk+1 = argmin
θ

E{|V (x, θ)−Θ(x, r, f, θk)|2}, (10)

where E(·) denotes the expected value.
The parameterization g(x) = g(x, κ) of control policy and greedy iteration allow de-

termination of parameters corresponding to the optimal value function. The optimal
parameter κ∗ is computed according to the Bellman optimality equation and the value
function estimate V , which is given as

κ∗ = argmax
κ

{r(x, g(x, κ)) + γV (f(x, g(x, κ), θ)} . (11)

2.1. State HDP. The estimation of the state value function V (x) for a given policy
only requires samplings from the instantaneous reward function r, while the models of
the environment and the instantaneous reward are needed to determine the value function
V (x) corresponding to the optimal policy. The optimal solution Vg∗(x) of Equation (6)
that satisfies the Bellman Equation (5) is obtained by the optimal parameters of Equation
(11). The optimal solution is obtained by solving the equation of the gradient for κ that
is given by

∂V

∂κ
= 0. (12)

Clearly, the derivatives of the parameterized models f , r, V and g are required to deter-
mine the gradient ∂V

∂κ
. Thus, the optimal of Equation (11) should satisfy:

∂r

∂g

∂g

∂κ
+ γ

∂V

∂f

∂f

∂g

∂g

∂κ
= 0. (13)
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2.2. Action-dependent HDP. The action-dependent heuristic dynamic programming
is based on the Q-learning approach, which will be denoted by QL, and consists of a
method for estimating the QL-function for any optimal or non-optimal policy [10, 21].
The AD-HDP formulation only requires samples from the instantaneous reward function
r. The QL-function, or action value function, is defined by

QL(x, u) = r(x, u) + γVg(f(x, u)). (14)

From Equations (4) and (14), it can be seen that Vg(x) = QL(x, g(x)). Thus, the
optimal QL-function, denoted by Q∗

L, must agree with

Q∗
L(x, u) = r(x, u) + γQ∗

L(f(x, u), g
∗(f(x, u))). (15)

The target of Equation (14) is given by the same structures that are presented in Equa-
tions (9)-(11). The greedy iteration is the policy used for determining the QL-function.
The policy is parameterized as g(x) = g(x, κ). The control law is obtained by the Bellman
optimality equation for the QL-function, which is given by u∗ = argmaxuQ

∗
L(x, u).

The squared errors between the model estimate and target are minimized, in view
of improving through the greedy policy the optimal estimate of parameters. The new
parameters yield new targets, so the process is computationally realizable.

3. Bellman Equations for DLQR Control Systems. The DLQR design, as a param-
eterization of Bellman equations, is the main topic of this section. The parameterizations
of the state value function, the utility function, and the state and control policy mappings
presented in Section 2 are shown herein for linear systems and discrete linear quadratic
regulator (DLQR) problem. The Bellman equations are presented in the Lyapunov and
Riccati forms which are linear and nonlinear for unknown parameters, respectively.

3.1. DLQR parameterization. For the DLQR control system, the parametric repre-
sentation of Equation (1) for a linear time invariant system is given by

xk+1 = Axk +Buk, (16)

where A ∈ Rn×n, n is the order of the system, xk ∈ Rn is the state, B ∈ Rn×ne , ne is
the number of control inputs and uk ∈ Rne is the control input. The control action of
Equation (2) is parameterized by the linear relation of the states which is given by

uk = K(·)xk, (17)

where K(·) ∈ Rne×n is the feedback gain matrix.
The state feedback performed by the control law of Equation (17) provides the closed-

loop system, which is given by

xk+1 = (A+BK)xk. (18)

The utility function associated with the system (16) and (17) has a quadratic form that
is given by

r(xk, uk) = xT
kQxk + uT

kRuk, (19)

where Q = QT ≥ 0 and R = RT > 0 are state-weighting and control-weighting matrices,
respectively.

By substituting the parameterization of the utility function of Equation (19) into Equa-
tion (3), and assuming the discount factor γ is equal to 1, one obtains the parameterized
DLQR cost function. Specifically, the goal now is to determine the control law u that will
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yield the smallest possible set of costs (negative rewards). Thus, the DLQR problem is
formulated as the following optimization problem

min
u

N∑
i=k

(xT
i Qxi + uT

i Rui)

subject to (20)

xk+1 = Axk +Buk.

It can be shown that the optimal value associated with the solution of the DLQR
problem, Equation (20), admits the following quadratic form, [22],

V (xk) = xT
kPxk, (21)

with P ∈ Rn×n > 0 being symmetric.
Thus, the parameterized functions for the DLQR are classified into parameters A and

B of the dynamic system (environment), parameter K of the control law (control policy),
and parameters Q and R of the instantaneous cost (utility function). The cost solution
is a state quadratic form parameterized by P which is used to represent the reward.

3.2. Bellman-DLQR formulation. The Bellman-DLQR equations provide the values
of the parameter P as an approximate solution of the Riccati/Lyapunov equation.
From Equations (5), (19) and (21), one obtains the Bellman equation with no dynamic

system model parameters (matrices A and B) for the discrete LQR, which is given by

xT
kPxk = xT

kQxk + uT
kRuk + xT

k+1Pxk+1. (22)

The optimal control law is obtained by minimization of Equation (22) with respect to
uk, which yields

Ruk +BTP (Axk +Buk) = 0. (23)

Equation (23) is solved for uk and compared with Equation (17), so it follows that the
optimal gain is given by

K = −(R +BTPB)−1BTPA. (24)

In terms of the feedback gain of Equation (17), and the dynamics of the closed loop
system of Equation (18), Equation (22) is expressed by

xT
kPxk = xT

k (Q+KTRK +

+(A+BK)TP (A+BK))xk. (25)

Since Equation (25) must be satisfied for all states xk, one has a linear equation in P
that is given by

P = Q+KTRK + (A+BK)TP (A+BK), (26)

known as a Lyapunov equation.
The optimal control law uk of Equation (23) is substituted into Equation (22). One

thus obtains a parameterization of the HJB equation in form of the discrete time algebraic
Riccati equation (DARE), which is given by

P = Q+ ATPA− ATPB(R +BTPB)−1BTPA. (27)

This matrix equation is quadratic in the parameter P and is also referred to in this text
as HJB-Riccati equation.
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Equation (27) is dismembered into two equations: one for evaluation and the other for
determining the optimal control law. The equations resulting from that dismembering
are given by

P = Q+ ATPA+ ATPBKric (28)

Kric = −(R +BTPB)−1BTPA. (29)

Equations (28) and (29) suggest an iterative numerical process to solve the DLQR
control policy, which is a policy iteration scheme consisting of the HJB equation solution
and the control law. In this process, for each value of P given in Equation (28), one has
an optimal policy K given by Equation (29).

4. Problem Descriptions. The problem is characterized in the context of least-squares
estimation approach for the DLQR design, where the state value quadratic function is
transformed in linear combination of states and DARE parameters. In this manner, the
problem is characterized as the DARE solution via parametric methods. The problem
formulation is presented in the first part, where the approximate solution of the HJB-
Riccati equation is formulated in terms of the least-squares method.

The QR-tuning method is presented in the second part as a proposed methodology to
tune optimal controllers based on relationships of reward matrices. The theoretical core of
the proposed optimal control method is the discrete linear quadratic regulator design that
provides the optimal control policy via approximate solutions of the Bellman equation.
These solutions are guided by systematic variations in the values of cost matrices Q and
R. The proposed methodology is oriented for on-line solutions of optimal controllers, i.e.,
to impose stability margins of DLQR design of the proposed method.

4.1. HJB-Riccati equation solution via LS approximation. The quadratic form of
the optimal cost is represented by a transformation that uses the Kronecker product for
obtaining a linear equation system in P (Riccati solution). By applying the Kronecker
product and vectorization definitions [23], one has that the optimal cost value, quadratic
form of Equation (21), is represented by

xTPx = (xT ⊗ xT )vec(P ) (30)

= (x1x
T x2x

T . . . xnx
T )vec(P ) (31)

= vec(xxT )Tvec(P ). (32)

It is noticed that xTPx of Equation (32) can be represented as a dot product. Supposing
that xTPx and vec(xxT ) are known variables and vec(P ) is the unknown variable, the
situation can be characterized as least-squares problem, because vec(P ) can be estimated
based on the values of observations xTPx and regressor vectors vec(xxT ).

The least-squares approach [24] is used to determine the parameters of the value func-
tion approximation. Equation (21) that minimizes the expected squared error is param-
eterized for

Pk+1 = argmin
P

E{|xTPx−Θ(x, r, f, Pk)|2}. (33)

The solution of Equation (33) by approximation and vectorization is represented by

θk+1 = argmin
θ

E{|x̄T θ −Θ(x, r, f, θk)|2}, (34)

where x̄ ∈ Rn(n+1)/2 is defined according to the Kronecker product that is given by
x̄T = [x2

1 . . . x1xn x2
2 . . . xn−1xn x2

n].
The function θ = vec(P ) ∈ Rn(n+1)/2 of the square matrix P is a vector containing the

n diagonal entries of P and the n(n+ 1)/2 − n distinct sums Pij + Pji. Assuming an
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ordering between the vector x̄ and vectorization vec(P ) to represent the quadratic form
xTPx = x̄Tvec(P ), the least-squares parametric estimate is given by

θk+1 = (E{x̄T x̄})−1E{x̄Θ(x, r, f, Pk)}. (35)

The function Θ(x, r, f, Pk) of Equation (35) is the desired value which consists of the
current cost and the cost function from the next state f(x, u), as can be seen in Equation
(9).

4.2. QR-tuning kernel. The QR-tuning method is based on the mapping KQR from
traces of weighting matrices Q and R into assignment of closed loop eigenvalues on the
Z-plane, i.e., the QR-tuning mapping is given by

KQR : {trac Q, trac R} → {λ1, λ2, . . . , λn}, (36)

where trac Q and trac R are the traces of matrices Q and R, respectively, and λ1, λ2, . . . ,
λn are the closed loop eigenvalues that are specified by the designer.
In terms of weighting matrices, the specified performance is imposed by a new control

law, which is given by

uk(QR) = KQRxk, (37)

where KQR is the controller gain that directly depends on the selection of the weighting
matrices.
The heuristic QR-tuning method is based on relationships between the matrices Q

and R. In order to obtain a QR relationship that provides a guide to heuristic search
method, the Riccati recurrence of Equation (28) is replaced in Equation (29) of the gain.
Consequently, the optimal gain is given by

KQR = −(R +BT
d PBd)

−1BT
d (Q+ AT

dPAd + AT
dPBdKQR)Ad, (38)

where KQR = K(Q,R) is the gain matrix Kric of Equation (29) as a function of the
weighting matrices.
Considering the situations R � BT

d PBd and Q � AT
dPAd in which the quadratic forms

of the input and of the state are quite smaller than the weighting matrices Q and R, it
follows that

Kric(Q,R) ≈ Kf1(Q,R) +Kf2(R), (39)

where

Kf1(Q,R) ≈ −(R−1BT
d Q)Ad (40)

Kf2(R) ≈ (R−1BT
d A

T
dPBdR

−1BT
d PAd)Ad. (41)

Based on Equation (39), a heuristic is established to map the Z-plane. While the values
of the elements of matrices R are kept fixed, the values of the elements of matrices Q are
submitted to variations during the tuning process, with matrices Q and R being diagonal.
The effectiveness of QR-tuning is evaluated by the traces of matrices Q.
Let R = Rfix be a matrix with constant trace and Rf2 = BT

d A
T
dPBdR

−1BT
d PAd.

Consequently, Equation (41) of the Riccati gain is written in a form that allows to design
a heuristic that is guided by

Kric(Q,Rfix) ≈ −(R−1
fixB

T
d Q)Ad + (R−1

fixRf2)Ad. (42)

As can be seen in Equation (42), if the restrictions R � BT
d PBd and Q � AT

dPAd

are held, the changes of gains Kric(Q,Rfix), for a fixed matrix Rfix, lead to eigenvalues
changes in Z-plane for variations in the values of the elements of matrix Q. It is observed
that if R � 0 for the case of diagonal matrices, one has that Kf2(R) ≈ 0. In [12], the
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authors present the first insights on QR-tuning in the context of offline design, in which
the HJB equation solution is model-based.

Stability aspects in the implementation of an ADP in a feedback system were studied
in [25]. The QR convergence analysis consists on the evaluation of the traces of matrices
Q and R and their relationships with the eigenvalue assignment of MIMO systems in the
Z-plane via optimal controllers. The results are presented in a table built following a
heuristic which is established from Equations (40) and (41). The iterative process for
systematic variations in the values of matrices Q and R follows a growing pattern of the
trace of matrix Q, whereas the matrix R is an identity matrix during the entire solution
process.

5. HDP Algorithms. Two HDP algorithms are developed to compute approximate
solutions of the DARE. The first is based on the state value function approximation, and
the second is based on the QL approximation of the value function. The development
of approximate algorithms for HDP and AD-HDP, which are oriented for realization of
discrete optimal control, is presented in this section. The foundations of optimal control
required for the development of the above mentioned algorithms can be found in [22, 26].
The discrete control approaches, such as DLQR, are highlighted in references [27, 28].

5.1. Actor-critic schemes for DLQR. The actor and critic schemes for reinforcement
learning are presented in terms of least-squares method and optimal policy for the DLQR
control system design.

5.1.1. Critic DLQR scheme. The parameterizations of the environment of Equation (16),
the control policy of Equation (17), and the instantaneous cost of Equation (19) establish
the parameterized function approximation Θ(x, r, f, P ) for DLQR which is given by

Θ(x, r, f, P ) = xTQx+ uTRu+

+(Ax+Bu)TP (Ax+Bu). (43)

The theories of matrix vectorization and Kronecker product contribute for the Riccati
equation solution that is approximated by a linear equation system for the coefficients of
the matrix P . Consequently, the DARE solution approximation is a least-squares solution
that is given by

xT θ = Θ(x, r, f, P θ), (44)

where θ is the vector corresponding to the elements of the Riccati matrix. The regression
vector and optimal cost are given by

x = [x2
1k . . . x1kxnk x2

2k . . . xn−1kxnk x2
nk]

T (45)

Θ(x, r, f, P θ) = xT
kQxk + uT

kRuk + xT
k+1P

θxk+1, (46)

where xlk is the l-th, l = 1, 2, . . . , n, component of the state vector x at time k.

5.1.2. Actor DLQR scheme. The optimal parameters of the approximation satisfy the
condition of Equation (12), with κ = vec(K), i.e., parameter κ is a vectorization of the
gain matrix K. Assuming ∂g

∂κ
6= 0, Equation (13) reduces to the

∂r

∂g
+

∂V

∂f

∂f

∂g
= 0. (47)

By replacing the derivatives ∂r
∂g

= 2uTR, ∂V
∂f

= 2fTP and ∂f
∂g

= B in Equation (47), one

has that the optimal policy u is given by

u = K(P θ)x = Kx, (48)
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where K = −(R +BTP θB)−1BTP θA is the optimal gain.

5.2. State HDP algorithm. The algorithm is developed according to Equations (43)
and (44) for the main core. The steps for determining the optimal control policy are
presented in Algorithm 1. This algorithm is made up of two segments that can be classified
on initial conditions established in steps 2-10 and on iterative process that are instructions
established from steps 12-34.

Algorithm 1 – HDP Algorithm – Least-Squares and Recurrence Step

PDynamic-DLQR-HDP(N)

1 ————————————————————————-
2 � - Setup
3 � - Dynamic Systems
4 [Ad, Bd, tsamp, xinic, xrevit]← [ ]
5 � - Weighting and Dynamic Systems
6 [Q,R, qi, ri]← [ ]
7 � - Iterative Process Parameters
8 [N,nrec]← [ ]
9 � - P and K Initial Values

10 [P θ
0 ,K

θ
0 ]← [ ]

11 ————————————————————————-
12 � Iterative Process
13 for i← 1 : N
14 do
15 � Optimal Policy

16 ui ← Kθxi

17 � States
18 xi+1 ← Adxi +Bdui

19 � Basis Set - Kronecker Product
20 xi ← [x2

1i; x1ix2i; x1ix3i; x2
2i; x2ix3i; x2

3i]
21 � Target Vector Assembling

22 Θ(x, r, f, P θ)← xT
i Qxi + uT

i Rui + xT
i+1P

θxi+1

23 —————————————————————–
24 if i%nrec = 0
25 then
26 � Least-Squares

27 θ ← (x xT )−1xΘ(x, r, f, P θ)

28 � Matrix P θ recovery from vector θ

29 P θ ← [θ1, θ2/2, θ3/2;
30 θ2/2, θ4, θ5/2
31 θ3/2, θ5/2, θ6
32 � Feedback Optimal Gain K

33 Kθ ← −(R+BT
d P

θBd)
−1BT

d P
θAd

34 xi+1 ← xrevit

35 —————————————————————–
36 End - Iterative Process

The setup segment of Algorithm 1 consists of the following information:

IHDP
setup =

{
Ic1, Ic2, Ic3, Ic4

}
, (49)

where Ic1, Ic2, Ic3 and Ic4 are the sets of information that are related to the dynamic sys-
tem, instantaneous reward weightings, iterative process parameters and initial conditions
of the Riccati solution, and the optimal gain, respectively. In terms of their components,
these sets for the HDP are established by the enumeration of the elements of setup segment
which are given by

Ic1 =
{

Ad, Bd, xinic, tsamp, xrevit

}
Ic2 =

{
Q, R, qi, ri

}
Ic3 =

{
N, nrec

}
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Ic4 =
{
P θ
0 , Kθ

0

}
,

where Ad andBd are the discrete model matrices, tsamp is the sampling time, xinic and xrevit

are system initial conditions and revitalization of the states (state resetting), respectively,
which constitute the set Ic1, corresponding to step 4 of Algorithm 1. The elements Q
and R are the weighting matrices and the pair (qi, ri) represents variations in the values
of the elements of respective matrices in set Ic2 that correspond to step 6. For the set
Ic3, the parameters N and nrec are the number of iterations and delays for updating the
parameters with respect to a given amount of interval (time window), respectively, for
updating the vectorization parameter θ that corresponds to step 8. For the set Ic4, P

θ
0

and Kθ
0 are the initial conditions of the Riccati equation and the gain, respectively, that

corresponds to step 10.
The second segment of the standard HDP algorithm implements the updates of the

regression vector in step 20 as well as the value function in step 22 for each reading of the
sampling interval. It also implements the updates of the parameter θ vector in step 27,
the matrix P θ recovery from vector θ in step 29 and the gain Kθ in step 33. This sequence
of steps occurs for a time window, called recurrence step, given for values greater than or
equal to (n(n+ 1)/2)tsamp time units.

5.3. AD-HDP algorithm. The DLQR-AD-HDP heuristic algorithm has the same pa-
rameterizations for the dynamic system of Equation (16), the control policy of Equation
(17), and the instantaneous cost of Equation (19). The QL-function of Equation (14) is
parameterized by

QL(x, u) = zTQLV z, (50)

where zT = [xT uT ], and QLV is the learning matrix associated with the QL-function that
is given by

QLV =

[
Qxx Qxu

Qux Quu

]
, (51)

where QLV ∈ R(n+ne)×(n+ne) and the matrices Qxx, Qxu, Qux and Quu represent the
weightings of state x and the policy u.

5.3.1. DLQR-AD-HDP development. The minimization of the parameterized QL function
of Equation (50) provides the means for determining the optimal policy u. The gradient
equation ∂QL/∂u = 0, when solved for u, provides the optimal policy. Consequently, the
optimal control law is given by

u = K(QLV )x, (52)

where K(QLV ) = −Q−1
uuQux.

The parameterization of QL(QLV ) induces a parameterization of the policy g(QLV ).
According to the parameterization u = g(x, κ) of control policy, the parameter vector
κ is a vectorization of the gain matrix K, i.e., κ = vec(K). In comparison with HDP,
parameters besides the ones existing in the QL-function are not needed, i.e., AD-HDP is
a model-free method in which all information is picked up from the states and actions.

5.3.2. QL-function estimation. The estimation of parameters of the QL-function uses the
iterative scheme of Equations (9)-(11) for estimating the QL-function. After considera-
tions on the results of vectorization, one has that the DARE solution approximation by
the least-squares method has its final form given by

z̄T z̄θk+1 = z̄TΘ(z, r, g(f), Kθ), (53)
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where Θ(z, r, g(f), Kθ) is the value function model which is given by

Θ(z, r, g(f), Kθ) = xT
kQxk + uT

kRuk +

[
xk+1

Kθxk+1

]T
QLV

[
xk+1

Kθxk+1

]
. (54)

Algorithm 2 – AD-HDP Algorithm – Least-Squares and Recurrence Step

PDynamic-DLQR-AD-HDP(N)

1 ————————————————————————-
2 � - Setup
3 � - Dynamic Systems
4 [Ad, Bd, tsamp, xinic, xrevit]← [ ]
5 � - Weighting and Dynamic Systems
6 [Q,R, qi, ri]← [ ]
7 � - Iterative Process Parameters
8 [N,nrec]← [ ]
9 � - K and Matriz QLV Initial Values

10 [Kθ
0 , Q

θ
LV 0]← [ ]

11 ————————————————————————-
12 � Iterative Process
13 for i← 1 : N
14 do
15 � Control Noise
16 ei ← [ ]
17 � Control Action

18 ui ← Kθxi + ei
19 � States
20 xi+1 ← Adxi +Bdui

21 � Total Cost Assembling
22 ΘQLV ← xT

i Qxi + uiRui+

23 [xi+1;K
θxi+1]

TQL[xi+1;K
θxi+1];

24 � Basis Set - Kronecker Product
25 zi ← [x2

1i;
26 x1ix2i;x1ix2i;x1ix3i

27 x1iu1i;x1iu2i

28 x2
2i;x2ix3i;x2iu1i

29 x2iu2i;x
2
3i;x3iu1i

30 x3iu2i;u
2
1i;u1,iu2,i

31 u2
2,i];

32 ——————————————————
33 if i%nrec = 0
34 then
35 � Matrix QLV

36 θ ← (z zT )−1zΘQL

37 Qθ
LV ← [θ1 θ2/2 θ3/2 θ4/2 θ5/2;

38 θ6, θ7/2 θ8/2 θ9/2
39 θ10, θ11/2 θ12/2
40 θ13 θ14/2
41 θ15]
42 � Separation in Partitions
43 Qux ← QLV (n+ 1 : n+ ne, 1 : n)
44 Quu ← QLV (n+ 1 : n+ ne, n+ 1 : n+ ne)
45 � Feedback Optimal Gain K

46 Kθ ← −(Quu)
−1Qux

47 xi+1 ← xrevit

48 —————————————————–
49 End - Iterative Process

5.3.3. AD-HDP algorithm. The core of Algorithm 2 for the AD-HDP is assembled ac-
cording to Equation (52), representing the action, and Equation (54) that represents the
observation as a function of states and action. Finally, in order to obtain the approxima-
tion of HJB-Riccati equation solution, the data from those two equations are processed by
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Equation (53). Algorithm 2 has the same operational procedure as Algorithm 1 of state
HDP, within the context of the setup segment and the iterative process. The difference
between the two approaches is clear by the increase of the regressor vector dimension and
by the straightforward determination of the optimal gain. It is not necessary to determine
the Riccati solution.

Similar to HDP, a setup segment is given by

IAD−HDP
setup =

{
Ic5, Ic6, Ic7, Ic8

}
, (55)

where Ic5, Ic6, Ic7 and Ic8 are sets of information that are related to the dynamic system,
instantaneous reward weightings, iterative process parameters and initial conditions of
the optimal gain, respectively. In terms of their components, these sets for the AD-HDP
are given by

Ic5 =
{

Ad, Bd, xinic, tsamp, xrevit

}
Ic6 =

{
Q, R, qi, ri

}
Ic7 =

{
N, nrec

}
Ic8 =

{
Kθ

0 , Qθ
LV 0

}
,

where Ad and Bd are the discrete model matrices, tsamp is the sampling time, xinic and
xrevit are system initial conditions and revitalization of the states, respectively, which
constitute the set Ic5, corresponding to step 4 of Algorithm 2. The elements Q and R
are the weighting matrices and the pair (qi, ri) of parameters represents variations in the
values of the elements of respective matrices in the set Ic6 that correspond to step 6. For
the set Ic7, the parameters N and nrec correspond to the number of iterations and delays
for updating the parameters with respect to a given amount of interval (time window),
respectively, for updating the vectorization parameter θ, corresponding to step 8. For
the set Ic8, K

θ
0 and Qθ

LV 0 are the initial conditions of the Riccati equation and the gain,
respectively, that corresponds to step 10.

The updates of the value function in step 22 and the regression vector in step 25
for each reading of the sampling interval are implemented in the second segment of the
Algorithm 2 of the AD-HDP. The updates of the parameter vector θ are implemented in
step 36 by the least-squares method. Following that, the matrix Qθ

LV recovery is carried
out from θ in step 37, according to the rule previously established in the formulation of
the AD-HDP equations. The conclusion of one recurrence process cycle occurs in step
46 with the update of the gain matrix Kθ for delays that are greater than or equal to
((n+ ne)(n+ ne + 1)/2)tsamp.

5.4. Features of HDP and AD-HDP algorithms. The features of HDP and AD-
HDP algorithms are understood as common relations and differences between the two
approaches, aiming at the ADP solution for determining the optimal control policy for
the DLQR design.

The setup parameters of the HDP and AD-HDP algorithms contribute to increasing the
convergence speed, or lead to solutions diverging from the true values, or cause other types
of events that have an impact on the algorithm performance. During the solution process,
the behavior of algorithms is evaluated for variations of the parameters established by the
setup segments IHDP

setup and IAD−HDP
setup .

The non-null state condition [29] for design purposes, step 34 of the HDP algorithm and
step 47 of the AD-HDP algorithm, contributes to overcoming problems of ill-conditioning
of the regression matrix. The convergence strategies are established according to the
process. In this case, the algorithm has a persistence restarting due to null state problems
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that lead to the linearly dependent columns in the matrix of Equation (44) of the HDP
and AD-HDP algorithms.
Heuristics are established according to the development of the algorithm for conver-

gence. In this case, the algorithm has a persistence restarting to overcome null state
problems that lead to the regression matrix with null rank.

5.5. HDP convergence. The convergence equation represents the variation of the dis-
crete HJB equation solution. In its most primitive form, this equation is presented as a
weighting of the difference between the k starting situation and the k+1 arriving situation
(point, time, stage), i.e., to update the HJB solution from the starting solution Pk to next
solution Pk+1. This situation is represented by

P θ
k+1 = P θ

k + α
[
P−θ
k − P θ

k

]
, (56)

where {P θ
k } is the matrix sequence generated by the optimality ensured by the HJB

equation, and P−θ
k is the value obtained from the Lyapunov recursion which is given by

P−θ
k = Q+KT

k (θ)RKk(θ) +

+(A+BKk(θ))
TP θ

k (A+BKk(θ)). (57)

In the convergence analysis, one evaluates the sequence {Pk}∞k=0 in the recurrence of
Equation (57) in the form of Lyapunov. The HJB gain is given by

Kk(P
θ
k ) = −(R +BTPkB)−1BTPkA. (58)

Equation (57) ensures the HJB optimality, due to its development resulting in the HJB
gain of Equation (58). And also, Equation (57) is a primitive that originates the discrete
Ricatti algebraic equation by its optimization (minimization) with respect to the decision
uk = Kkxk that ensures the optimal value, as can be confirmed in [12].
The optimal value P ∗ is the DARE positive definite solution which is given by

P ∗ = Q+ AT (P ∗ − P ∗B(R +BTP ∗B)−1BTP ∗)A. (59)

Equation (56) obeys the following conditions 0 < α ≤ 1, R > 0, Q ≥ 0, and the pair
(A,B) is controllable. Thus, design specifications that ensure the optimality to evaluate
the behavior of the process are established until the target controller is achieved, i.e.,
Pk → P ∗ as k → ∞ in the recurrence relation of Equation (56). When customized for
Lyapunov relation of Equation (56), one has

Pk+1 = Pk + α
[
Q+KT

k RKk+

+ (A+BKk)
TPk(A+BKk)− Pk

]
. (60)

6. Computational Experiments. The procedures to evaluate the performance of QR-
tuning heuristics and approximate solutions of the HJB equation are established in a set
of computational experiments that consists of three main parts: a) environment simulator
and initial conditions, b) experiments to evaluate state and action-dependent HDP algo-
rithms to eigenstructure assignment, c) experiments to evaluate the QR-tuning. The first
part deals with the dynamic model that represents the actor actions on the environment
by means of actuators as well as the real world system reactions to the actor that are
captured via sensors. The dynamic system model and the setup of the computational
experiments are presented in Appendix A.
The second part of the procedure consists of comparative analysis to evaluate the

the approximate solution of the HJB equation via least-squares estimation method and
adaptive dynamic programming paradigms, such as state and action-dependent HDPs.
The performance analysis is based on the Schur method to evaluate the accuracy of the
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approximate solutions (decisions), i.e., the approximate solution of the HJB equation for
a fixed pair of matrices Q and R. The trace of the closed loop matrix is used to evaluate
the eigenstructure assignment.

The third part of procedure is the evaluation of QR-tuning heuristics that are designed
to sweep the Z-plane through variations in the weighting matrices values of utility function
of DLQR design. In these experiments, the traces of matricesQ and R are the main vehicle
to guide the heuristic search of these matrices.

The third-order model that represents an aircraft is used to evaluate the performance
of the HDP and AD-HDP algorithms for optimal controller design. The time evolution of
the solutions of matrix P θ

k is evaluated for both approaches. The steady state solutions
are compared with the elements generated by the Schur method.

6.1. DLQR-Schur design. The computational solutions of the discrete HJB equation,
and the optimal gain by the Schur method [19] are compared with the values of P and
K for state HDP and AD-HDP approaches. The Schur solution for the dynamic system
that is presented in Appendix A is given by

P schur
∞ =

 5.3947 0.7427 −0.0078
0.7427 1.6203 −0.0067
−0.0078 −0.0067 1.1037

 . (61)

Consequently, the DLQR optimal policy of Equation (58) is given by

Kschur
∞ =

[
0.0050 0.0039 −0.1782
−0.5632 −0.6129 0.0066

]
. (62)

The values of the HJB equation solution and the optimal gain given by (61) and (62),
respectively, are used to compare the accuracy level of the approximate solutions, taking
into account that the Schur values are the true values [19].

6.2. State HDP experiments. Algorithm 1 for the HDP, Section 5.2, is evaluated in
third-order system. The time evolution of the solutions of matrix P θ−HDP

k is compared
with the true value of P θ−HDP

∞ that corresponds to the Schur solution P schur
∞ , as presented

in Section 6.1.
The analysis of the state HDP-QR-tuning and approximate HJB solutions is based on

the convergence relations of Subsection 5.5. For state HDP algorithms, Equation (56) is
written as

P θ−HDP
k+1 = P θ−HDP

k + αHDP

[
P θ
k+1 − P θ−HDP

k

]
, (63)

where P θ−HDP
k and P θ−HDP

k+1 are the estimate solutions of the HJB equation in steps k
and k + 1, respectively, and αHDP is a learning factor, with 0 < αHDP ≤ 1. The value
P−θ
k in Equation (56) that was obtained from the Lyapunov recursion of Equation (57)

for DLQR design is model-based. Herein, the estimate solution P−θ
k is model-free, with

such an estimative being obtained by the least-square method.
The evolution of the Riccati equation solution of Figure 1 is associated with the conver-

gence equation of the approximate solution, Equation (56), in state HDP approach. The
curves of Figure 1 show that the stability of P θ−HDP

∞ lies in the interval 4 < tRcT < 11,
where tRcT is the number of recurrence time steps. The recurrence interval is defined
by a full updating of the vectors x̄, according to Equation (45) and the target vector
Θ(x, r, f, P θ), according to Equation (46), e.g., for step 27 of Algorithm 1, the computa-
tion of inverse of the matrix (x xT ) is performed after a set of six sampling time steps,
as represented in the graphs of Figure 1, during the iterative process until reaching the
steady state solution.
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0 5 10 15 20
0

1

2

3

4

5

6
Third Order System − Parameters θ.

a) Recurrence time(s)

p 11

 

 

θ
estim

θ0

0 5 10 15 20
0

0.5

1

1.5

2

b) Recurrence time(s)

p 22

 

 

θ
estim

θ0

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c) Recurrence time(s)

p 33

 

 

θ
estim

θ0

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

d) Recurrence time(s)

p 12

 

 

θ
estim

θ0

Figure 1. Parameters θ of matrix P – Third-order system

The graphs a), b) and c) of Figure 1 represent the diagonal elements of matrix P θ
k .

It also shows the evolution of the parameter θ2 that corresponds to the element P θ
12 in

graph d). The remaining elements of the matrix P θ−HDP
∞ tend to the steady state value

of the Schur solution, Equation (61), when k → ∞. It is observed that the maximum
time to reach the steady state values in all graphs is around sixty sampling time steps,
corresponding to the ten recurrence time steps. The steady state solution associated with
the parametric evolution of Figure 1 is given by

P θ−HDP
∞ =

 5.3691 0.7399 −0.0078
0.7399 1.6200 −0.0067
−0.0078 −0.0067 1.1037

 . (64)

The optimal policy is given by

Kθ−HDP
∞ =

[
0.0050 0.0039 −0.1782

−0.5632 −0.6128 0.0066

]
. (65)

The comparison of steady state value of the matrix P θ−HDP
∞ , given by Equation (64),

with the Schur solution of Equation (61) and the convergence Equation (56) shows that
the values of the elements of the approximate matrix have an accuracy of at least up to
the first decimal place.
An important observation is about a comparison of the curves a), b), c) and d) with

Equation (61). It is observed that around tRcT > 12, P θ−HDP
k+1 is a good approximation

of P θ−HDP
k , because P θ

k+1 − P θ−HDP
k = 0 and P θ

k+1 is a model-free estimation in HDP
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approach. Consequently, as can be observed in the Schur solution (61), convergence
Equation (63) and computational experiments results of Figure 1, the iterative LS process
reaches a neighborhood of the true value, when the approximation P θ−HDP

k+1 is the value

P θ−HDP
∞ of Equation (64), i.e., the value P θ−HDP

k+1 tends to P schur
∞ . For this operation point

of dynamic system, the system reaches its stability taking into account a pair of weighting
matrices Q and R with their respective values being given by identity matrices.

The gain matrix of Equation (65) is a straightforward application of P θ−HDP
∞ to compute

Kθ−HDP
∞ which is given by −(R + BT

d P
θBd)

−1BT
d P

θAd, and according with step 33 of
Algorithm 1, this step implements Equation (24). As can be observed in optimal gain
relations, if P θ−HDP

k converges to P schur
∞ , the gain Kθ−HDP

∞ will converge to Kschur
∞ in state

HDP paradigm.

6.3. AD-HDP experiments. Algorithm 2 of Section 5.3.3 implements Equation (52)
for determining the DLQR control gain without direct approximate solution of the HJB-
Riccati equation. For state HDP algorithms, one has that the gain determination is
performed in two steps: a) computation of approximate solutions of the Riccati/Lyapunov
equation, and b) the gain matrices computation, as can be seen in steps 27-31 and 33
of Algorithm 1, respectively. However, in AD-HDP, only one step is needed in order to
obtain the gain KAD−HDP

k , as can be seen in step 46 of Algorithm 2.
For the AD-HDP algorithms, the convergence equation for analysis of the state HDP-

QR-tuning and approximate solutions is similar to Equation (63), and it is given by

Kθ−AD
k+1 = Kθ−AD

k + αAD

[
Kθ

k+1 −Kθ−AD
k

]
, (66)

where Kθ−AD
k+1 is the updated optimal gain of DLQR design, Equation (52), Kθ−AD

k is the
current gain, and αAD is a learning factor, with 0 < αAD ≤ 1. In step k + 1, the gain
value Kθ

k+1 is obtained via least-squares estimation of the matrix QL(x, u) that is given
by Equation (50).

The evolution of the gain matrix elements is presented in Figure 2. The graph a) shows
that the first line of the gain matrix K has a convergence less than five recurrence time
steps, while elements of line 2 of the gain matrix have a convergence of about twelve
recurrence time steps. In general, it is observed that the stability of P is reached after
twelve recurrence time steps. The recurrence interval is defined by a full updating of the
vectors x̄. In this case, the AD-HDP is constructed with fifteen parameters and the target
QL which is defined by the HDP solution structure.

The steady state optimal policy associated with the parametric evolution of Figure 2
is given by

KAD−HDP
∞ =

[
0.0045 0.0038 −0.1782
−0.5166 −0.6077 0.0066

]
. (67)

It is observed that the gain value KAD−HDP in Equation (67) converges for the Schur
gain value in Equation (62).

6.4. QR-tuning experiments. In these experiments, results and convergence analysis
of the QR-tuning and least-squares approximate solutions of the HJB equation for online
DLQR design approaches are presented. The results consist of estimate solutions P θ

k and
Kθ

k for state HDP and AD-HDP via least-squares estimation, respectively. The steady
state HDP and AD-HDP approximate solutions are compared with the Schur method,
which is model-based and it is very efficient for suboptimal DLQR design.

Traces of the closed loop matrices are used to evaluate the recurrence process behavior
to map or assign eigenvalues in the stable Z-plane. The traces of the closed-loop matrices
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Figure 2. AD-HDP gains – Third-order system
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Figure 3. HDP traces – Third-order system

for the HDP recurrence process are shown in graph a), and the eigenvalues associated
with those traces are shown in graph b) of Figure 3.
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Figure 4. AD-HDP traces – Third-order system

The results for the action-dependent HDP are shown in Figure 4. The traces of the
closed-loop matrices for the HDP recurrence process, generated by the HDP algorithm,
converge faster than the traces generated by the AD-HDP algorithm.

The features of convergence speed between the two approaches, that can be interpreted
according to the order of regression vectors, are related by the traces of the closed loop
matrices. The regression vectors in the AD-HDP algorithm have a higher order than that
of the regression vectors in the HDP algorithm. Thus, the number of samples to perform
the updates should be 2.5 (sampling intervals) greater in the AD-HDP, i.e., the recurrence
interval (step) is fifteen times the number of samples, while in the state HDP algorithm
is six times the sampling interval. Consequently, the eigenvalues λAD−HDP achieve the
region of Z-plane faster than eigenvalues λHDP , as can be seen in graph b) of Figures 4
and 3, respectively.

Associations between the traces of the weighting matrices Q and R are used to map the
dynamic systems eigenvalues in stable Z-plane, according to the designer specifications.
This task is performed in state space design as linear combinations of the state vector,
whereas the decision law uk is responsible for the transformation.

The heuristics are set according to the directives of [12], where the QR-tuning method
is model-based. In the state and action-dependent HDP designs that are model-free, the
dynamic of the states is captured by sensors. Specifically, the heuristic is based on an
approximation of the relation (42) to guide the heuristic search by the duality principle.
Therefore, for a given pair (Q,Rfix) of weighting matrices, the QR-tuning heuristic rule
for the gain matrix is represented by

Krule
ric (Q,Rfix) ≈ −R−1

fixB
T
d QAd, (68)

where Krule
ric (Q,Rfix) is a gross approximation of (42) to guide the QR-tuning search of

online HDP-DLQR design. The arguments (Q,Rfix) of the decision rule Krule
ric (.) are the
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matrices R with constant traces along the tuning process, while for matrices Q, the traces
are not constant, and for both Q and R matrices, their respective diagonal elements are
all equal, for each selected pair (Q,R) by the QR-tuning method.
The uniform variations in the values of diagonal matrix Q are evaluated for the number

of iterations of the HDP convergence process as well as for the eigenvalue assignment, as
shown in Table 1. The numbers in column qi represent the values of the exponents of
matrices Q(qi) = 10qiI33, where I33 is the identity matrix of third order. For this situation
that is represented in the first column of Table 1, the exponents of Q(qi) are given by qi
= {4, 0,−2,−3}. Analogous reasoning follows for the matrices R, R(ri) = 10riI22, where
I22 is the identity matrix of second order, in this case ri = 0 ∀ i. Third column of this
table represents the number of recurrence time steps that is given by NRcT . The values
of traces QTrace are shown in the fourth column. The closed-loop eigenvalues that are
associated with the pairs (Q,R) are shown in the fifth column.
The results of the computational experiments for the HDP algorithm are presented in

Table 1. Variations in the matrix Q values, and the eigenvalues associated in the Z-plane,
are used to eigenstructure assignment.
For the AD-HDP algorithm, the variations in the matrix Q values, and the eigenvalues

associated in the Z-plane, are shown in Table 2. The variations in the matrix Q values are
given by qi = {10, 2, 0,−2,−5,−10}. Observing the steady state values of approximations,
e.g., the situation that is characterized by qi = −2 and ri = 0 in Tables 1 and 2 is
compared with the Schur method of Table 3. This situation shows that the closed-loop
eigenvalues for the AD-HDP algorithm converge faster than the eigenvalues generated by
the HDP algorithm, because HDP and AD-HDP spent 180 and 90 sampling time steps,
respectively, to reach the steady value. As can be seen, the steady state values are very
close to the eigenvalues of Table 3, so, all eigenvalues of the associated situations are very
good approximations.
The results for the action-dependent HDP are shown in Figure 4. The traces of the

closed-loop matrices for the HDP recurrence process, generated by the HDP algorithm,
converge faster than the traces generated by the AD-HDP algorithm.
The eigenvalues and traces of the closed loop system, which has their optimal gains

determined by the Schur method, are presented in Table 3. These values are used for

Table 1. HDP algorithm and matrix Q variations

qi ri NRcT QTrace Eigenvalues
4 0 10 3×104 0.8681 0.1645 0.1268
0 0 10 3×100 0.8695 0.3683 0.2553
−2 0 30 3×10−2 0.9001 0.7401 0.3662
−3 0 30 3×10−3 0.9198 0.7532 0.3677

Table 2. AD-HDP algorithm and matrix Q variations

qi ri NRcT QTrace Eigenvalues
10 0 2 3×1010 0.8723 0.0000 0.0000
2 0 2 3×102 0.8723 0.0097 0.0090
0 0 6 3×100 0.8693 0.3683 0.2553
−2 0 6 3×10−2 0.9012 0.7390 0.3662
−5 0 10 3×10−5 0.9049 0.7497 0.3679
−10 0 8 3×10−10 0.9049 0.7497 0.3679



QR-TUNING AND APPROXIMATE-LS SOLUTIONS 1091

Table 3. Schur algorithm and matrix Q variations

qi ri QTrace Eigenvalues
10 0 3×1010 0.8674 0.0000 0.0000
4 0 3×104 0.8674 0.0097 0.0090
2 0 3×102 0.8674 0.0097 0.0090
1 0 3×101 0.8693 0.3683 0.2553
−2 0 3×10−2 0.9001 0.7401 0.3662
−3 0 3×10−3 0.9052 0.7501 0.3677
−5 0 3×10−5 0.9058 0.7512 0.3679
−10 0 3×10−10 0.9058 0.7512 0.3679

comparison with the results presented in Tables 1 and 2. The variations in the matrix Q
values are given by qi = {10, 4, 2, 1,−2,−3,−5,−10}. With respect to matrix Q traces,
it is verified that as the trace of matrix Q increases, the closed loop eigenvalues tend to
be closer toward the origin of the Z-plane for both HDP and AD-HDP approaches.

It is observed that variations in the matrix Q values, while the matrix R values are kept
constant, led to the mapping of real eigenvalues in the stable Z-plane, i.e., eigenvalues
that are inside the unitary cycle with radius given by ‖z‖ = 1. These eigenvalues are
limited to the real axis Z and the right half-plane. An investigation to map other regions
of the stable Z-plane involves the development of biased heuristics for the selection of
matrices Q and R, e.g., heuristics that take into account not only diagonal elements of
weighting matrices, but also off-diagonal elements with combination of different elements
of Q and R.
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Figure 5. HDP gains – Third-order system
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The performance of the HDP and AD-HDP methods shows that in terms of the accuracy
of steady state estimation of gain values, these do not present significant deviations from
the true value, i.e., when the LS estimation is compared with the Schur method. It is
noteworthy that a difference between the HDP and AD-HDP approaches is that matrix
P is not directly obtained for the AD-HDP approach, because the gain is calculated from
the submatrices Quu and Qxu of the parameterized function QL for DLQR.
In terms of transient of the iterative process evolution, the behavior of the HDP gains

is presented in Figure 5. This behavior is compared with that of the AD-HDP gains
of Figure 2. It is observed that the AD-HDP policy estimation is faster in reaching its
optimal values than the HDP policy estimation. In terms of steady state values of decision
policies, comparing the steady policy matrices Kθ−HDP

∞ of Equation (65), and Kθ−AD
∞ of

Equation (67), it is observed that steady state values reached for HDP and AD-HDP
are the true value of the decision policy matrix, which is given by gain matrix Kschur

∞
of Equation (62) of the Schur method. Consequently, the state and action-dependent
approaches presented competitive results when compared with the model-based approach,
and besides the online policy is optimal for every instant k of the iterative process.

7. Conclusion. In the context of optimal control and reinforcement learning, a proposal
of a methodology to establish optimal decision policies that is based on the fusion of QR-
tuning method and approximate solution of the Hamilton-Jacobi-Bellman equation was
presented. The QR-tuning method performed the selection of the weighting matrices via
QR duality principle. These matrices were designed as search guidance for decision policy.
The selected pair of matrices, coupled to the HJB equation and its approximate solution
via least-squares method, guaranteed optimality of decision rule and furnished the means
to evaluate the impact of optimal actions. In general manner, the proposed methodology
was shown suitable, based on Bellman optimality principle, to establish policies that must
satisfy complex or conflictive design specifications.
Specifically in the DLQR application, the proposed methodology presented skills to

impose the dynamic system performance with guaranteed optimality, without considering
the full system dynamics model. The state and action-dependent dynamic programming
algorithms were developed to compute approximate solutions of the HJB equation and
decision policies for online design of DLQR control systems. The computational experi-
ments have shown that the state HDP and AD-HDP approximations presented abilities to
carry out eigenvalues mapping in the stable Z-plane for multivariable dynamic systems.
Consequently, the two approaches that are based on QR-tuning methods and approxi-
mated solutions of the HJB equation are feasible alternatives for online implementation
of optimal control systems.
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Appendix A. Setups of Algorithms. Relations (49) and (55) establish the necessary
information to start-up of Algorithms 1 and 2, respectively. The requested information
are the dynamic system model, design parameters, initial conditions and parameters of
the iterative process.

A.1. Dynamic system matrices. The continuous system matrices are given by

Ac =

 −1.102 0.905 −0.002
4.064 −0.770 −0.169
0.000 0.000 −10.000

 (69)

and

Bc =

 0.000 0.000
0.000 10.000
10.000 0.000

 . (70)

For the sampling interval ∆tsamp = 0.1, the sampled system matrices are obtained by
the zero-order-hold method. These matrices are given by

Ad =

 0.912 0.083 −0.001
0.372 0.943 −0.010
0.000 0.000 0.368

 (71)

and

Bd =

 −0.000 0.043
−0.006 0.968
0.632 0.000

 . (72)

The initial condition for the third-order system is given by

x =
[
4.000 2.000 5.000

]T
. (73)

A.2. Iterative process. The setup of the iterative process for HDP is presented. Con-
sidering the peculiarities of each algorithm, the procedure for AD-HDP is similar to the
HDP. General information on the setup are a) dynamic system of order 3, b) number of
iterations is 200, and c) the recurrence factors are 6 for HDP and 15 for AD-HDP.
The initial conditions for the least-squares and the Riccati/Lyapunov equation are

presented. According to the vectorizing process of Equation (31), the parameter vector
of the HDP is given by

θ =
[
θ1 θ2 θ3 θ4 θ5 θ6

]T
. (74)

The order of this vector is established from the size of the matrix P . For third-order
system, one has that θ ∈ R6 and for the presented results, one has that θ1 = θ2 = θ3 =
θ4 = θ5 = θ6 = 0.
The initial matrix of Riccati/Lyapunov equation is associated with the parameters of

the approximation for the third-order system, according to the formation law of symmetric
matrix vectorization of Equation (31). The matrix is given by

P θ
0 =

 θ1 θ2/2 θ3/2
θ4 θ5/2

θ6

 . (75)

A.2.1. Weighting matrices. The weighting matrices Q and R structures are arrays with
non-null diagonal elements, and off-diagonal elements are all equal to zero.


