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ABSTRACT. A version of the Complete Replacement (CR) coupling scheme is presented
in which messages are coded by rapidly switching between several values of a parameter
set and are recovered using adaptive synchronization technique in a time much smaller
than the attractor time-scale. The advantages of this scheme for communication of dig-
ital messages are discussed.
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1. Introduction. Pecora and Carroll [1,2] introduced the idea of synchronizing two
chaotic systems. Since then many schemes have been proposed for chaos synchroniza-
tion such as adaptive sliding mode control [3-5], impulsive synchronization [6,7], finite
time stochastic synchronization [8], nonlinear control [9,10], directional synchronization
[11,12], adaptive synchronization [13-18]. Several types of communication schemes that
use synchronization of chaotic systems have been investigated. Some of the chaos-based
communications schemes are additive masking, chaotic parameter modulation and chaotic
shift keying. In these schemes there is a chaotic master or drive system, a communica-
tion channel and a slave or response system. One or more variables or functions of these
variables act as carrier of the information message. This modified signal, which hides
the information message, is transmitted via the communication channel to the receiver,
driving it to achieve synchronization and recovery of the information signal.

In chaotic signal masking [19-21] the message is simply added to the chaotic signal and
transmitted to the receiver. In this method, the message is required to be much weaker
than the chaotic carrier. The recovered signal is sensitive to channel noises and parameter
mismatches [22].

In chaotic modulation [19,23-25] the information message modifies the transmitter sys-
tem, usually by modulating one or more parameters. At the receiver’s end, by means of
synchronization, the receiver can regenerate the corresponding unperturbed chaotic signal
and recover the information message by comparing the received perturbed signal with the
unperturbed signal.

Chaos Shift Keying (CSK) [26-29] is well suited for communication of digital mes-
sages. In early CSK schemes, the sender and the recipient used identical chaotic systems
u = f(u,p) and @' = f(u',p) respectively. Here u and u' denote the set of drive and
response variables respectively, and p is the set of parameters (assumed identical for the
two systems). In the absence of coupling the two systems evolve independently due to
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differences in initial conditions. However, if a signal s(u) from the transmitter system
drives the receiver system, it is possible to synchronize the two systems. For example,
the systems @ = f(u,p) and @' = f(u',p) + s(u’) — s(u) can be made to synchronize in
synchronization time, Ty, so that u' — u is negligible for ¢ > T,. The recipient can confirm
this synchronization by comparing s(u) and s(u’) after time T;. To communicate a binary
message, the parameters of the transmitter system are switched between two values py
and p;. These values represent the symbols ‘0’ and ‘1’ of the binary message. Each value
is held constant for the bit duration time, T, before switching to a new value depending
upon the next symbol of the message. In the receiver system the parameters remain fixed
at the value pg. If T, > T, the recipient can decode each bit of the transmitted mes-
sage by determining whether the two systems synchronized during the corresponding bit
duration time T,. If the systems synchronize, the transmitted bit is ‘0’; otherwise, it is
‘1’. For this message communication scheme to work, the recipient must know the struc-
ture of the transmitter system described by the function f, the parameters py, the signal
function s and the bit duration time 7y. This communication scheme will be secure only
if an intruder who intercepts the transmitted signal cannot decode the message without
knowledge of f, py, s and Tj.

Zhou and Lai [30] and Abarbanel et al. [31] showed that an intruder, who knows the
structure of the transmitter system, can determine its parameters, severely compromising
the security of the communication scheme. Further, even the structure of the transmitter
is not needed for an intruder to decode a message, as the message can be decoded by
identifying some distinguishing property of the two attractors corresponding to the two
parameters py and p;. However, if the bit duration time is not large enough, during each
occurrence of a bit, the transmitted signal will not contain enough information about
the attractor for an intruder to discover a one-to-one correspondence between the bit
values and the attractors. This suggests that the bit duration time should be made much
smaller than the typical oscillation time 7. of the chaotic oscillator in order to frustrate
such intruder attacks. However, for synchronization based decoding schemes, the bit
duration time must be more than synchronization time because a bit cannot be decoded
without synchronization. It follows that the communication system should be so designed
that T, = T, < T,. Table 1 shows the values of Ty, T, and T, used in different studies.
It is evident from the table that no study has used the design goal inferred above for
enhancing security, and indicating the innovative nature of this suggestion.

We achieve the desired rapid synchronization using the technique of adaptive synchro-
nization [40-43]. This technique assumes that the receiver does not know one or more
parameters of the driving system. The response system is augmented with equations
governing the adaptation of unknown parameters. The synchronization error equations
also get augmented to include the synchronization errors in the unknown parameters. If
the null vector is a stable equilibrium point of these error equations, all the variables, as
well as the parameters, of the drive and response systems synchronize. In this way, the
adaptive synchronization technique can be used for determining unknown parameters of
a system from knowledge of some of the system variables.

Adaptive synchronization of chaotic systems provides an efficient mechanism for com-
munication of secure messages [32,33,44-46]. A digital message is encoded in the parame-
ters of the drive system. The parameter values of the response system synchronize to the
parameter values of the drive and the digital message may be decoded at the receiving
end. A distinguishing feature of this approach is that the parameters can be identified
by a bona-fide recipient without having to identify the corresponding attractors. This
allows parameter identification time, and therefore the bit duration time, to be much
smaller than what will be needed by an intruder for attractor identification. However, as
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TABLE 1. Synchronization time, switching time, and average time period

in different studies
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S. |Ref.|Synchronization| Switching Average time Sch
No. | No. time time period chetme
1 116 9 4 0.4 Chaos-Shift Keying Scheme
[26] (Chua system) or chaotic switching
0.6 Adaptive chaotic
2 |32 2 4 (Lorenz system) parameter modulation
0.6 Adaptive chaotic
3 |[33] 3 5 (Lorenz system) parameter modulation
6 Chaotic Adaptive
434 85 100 (Rossler System) parameter modulation
0.4 . .
5 |[35] 3 5 (Chua System) Chaos-Shift Keying
0.6 x 10"
—4 -3 . .
6 [[36]| 0.18 x10 0.5 x 10 (Lorenz System) Chaos-Shift Keying
0.2x1073
—1 —1 . .
7 |[20]| 0.4 x10 0.5 x 10 (Lorenz System) Chaotic masking
0.8 Chaotic parameter
8 | [37] 1.5 2:5 (Unified chaotic system) modulation
0.7 .
9 |[38] 4 5 (Unified Chaotic system) Chaos-Shift
. 2.5 Hamiltonian approach
10[39] Not given 20 (Chua system) for synchronization

is evident from Table 1, this possibility has not been exploited. In this paper we exploit
this possibility and show how to make the bit duration time smaller than the typical
oscillation time thereby enhancing the communication security as explained earlier.

We illustrate our approach by applying it to a slightly modified technique of synchro-
nization introduced by Pecora et al. [47] called the Complete Replacement technique.
Pecora et al. [47] divided an autonomous n-dimensional dynamical system u into two
subsystems v and w, of dimensions m and (n — m) respectively. They considered the
system v = {v,w} as a drive system, with the sub-system v driving a response system
v = {v,w'} in which w' is governed by the same equation as w, but with different initial
conditions. In the response system u', the v’ variables are completely replaced by the
v variables of the drive. The two systems u and u' would synchronize only if all the
Lyapunov exponents of the w subsystem are negative.

We choose the drive system u in such a way that the variables of the subsystem v can
be divided into two subsets, v; and vy, and the w subsystem depends only on the variables
of v; and w, but not of v,. Then parameter synchronization and message communication
can be made to work without having to transmit the variables in v5 to the response system
u' = {v,w'}. We illustrate this with the help of a modified Lorenz system as the drive w.

In general, the synchronization errors in the variables and the parameters are governed
by equations whose coefficients depend on the variables that move on the attractor. These
errors can be shown to vanish asymptotically by constructing a suitable Lyapunov func-
tion. The synchronization time scale is determined by the Lyapunov exponents, which
depend on the entire attractor over which the variables move. This makes the adaptive
parameters fluctuate chaotically on attractor time-scales before synchronization, so that
the synchronization time-scale is necessarily more than the attractor time-scale. To over-
come this problem we choose the system u, the subsystem w, and the adaptation law for
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the unknown parameters in such a way that the evolution of the error system is governed
by an appropriate system of linear equations with constant coefficients.

For this it is necessary that the unknown parameters appear as additive constants in
the subsystem w. The subsystem w is chosen so that the synchronization errors are
governed by linear equations with constant coefficients. The receiver is assumed to have
knowledge of the instantaneous values of the needed drive variables, but not the forcing
parameters used in the drive system. The response system assumes arbitrary initial
values for these parameters and subjects them to adaptation laws such that the rate of
change in the parameters depends linearly on the synchronization errors in the variables
of the subsystem w. Then synchronization error of the augmented system of the variables
and the unknown parameters is governed by the eigenvalues of a constant matrix. The
synchronization time scale T is independent of the time scale T, of the chaotic drive
system. It can be made much smaller than 7, by appropriate choice of parameters.

This cannot be done when the coefficients of the error equations depend on the variables.
In this case the errors decrease if all the Lyapunov exponents are negative. However, the
Lyapunov exponents only determine the average rate of error growth; the local error
growth can fluctuate chaotically as the coefficients in the error equation traverse different
parts of the chaotic attractor. There will be regions where the local Lyapunov exponent
is positive. It follows that the synchronization time Ty cannot be much smaller than
chaotic oscillation time T, independent of initial conditions. Therefore, T; has to be
larger than 7,.. This makes available a large part of an attractor during each bit duration
time allowing an intruder to use return map and attractor reconstruction techniques to
decode the message. Moreover, because of the chaotic fluctuations in the values of the
response parameter, the separation between the values of the parameters that can be used
for coding has to be relatively large. As a consequence, fewer parameter values can be
used for coding which means lower information transfer rates. Moreover, fewer parameter
values, and greater separation between them, make it easier for an intruder to decode the
message using a return map technique or some other technique to separate the attractors
for different values of the parameter.

The approach presented in this paper overcomes these shortcomings as is illustrated
with the example of a modified forced Lorenz system. Lower synchronization time allows
faster transmission rate. More number of parameter values that can be used for coding
allow increased information transfer rate. More parameter values, less separation between
them and availability of only small portions of an attractor for each parameter value, make
it very difficult for an intruder to separate the attractors corresponding to the different
values of the parameter.

The scheme presented is analytically very simple. It is quite flexible and can easily
incorporate additional features of security. The coding scheme and the switching time,
instead of being fixed, can depend on a shared secret key. The output of the drive
system itself can be subjected to a transformation based on a shared secret key before
transmission. The secret keys can be shared either by private meeting or through public
key encryption.

In Section 2, we describe in detail a modified version of the CR synchronization scheme.
The transmitting system, the receiving system and the parameter adaptation laws are so
chosen that the augmented error matrix is a suitable constant. In Section 3, we show
how this scheme can be used for secure communication of digital messages by modulation
of a forcing parameter. Section 4 discusses in detail the security aspects of the scheme.
Conclusions are given in Section 5.
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2. Synchronization with Parameter Adaptation. Pecora and Carroll [1,2] intro-
duced the idea of synchronizing two chaotic systems. They divided an autonomous n-
dimensional dynamical system
= f(u) (1)

into two subsystems v and w, of dimensions m and (n — m) respectively, governed by
equations of the form

v :g('U,U)), w:h(v,w) (2)
They created a new subsystem w’ identical to the subsystem w, substituted the variables
v for the corresponding variables v in the function h above and augmented Equation (2)
with this new subsystem to obtain

v=g(v,w), w=h(v,w), W =hv,w) (3)

In effect they considered a drive system u = {v,w} and a response system u' = {v', w'}
in which the v variables are completely replaced by the v variables of the drive. This
technique of synchronization has been called the Complete Replacement (CR) technique
[47]. The two systems u and u’ would synchronize only if all the Lyapunov exponents of
the w subsystem are negative.

In general the equation governing e,, = w' — w satisfies

6w = Mey, (4)

In all the well-known examples of the CR method the matrix M depends on the chaotic
variables v, w and w' and therefore varies with time. Synchronization takes place only if
the null solution is a globally stable solution of Equation (4).

Adaptive synchronization techniques [41-44] assume that the receiver does not know
one or more parameters of the driving system. The response system is augmented with
equations governing the adaptation of unknown parameters. The synchronization error
equations also get augmented to include the synchronization errors in the unknown pa-
rameters. The augmented error equations can be expressed as

éw = Me,, + Ne,
ép = Qew
These equations can be expressed as
€o = Loe, (5)

Ew | M N
Whereea—{ep]andLa—{Q 0}.

In general the coefficients of the augmented error matrix depend on the variables and
parameters of the drive and the response systems. However, the parameter adaptation
laws cannot depend on the parameter values, as these values are not available to the
receiver. It is for this reason that the parameter error evolution equation does not depend
on the parameter errors and only depends on the synchronization error of the variables.
If the null vector is a stable equilibrium point of (5), the drive and response systems syn-
chronize. In this way, the adaptive synchronization technique can be used for determining
unknown parameters of a system from knowledge of some of the system variables.

The main design goal of this paper is to achieve rapid synchronization in a time much
smaller than the chaotic oscillation time scale. A simple approach, towards realizing this
goal using parameter adaptation, is to choose the transmitter system and the parameter
adaptive receiver system in such a way that the resulting augmented error matrix L, in
Equation (5) is a constant matrix.

In this paper, we choose the system u so that it can be decomposed into the sub-systems
v and w as in (3) but with the additional requirement that the function h in Equation
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(3) depends only on a proper sub-set v; of the variables in sub-system v so that (3) is
replaced by .

0 =g(v,w), w=h(v,w), W =hv,w) (6)
where h(vy, w) and h(vy,w) are given by

h(vi,w) = H(v) + Lw +IF (7)
h(vy,w) = H(vy) + Lw' + [ F' 4+ L(w' — w)

Here H is an arbitrary function, L and L are constant matrices, F' and F' are constant
column vectors and I is the identity matrix of appropriate dimensions.

The vector F' is not known to the recipient. In the receiving system the vector F' is
given an arbitrary initial value and it evolves according to the parameter adaptation rule

F'=Qw' —w)
where () is a constant matrix. Then the augmented error equations will be governed by
Equation (5) with )
| L+L I
L= t5h L ®)

If all the eigenvalues of L, have negative real part, the drive and response systems
synchronize. The matrix L, may be so chosen that the synchronization time is less than
the chaotic oscillation time of the drive variables.

In [1,2] the Lorenz system with parameters o = 10, b = 8/3, r = 60 was taken as the u
system. It was found that all the conditional Lyapunov exponents were negative for two
choices of the w system: (i) w = {y, 2z} and (ii) w = {z, z}.

We illustrate our approach by considering the u system as a modified forced Lorenz
system governed by

i=o0(y—x)
y=rr—zx—y (9)
i=a2—bz+ F
where F'is a constant. The response system is governed by
=2 b+ F +(b—-p) (- 2) (10)
where p is a constant whose value is to be chosen. This system satisfies the requirements

(&WMM®wmv=mwwﬁquzwhwzwﬂz[UWw>}

re —2x —y
H=22L=—band L=0b—p.

The value of parameter F' is not known to the response system. The parameter F’ of
the response system is assigned an arbitrary initial value and is subjected to a parameter
adaptation law

F'=—5(2 — 2) (11)
where s is a constant whose value is to be chosen. Thus the synchronization error,
e, = 2’ — z is governed by the equations

éz = —pe, +ep
Ep = —Se,

(12)

where e = F' — F'. The synchronization time scale T, which is governed by the eigen-
values of (12), is independent of the oscillation time scale T, of the chaotic drive system,
so it can be made smaller than 7, by appropriate choice of parameters.

Figure 1(a) shows that the response system synchronizes with the drive system and
the parameter F’ converges rapidly to F'. This figure was obtained for the parameter
of the drive system F' = 1. The initial values of the variables (x,y, z) were taken to be
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Time Time

FIGURE 1. Synchronization errors as a function of time for the augmented
error system governed by: (a) Equation (12) having constant coefficients
and (b) Equation (13) having chaotic variables as coefficients

(1,—1,0.01). For the response system, the initial values of the parameters (2’, F') were
taken to be (3,2), whereas p = 40 and s = 400 were chosen.

The advantages of our approach can be seen by comparing it with a similar scheme, but
for which all the coefficients of the error equations are not constant. For this purpose, we
consider the z-coupling synchronization scheme of Pecora and Carroll [1,2], augmented
with a parameter adaptation law identical to that in Equation (12) so that the drive
system is governed by

&=o0(y—x)
y=—x2+1T—Y (13)
t=xy—bz+ F
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and the corresponding response system with parameter adaptation law is governed as

y=—x+rx—1y

Z=uxy — b+ F' (14)
F'=—s(¢ - 2)

In this case, the synchronization error equations would be given by
€y = —€y — TE,
é, = we, —be, +ep (15)
érp = —400e,

Figure 1(b) shows that the synchronization errors eventually vanish because the Lya-
punov exponents are negative. However, the synchronization time is much larger than
Figure 1(a). Also the synchronization errors fluctuate chaotically before convergence. The
basic reason for this is that the error Equation (15) explicitly depends on the chaotic x
variable whereas the error Equation (12) has constant coefficients.

Comparison of Figures 1(a) and 1(b) clearly shows that our approach leads to rapid
and smooth synchronization. This property can be exploited for faster and more secure
communication as discussed below.

3. Secure Communication of Digital Messages. Several studies [44,45] have shown
how the adaptive synchronization of chaotic systems can be used for communication of
secure messages. One or more parameters of the transmitter are modulated by the digital
message to be communicated. The parameter values of the receiver synchronize to the
parameter values of the transmitter and the digital message may be recovered.

We assume that a digital message is composed from a set of 10 symbols denoted by
{0,1,...,9}. Corresponding to the digit k, the value of F'is taken to be Fj, = 0.1(k + 1).
The system (9) remains chaotic for this range of F'. In order to communicate the digital
symbol k, F'is held at a constant value Fj, for a time T};. If the switching time 7} is greater
than the synchronization time T}, the value of F’ will converge sufficiently close to Fj
so that the digital symbol of the message can be deciphered. After the switching time
interval Ty, the value of F'is changed to a value corresponding to the next digital symbol
in the message. In this way the receiver can decipher the digital message communicated
using k, = 10F" — 1, where F! is the value of F’ at time nTy rounded to the nearest
integer.

Large initial error in the z variable causes a large and rapid overshoot in F'. To
overcome this problem, the operation of the adaptation law is suspended for time T}
before transmission of the message. During this period the value of F' is kept constant
at pre-decided value known to the receiver. For this duration, the parameter F’ of the
response system is also kept constant. This leads to a reduction in the synchronization
error of the z variable at time £ = 0, when the transmission of the message is started.
Figure 2 shows the value of F' as a function of time modulated by the digital message {9
450393390}.

In Figure 3 we show how the receiver can recover the message by observing F' at
integral multiples of switching time T,. Figure 3(a) corresponds to the choice w = {z}
using our approach whereas Figure 3(b) corresponds to the choice w = {y, z} of [1,2] with
identical parameter adaptation law. The horizontal line before time £ = 0 corresponds to
the pre-agreed value F' = F' = 0.1 to prevent overshooting as explained earlier.

Figure 3(a) shows that the receiver parameter converges rapidly and smoothly to a
value very close to the transmitter value. The bit duration time is chosen sufficiently
large so that the bit value can be identified unambiguously in this time. There is no
need for separate confirmation of synchronization, and it is built into the choice of bit
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FIGURE 2. The forcing parameter F' modulated by the digital message {9
450393390}

duration time. The receiver will give an acceptable output (all parameter values close
to the agreed parameter values at the agreed time intervals) only to those input signals
which emerge from a transmitting system with the correct w-subsystem, the correct choice
of switching parameter values and the correct switching time intervals. This rapid and
smooth convergence will not, in general, be possible for nonlinear parameter modulation
as that would make the coefficients of the augmented error equations depend on the
chaotic variables. This in turn would make the synchronization time more than the
chaotic oscillation time, limit the speed and reduce the security.

Figure 3(a) shows that a switching time as small as 0.3 can be used for communicating a
message composed from ten distinct symbols. The switching time is less than the average
chaotic oscillation time, which is about 0.5. The switching time can be made as small
as desired, by suitably choosing p and s; it is limited only by hardware considerations.
Therefore, each symbol in the message will be represented by a small fragment of the
attractor corresponding to the symbol; different occurrences of the same symbol will be
represented by different portions of the attractor. Moreover, a large number of closely
spaced parameters can represent several symbols. All these features make it very difficult
for an intruder to identify the different attractors. All cryptanalysis techniques against
CSK type schemes assume that the message is coded as a binary, the bit duration time
is sufficiently long and the parameter values represent the two bits sufficiently separated
that a recipient can distinguish between the two attractors. These techniques find some
property that can help distinguish the two attractors without knowledge of the corre-
sponding parameters [48-50]. As the switching time decreases, it becomes more difficult
for an intruder to decode the message using the return map technique [48]. Yang et al.
[50] have also made the observation that if the switching frequency between two param-
eter sets is too high and comparable to the frequency of the attractor, then it is difficult
to recover the message signal, but the performance of chaos shift keying may degrade
dramatically if the switching frequency is too high. We have shown in this paper that
parameter adaptation can make it possible to decrease the switching time even below the
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FIGURE 3. Recovery of the digital message {94 5039 3 39 0} at the
receiving end from the values of the response parameter F’ observed at
integral multiples of the switching time for the choice (a) w = {2} of this
paper (b) w = {y, z} of references [1,2]

attractor oscillation time, without degrading the performance of the CSK scheme. It is
also not necessary to communicate all the variables of the drive system, so full information
about the drive system is not available to an intruder even for a short time.

On the other hand, in the case of Figure 3(b) even for a relatively large switching time
of 1.2, the message cannot be decoded correctly. Moreover, the parameter F' oscillates
chaotically, undergoing large variations in small time intervals around the time values at
which it is measured. Thus it is necessary to make measurements of F' at very precise
moments. Extremely small errors in the measurement moment would lead to decoding
errors. Also in any physical implementation, large rapid fluctuations of parameters are
undesirable.
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For simplicity of presentation, we have illustrated our approach using a simple example
in which only one message is transmitted. This scheme can be used to transmit several
messages in parallel by increasing the dimensionality of the w-subspace in Equation (2).

4. Security Analysis. Apart from increasing the communication speed, our approach
leads to enhanced security because a very small part of the attractor is available to an
intruder before the transmitter system shifts to another chaotic system. In this section
we analyze in detail, the security features of our scheme.

Several studies have demonstrated the vulnerability of published secure communication
schemes to intruder attacks. Alvarez and Li [51] have listed several suggestions that
designers of chaotic communication schemes must keep in mind to ensure security of
communication in conformity with the principles of modern cryptology.

In cryptology the message to be communicated is called plaintext. The encrypted
message is called the ciphertext. A pair of algorithms that encrypt and decrypt the
message is called the cipher. The detailed operation of the cipher is controlled by these
algorithms, which depend on a secret key that is known only to the sender and the
intended recipient. For digital communication via computers the key is typically a binary
sequence of length N. An intruder needs to scan 2V different keys in order to identify
the secret key by a brute force technique. Clearly, a key must be at least so long that it
makes brute force cracking approach unpractical. However, the larger the key lengths is,
the slower are the encryption and decryption speeds. Thus security should be sought only
to the extent needed. A communication scheme can be useful even if it is not perfectly
secure against all possible attacks. Security is adequate if the cost of cracking the system
is greater than the possible gain to an intruder.

Study of the methods by which an intruder can decrypt an intercepted message without
having knowledge of the secret key is called cryptanalysis. An intruder may have access
only to the ciphertext. The attacks on security, that such an intruder may make, are
called ciphertext-only attacks. An intruder may also have access to some samples of
plaintext along with the corresponding ciphertext. This can make the task of the intruder
much easier. A possible attack with such additional information is called known-plaintext
attack.

We make a security analysis of our communication scheme from the cryptology per-
spective presented above. In our scheme, the plaintext is first converted into a sequence
of digits chosen from a set of p values. Each digit is represented by a distinct parameter
value. This brings one layer of encryption and can be made as strong as desired. The ci-
phertext is the string of chaotic variables which is transmitted, with the parameter values
of the chaotic transmitter system switched in correspondence with the digital plaintext.

In cryptology it is assumed that, for a fixed key, the ciphertext is a single-valued function
of the plaintext. This is clear from the block diagram [51] in Figure 4. Figure 5 shows the
manner in which our proposed scheme differs from the cryptologic scheme of Figure 4. In
this case the ciphertext depends not only on the message x and the secret key k&, but also
on an additional handle [ chosen from a set L, where [ includes the function g and the
initial values. Information about [ is not transmitted to the recipient as it is not needed
for decryption. The ability to alter the ciphertext for the same plaintext and the same
key can help make an intruder’s task more difficult without adding to the key transfer
problem.

One of the desirable properties required of a cryptosystem is that of diffusion — small
changes in either the plaintext or the key should lead to a big change in the ciphertext.
For the scheme of this paper, ciphertext can change drastically even without any change
in either the plaintext or the key. Thus our scheme satisfies the property of diffusion, par
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FIGURE 4. Block diagram of a standard cryptosystem [51]
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excellence. Available cryptanalytic techniques assume that a parameter is held constant
long enough for an intruder to identify the attractor corresponding to that parameter. An
intruder, who can do this, can replace the ciphertext by a sequence of attractor names.
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Then the one-to-one correspondence between plaintext and ciphertext (for a fixed key) is
restored and the security of the cryptosystem gets reduced to that of this correspondence.

Many studies that demonstrate the vulnerability of specific chaos-based coding-decoding
schemes explicitly assume that the entire encrypting process is known to an intruder ex-
cept the parameter values of the master chaotic system, thereby making these parameter
values the secret key. This is called the Kerckhoffs’ principle [52] or the Shannon maxim.
However, any chaotic cryptosystem based on master-slave synchronization is quite weak
if the secret key consists only of the parameter values of the drive system. Such a system
is vulnerable to attack because of parameter adaptive techniques and the requirement of
robustness with respect to small parameter mismatches. Security is greatly enhanced if
the structure of the master chaotic system is made a part of the secret key — information
available only to the sender and bona-fide recipient. We wish to argue that the Kerckhoffs’
principle is not relevant for all applications; there is no application independent principle
that can decide what should be regarded as a key and what should be regarded as public,
what can be treated as secure and what cannot. Thus there is no compelling reason to
regard the structure of the transmitting chaotic system and the details of the encoding
process as public.

The secret key for the cryptosystem we propose consists of the following:

i. The function H and the matrix L in Equation (7).

ii. The set of parameter values used for chaotic switching in the transmitter system.

iii. Switching time.

iv. The algorithm K used for converting a plaintext into a piecewise continuous function
that describes the dependence of the switching parameters on time.

v. The algorithm K5 used for scrambling the variables before transmitting them via an
insecure channel.

vi. Parameter values of the header signals.

If required, each of the above can be made to fit a classical cryptology framework by
suitably defining a key space from which these will be chosen. The net effect is that the
key space is greatly enhanced and the difficulty of the intruder is greatly amplified.

A question can arise that if these secret keys can be communicated through secure
channels, why cannot the messages also be sent through the same secure channels. Here
we need to understand the nature of secret channels. One way of securing a secret channel
is to meet, privately and agree upon the secret keys. For many applications this may be
quite feasible and practical. However, for applications in multiple-user open environment,
the problem of secure key management becomes acute. In recent times, a way was found
to make secure communication without the need for shared secure keys [53]. This mode
of encryption is called public key encryption. In this mode the recipient creates a pair
of keys, which are long strings of binary digits. It is easy to create such pairs, but given
one member of a pair, it is computationally impossible with present technology to obtain
the other member. It is also impossible to decipher any message without using both the
keys. The recipient retains one of the keys as a secret key and transmits the other key,
called a public key, to the transmitter over a public (insecure) channel. The transmitter
can encrypt a message using this key and send it to the recipient. An intruder, who can
obtain the encrypting key, cannot decipher the message without the secret key. Public
key encryption obviously has its advantages. However, it is slow compared to encryption
based on shared secret keys. For this reason, it is advantageous to have hybrid encryption
systems, which combine the advantages of public key encryption and encryption based on
shared secret keys. In such systems the secret keys are communicated through public key
encryption, whereas the bulk communication relies on secret keys so communicated.
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In CSK techniques which use synchronization without parameter adaptation, the swi-
tching time necessarily has to be long enough that the recipient can identify the shift in
the attractor. The main point of our paper is that with parameter adaptation, this is no
longer necessary. It is possible to design a receiver system based on parameter adaptation
so that the recipient, who knows the structure of the encrypting scheme, can identify
the parameters in a time much smaller than that is needed for identifying a shift in the
chaotic attractor. As a consequence, the parameters of the transmitting system can be
changed so rapidly that an intruder cannot identify switches in parameter values from the
cipher-text.

Moreover, without parameter adaptation, the parameter values chosen for chaos shift
keying cannot be very close, because the decryption has to be based on identification
of attractor switching. With parameter adaptation, closer parameter values can be cho-
sen for chaos shift keying because parameter identification in this case does not rely on
identification of attractor switches.

Our scheme offers greatly enhanced security because: (i) the switching time (not publi-
cally announced), is much smaller than the chaotic oscillation time of the oscillator so that
very few consecutive maxima or minima will correspond to the same attractor and (ii) a
large number (unknown to an intruder) of closely spaced parameter values are used for
encryption. In the absence of knowledge about the structure of the transmitting system
including the number of equations governing the transmitting chaotic system, the switch-
ing time, the number of distinct symbols, the parameter values used for representing these
symbols and the encrypting algorithm, there is no evident method by which an intruder
can make a successful ciphertext attack or known-plaintext attack against the proposed
scheme.

The problem for the intruder can be further magnified by increasing the dimensionality
of the w-subspace so that several parameters can be made to change simultaneously.
Under these circumstances, it is not easy to see how any cryptanalytic technique can
reliably identify so many distinct patterns from return maps, when consecutive maxima
and minima do not belong to the same parameter set.

Most chaotic communication systems rely on sending one signal to minimize the amount
of information available to an eavesdropper. One might think that because the method
proposed in this paper uses more than one signal, therefore, it makes far more information
available to an eavesdropper making it much less secure. However, because the parameter
sets are switched rapidly in the proposed method, the availability of more than one signal
cannot help an intruder decode the message. On the other hand, when a parameter set
is held constant for a long time, as is the case with most chaotic communication systems
that transmit one signal, the time series of a single variable is sufficient for an intruder to
identify distinct attractors or use attractor reconstruction for cryptanalysis.

In most chaotic communication systems, the modulation of a linear parameter, as is
done in our approach, is avoided because of the possibility that if the additive parameter
is periodically switched, it will cause a large peak at the switching frequency in the power
spectrum of the transmitted signal. From this, an intruder can infer the switching rate of
the information signal making the detection of the message much easier. This problem of
large peak at switching frequency in the power spectrum can be overcome in several ways.
(i) The switching time can be so chosen that the frequency peak lies within the broadband
spectra of the chaotic system. Our approach allows the use of close values of parameters
to represent different bits, so the amplitude of the peak can be made small enough that it
does not stand out in the power spectra. (ii) The bit duration time need not be constant
and may be varied according to some secret key shared with the bona-fide recipient. (iii)
The synchronization rate is independent of the function g in Equation (6). The sender
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can vary this function without interfering with parameter adaptation. In particular the
value of ¢ in our illustration can be made time dependent. This will have the effect of
creating peaks in the power spectra of the transmitted variables. In this way an intruder
can be duped by a spurious message, whereas a bona-fide recipient can extract the correct
message.

It is not our claim that the scheme is impervious to all possible attacks; only that
it amplifies the task of an intruder by a significant factor. It would require a major
cryptanalytic effort that may not be worth the effort in many applications.

5. Conclusions. In this paper we have presented an approach that uses a version of the
complete replacement technique of synchronization along with parameter adaptation such
that the synchronization error is governed by a system of linear equations with constant
coefficients. We compared the synchronization achieved using our approach, in which the
error equations have constant coefficients, with that achieved for a very similar system,
but for which the error equations explicitly depend upon the chaotic variables. We have
shown that our approach leads to faster and smoother synchronization.

This synchronization is used for communication of digital messages using parameter
switching. We have illustrated how this approach allows smoother synchronization in
a time smaller than the chaotic oscillation time scale. As a result, an intruder cannot
identify the different values of the coding parameters using a return map technique or
any other technique based on attractor identification. Moreover, our approach allows
larger number of values of coding parameters with smaller separation between them, thus
enabling even faster and more secure communication.

We have indicated how this approach can be used to create a strong cryptosystem.
Full implementation details cannot be given because practical implementation requires
consideration of several factors beyond the scope of this paper.

Most communication schemes make two tacit assumptions. The bit duration time has
to be larger than the chaotic oscillation time and only one channel is to be used for
transmission of signals. Such schemes suffer from limitation of communication speed and
from possibility of cryptanalytic attack using return map like techniques. In this paper
we have demonstrated a way around these problems by suggesting an approach based on
shortening the synchronization time using parameter adaptation. This shortening comes
at the cost of requiring more than one communication channels. However, because of
rapid parameter switching, increase in communication channels does not lead to reduced
security.

Acknowledgment. AD thanks DST and CSIR for providing fellowship. AKM and SD
thank ISRO/NCAOR/DST for providing financial assistance in the form of research
projects. The authors also gratefully acknowledge the helpful comments and suggestions
of the reviewers, which have improved the presentation.

REFERENCES

[1] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol.64, pp.821-
825, 1990.

[2] L. M. Pecora and T. L. Carroll, Driving systems with chaotic signals, Phys. Rev. A., vol.44, pp.2374-
2384, 1991.

[3] H.-T. Yau, Y.-C. Pu and S. C. Li, Application of chaotic synchronization system to secure commu-
nication, Information Technology and Control, vol.41, pp.274-282, 2012.

[4] Z. Rabiei, G. B. Bidari and N. Pariz, Synchronization between two different chaotic systems using
adaptive sliding mode control, International Journal of Information and FElectronics Engineering,
vol.3, pp.83-86, 2013.



584

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

A. K. MITTAL, A. DWIVEDI AND S. DWIVEDI

H.-C. Chen, B. Y. Liau and Y. Y. Hou, Hardware implementation of lorenz circuit systems for secure
chaotic communication applications, Sensors, vol.13, pp.2494-2505, 2013.

G. Feng and J. Cao, Master-slave synchronization of chaotic systems with a modified impulsive
controller, Advances in Difference Equations, vol.24, pp.1-12, 2013.

H. Zhang, X. Liu, X. Shen and J. Liu, Intermittent impulsive synchronization of hyperchaos with
application to secure communication, Asian Journal of Control, vol.15, pp.1-14, 2013.

R. Luo and Y. Wang, Finite time stochastic combination synchronization of three different chaotic
systems and its application to secure communication, Chaos, vol.22, no.2, p.023109, 2012.

A. A. M. Farghaly, Chaos synchronization of complex Rossler system, Appl. Math. Inf. Sci., vol.7,
pp-1415-1420, 2013.

L. Liu, H. Song, J. Zhao and G. Wang, Fast synchronization of continuous chaotic system, Journal
of Information & Computational Science, vol.10, pp.3087-3092, 2013.

A. Sambas, M. Sanjaya and W. S. Halimatussadiyah, Unidirectional chaotic synchronization of
Rossler circuit and its application to secure communication, WSEAS Transactions on Systems,
vol.11, pp.506-515, 2012.

A. Sambas, M. Sanjaya, M. Mamat and W. S. Halimatussadiyah, Design and analysis bidirectional
chaotic synchronization of Rossler circuit and its application for secure communication, Applied
Mathematical Sciences, vol.7, pp.11-21, 2013.

T.-L. Liao and S. H. Tsai, Adaptive synchronization of chaotic systems and its applications to secure
communication, Chaos Solitons and Fractals, vol.11, pp.1387-1396, 2012.

M. Srivastava, S. K. Agrawal and V. Mishra, Adaptive synchronization between different chaotic
systems with unknown parameters, International Conference €& Workshop on Advanced Computing,
2013.

C.-H. Yang, Symplectic synchronization of Lorenz-Stenflow system with uncertain chaotic parameters
via adaptive control, Hindawi Publishing Corporation Abstract and Applied Analysis, vol.2013, pp.1-
14, 2013.

L. Ning, The adaptive output synchronization of different-order chaotic system, Journal of Theoret-
ical and Applied Information Technology, vol.51, pp.442-446, 2013.

B. Andrievsky, Information transmission based on adaptive synchronization of chaotic lorenz systems
over digital communication channel, Cybernetics and Physics, vol.2, pp.10-14, 2013.

N. Smaoui, A. Karouma and M. Zribi, Adaptive synchronization of hyperchaotic Chen systems with
application to secure communication, International Journal of Innovative Computing Information
and Control, vol.9, no.3, pp.1127-1144, 2013.

K. M. Cuomo and A. V. Oppenheim, Circuit implementation of synchronized chaos with applications
to communications, Phys. Rev. Lett., vol.71, pp.65-68, 1993.

K. M. Cuomo, A. V. Oppenheim and S. H. Strogatz, Synchronization of Lorenz based chaotic circuits
with applications to communications, IEEE T. Circuits Syst. — II, vol.40, pp.626-633, 1993.

T.-L. Liao and N.-S. Huang, An observer based approach for chaotic synchronization with application
to secure communications, IEEE T. Circuits Syst. — I, vol.46, pp.1144-1150, 1999.

T. Yang, A survey of chaotic secure communication systems, Int. J. Comput. Cognition, vol.2, pp.81-
130, 2004.

S. Bowong, F. M. M. Kakmeni and M. S. Siewev, Secure communication via parameter modulation
in a class of chaotic systems, Commun. Nonlinear Sci. Numer. Simulat., vol.12, no.3, pp.397-410,
2007.

T. Yang, Secure communication via chaotic parameter modulation, IEEE T. Circuits Syst. — I:
Fundamental Theory and Applications, vol.43, pp.817-819, 1996.

C. W. Wu and L. O. Chua, A simple way to synchronize chaotic systems with applications to secure
communication systems, Int. J. Bifurcat. Chaos, vol.3, pp.1619-1627, 1993.

U. Parlitz, Transmission of digital signals by chaotic synchronization, Int. J. Bifurcation and Chaos,
vol.2, pp.973-977, 1992.

H. Dedieu, M. P. Kennedy and M. Hasler, Chaos shift keying, modulation and demodulation of a
chaotic carrier using self-synchronizing Chua’s circuit’s, IEEE Transactions on Circuits and Systems
— II: Analog and Digital Signal Processing, vol.40, pp.634-642, 1993.

G. Kolumban, M. P. Kennedy and L. O. Chua, The role of synchronization in digital communications
using chaos part II: Chaotic modulation and chaotic synchronization, IEEE Transactions on Circuits
and Sys. — I: Fundamental Theory and Applications, vol.45, pp.1129-1140, 1998.

M. P. Kennedy and G. Kolumban, Digital communications using chaos, Signal Processing, vol.80,
pp-1307-1320, 2000.



SECURE COMMUNICATION 585

[30] C. Zhou and C.-H. Lai, Decoding information by following parameter modulation with parameter
adaptive control, Phys. Rev. E., vol.59, pp.6629-6636, 1999.

[31] H. D.I. Abarbanel, D. R. Creveling and J. M. Jeanne, Estimation of parameters in nonlinear systems
using balanced synchronization, Phys. Rev. E., vol.77, pp.016208-1-14, 2008.

[32] C.-S. Zhou and T.-L. Chen, Transmitting multiple information signals by a single chaotic carrier,
Chin. Phys. Lett., vol.14, pp.161-164, 1997.

[33] M. Feki, An adaptive chaos synchronization scheme applied to secure communication, Chaos, Solitons
and Fractals, vol.18, pp.141-148, 2003.

[34] G.J.Xing and D. B. Huang, Encoding-decoding message for secure communication based on adaptive
chaos synchronization, J. Shanghai Univ., vol.12, pp.400-404, 2008.

[35] W. Yua, J. Cao, J.-W. Wong and J. Lu, New communication schemes based on adaptive synchro-
nization, Chaos, vol.17, pp.03311-4-13, 2007.

[36] I. A. Kamil and O. A. Fakolujo, Lorenz-based chaotic secure communication, Ubiquitous Computing
and Communication Journal, vol.7, pp.1248-1254, 2012.

[37] C. Hua, B. Yang, G. Ouyang and X. Guan, A new chaotic secure communication scheme, Phys. Lett.
A., vol.342; pp.305-308, 2005.

[38] W. Xia and J. Cao, Adaptive synchronization of a switching system and its applications to secure
communications, Chaos, vol.18, pp.023128-1-15, 2008.

[39] R. M. Lépez-Gutiérrez, E. Rodriguez-Orozco, C. Cruz-Hernandez, E. Inzunza-Gonzalez, C. Posadas-
Castillo, E. E. Garcia-Guerrero and L. Cardoza-Avendafio, Secret communications using synchro-
nized sixth-order Chua’s Circuit, World Academy of Science, Engineering and Technology, vol.54,
pp.608-613, 2009.

[40] U. Parlitz, Estimating model parameters from time series by autosynchronization, Phys. Rev. Lett.,
vol.76, pp.1232-1235, 1996.

[41] T.-L. Liao, Adaptive synchronization of two Lorenz systems, Chaos, Solitons € Fractals, vol.9,
pp-1555-1561, 1998.

[42] S. Chen and J. Lu, Parameter identification and synchronization of chaotic systems based upon
adaptive control, Phys. Lett. A., vol.299, pp.353-358, 2002.

[43] S. Chen, J. Hu, C. Wang and J. Lu, Adaptive synchronization of uncertain Rossler hyperchaotic
system based on parameter identification, Phys. Lett. A., vol.321, pp.50-55, 2004.

[44] B. Andrievsky, Adaptive synchronization methods for signal transmission on chaotic carrier, Math-
ematics and Computers in Simulation, vol.58, pp.285-293, 2002.

[45] I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to
secure communication systems, IET Commun., vol.1, pp.1015-1022, 2007.

[46] J. Xing and D. Huang, Encoding-decoding message for secure communication based on adaptive
chaos synchronization, J. Shanghai Univ., vol.12, pp.400-404, 2008.

[47] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar and J. F. Heagy, Fundamentals of synchro-
nization in chaotic systems, concepts and applications, Chaos, vol.7, no.4, pp.520-543, 1997.

[48] G. Perez and H. A. Cerdeira, Extracting messages masked by chaos, Phys. Rev. Lett., vol.74, pp.1970-
1973, 1995.

[49] T. Yang, L. B. Yang and C. M. Yang, Breaking chaotic secure communication using a spectogram,
Phys. Lett. A, vol.247, pp.105-111, 1998.

[50] T. Yang, L. B. Yang and C. M. Yang, Cryptanalysing chaotic secure communications using return
maps, Phys. Lett. A, vol.245, pp.495-510, 1998.

[51] G. Alvarez and S. Li, Some basic cryptographic requirements for chaos based cryptosystem, Inter-
national Journal of Bifurcation and Chaos, vol.16, no.8, pp.2129-2151, 2006.

[52] A. Kerckhoffs, La cryptographie militaire, Journal Des Sciences Militaries 1X, vol.5, pp.161-191,
1883.

[53] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information
Theory, vol.22, pp.644-654, 1976.



