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ABSTRACT. Presently artificial pneumatic muscles are used in various applications due
to their simple construction, lightweight and high force to weight ratio. However, controls
of different mechanical systems actuated by pneuwmatic muscles face various problems.
Current models are nonlinear and time-varying. This paper deals with a passivity-based
control (PBC) for Pneumatic Muscle (PM) with a model pulling a mass against grav-
ity. The objective of this study is to design a robust controller for PM under modeling
uncertainties and perturbations associated with Passivity Based Control (PBC) design
methodology. In order to improve the effectiveness and robustness of our control system,
we designed a PBC in combination with a non-linear disturbance observer (PBCNDO)
that provides robust performance in tracking a desired trajectory with guaranteed accu-
racy regardless of the disturbances. We use the NDO for estimation of friction as an
exogenous disturbance in our system. Stability and performance analysis of the composite
closed-loop system is provided using Lyapunov theory. Simulation results are provided to
validate our theoretical results.

Keywords: Pneumatic muscle, Passivity based control, Non-linear disturbance ob-
server, Lyapunov theory, Robust control

1. Introduction. In order to be suitable for task-oriented rehabilitation therapy, robots
must comply with and meet safety measures for patients: a challenge for current rehabili-
tation robot design. Traditional robots are driven by electric motors that are deficient, in
exoskeleton applications, from the standpoint of necessary compliance between the actua-
tor and the limb being moved. To satisfy the needs of a compliant actuator, a pneumatic
muscle (PM) actuator similar to human skeletal muscles in size, weight, and power output
is extensively used in rehabilitation robots. The PM system is inherently a passive device
and is classified as a “soft actuator” (due to its compliance) [1]. In contrast to traditional
motor actuators, a PM actuator possesses many unique advantages (i.e., lower cost, light
weight, compliance). Concurrently, the PM has high power/weight and power/volume
ratios [2]. However, compared with electric motors, PM has a slower response time in
force-generating, time-varying parameters depending on the load position and speed. A
shortcoming in PM technology for use in precision and/or force applications is the in-
herent difficulty of controlling them accurately, due to their complex nonlinear dynamics.
Another limitation of PMs is the fact that they only can be operated in the contractile di-
rection. Hence, PMs have to be used in antagonistic pairs to achieve bi-directional motion
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for a simple flexion and extension joint movement [3]. To overcome these complexities and
hindrances, in recent years researchers have presented several novel approaches to alleviate
shortcomings in current controller design and to allow for easier practical application of
PMA [4, 5, 6, 7]. For the design and control of nonlinear systems, many effective methods
have been proposed, e.g., Lyapunov function method, sliding mode control method, co-
prime factorization method, and passivity based control method. Among these methods,
passivity based control has been proven to be a promising method of analysis, design,
stabilization, and control for nonlinear feedback systems. Passive systems constitute an
important class of dynamical system whose energy is exchanged with the environment.
In passive systems, the amount of the stored energy cannot exceed that of the supplied
energy from the outside with the difference being the dissipated energy. Given this prop-
erty, passivity characteristics have been regarded as a building block for stabilization of
nonlinear systems by an increasing number of researchers [8, 9, 10, 11, 12, 13, 14]. If
a nonlinear system is passive, it can be stabilized by any negative linear feedback even
in the lack of a detailed description of its mathematical model, a property that is very
attractive for use in different physical applications [15]. Although there are a lot of con-
trol methods that have been used for Pneumatic Muscle, to our knowledge none of them
uses Passivity Based Control combined with nonlinear disturbance observer to control the
Pneumatic Muscle with a model pulling a mass against gravity which is a new application
domain. This study proposes a Nonlinear Disturbance Observer Based Control (NDOBC)
approach for the PM-System. Passivity concepts are the fundamental tools invoked to
analyze the closed-loop PM-System behavior which leads to the utilization of asymptotic
position tracking performance. A major advantage of this framework allows us to develop
in a separate way the control law from the observer design provided that each part satis-
fies some passivity properties. Within this framework, instead of considering the control
problem for the PM-System under disturbance as a single entity, we approach it from
the standpoint of two separate subproblems, each with its own design objectives. The
first subproblem is how to find a dynamic output feedback controller which makes the
system dissipative with respect to a specific supply rate while simultaneously capable of
maintaining internal stability. The second subproblem is formulated with respect to at-
tenuating disturbances. A nonlinear disturbance observer is designed to deduce external
disturbances and then to compensate for the influence of the disturbances using proper
feedback. This paper can be summarized as follows. In Section 2, passivity theory and
mathematical preliminaries are reviewed. A pneumatic muscle model description and its
features are outlined in Section 3. The main results consisting of: a design of the proposed
robust control scheme, verification of the passivity of the nonlinear feedback system, and
the design of a nonlinear disturbance observer are demonstrated in Section 4. Simulation
results are provided to show the validity of the proposed methods in Section 5, the final
part is the conclusion of the paper.

2. Passivity Review and Mathematical Preliminaries. In this section the concepts
which will serve as the basis for the further developments are introduced. To put our
discussion in perspective and to introduce some notations, let us briefly recall some aspects
and results from the theory of passive systems, which can be found in [14, 16, 17, 18, 19, 20]
and references therein. Consider an affine nonlinear system described by equations of the
form

T=f(x T)u
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Definition 2.1. The system (1) is said to be passive if there exists a C° nonnegative
function V : R — R with V(0) = 0, called storage function, such that for allu € R” and
all xg € R

Vi(x) =V (xy) < /yT (1) u(r)dr (2)

where x (t) = ¢ (t,x9,u) denotes a solution of (1) starting from x (0) = xo. If, in addition,
there is a positive definite function S : R® — R such that for all u € R and all xy € R"

Viz) =V (xo) < /yT (7)u (T)dr — /S(x (7))dr (3)

then the system (1) is said to be strictly passive. The inequality (2) is called the passive
inequality which is equivalent to

V(z) <y (t)u(t) YueRP (4)
if Vois C" (r > 1) function. Similarly, (3) can be expressed as
V(z) <yl (t)u(t) Yue RP, Yz #0 (5)

if V' is differentiable.

2.1. Kalman-Yacubovitch-Popov Lemma (KYP for short). A fundamental prop-
erty of passive systems is characterized by the nonlinear version of the KYP Lemma,
which can be summarized in the following statement.

Lemma 2.1. The system (1) is passive with a C' storage function if and only if there
ezists a C' nonnegative function V : R* — R with V(0) = 0 such that

LiV (z) <0, LyV (z) =h'" (z) (6)

The system (1) is strictly passive if and only if there exists a C' positive definite function
V(z) such that

L;V(z) <0 Yz #0, L,V (z)=h"(2) (7)

2.2. Robust KYP Lemma. The KYP Lemma described in a previous section provides
a necessary and sufficient condition for a nonlinear system of the form (1) to be passive
or strictly passive. The purpose of this section is to show how this result can be extended
to nonlinear systems with structural uncertainty, and how robust passivity can be tested
using the robust KYP Lemma [19]. The class of uncertain nonlinear systems under
consideration is described by

&= f(r)+Af (x) +g(x)u
(8)
y = h(z)
where Af : R” — R" represents structural uncertainty or uncertain perturbation which
is characterized by Af = e(x)0 (r) where e : R" — R™™ is a known smooth function
and 0 : R™ — R™ is an unknown function, which belongs to the following compact set

Q= {5 () [I6 @) < ln (=)} (9)

The smooth mapping n : R — R™ is given, with n (0) = 0. Af (z) or § (x) is said to be
admissible if § (x) € €. In view of Definition 2.1 and Lemma 2.1, it is quite natural to
introduce the following concept for uncertain systems.
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Definition 2.2. The system (8) is said to be robust passive if there exists a C' nonnegative
function V : R® — R with V(0) =0, such that for all admissible Af (x)

LyiagV (@) <0, LV (x) = h" (x) (10)

If the inequality in (10) becomes a strict inequality that holds for a C' positive definite
V(x) and for all z # 0, then (8) is said to be strictly robust passive.

Lemma 2.2. The system (8) is robust passive with a C' V(z), which is nonnegative, with
V(0) =0, if and only if

LV (@) + 1LV (@) ] < 0
LIV (1)

3. Pneumatic Muscle Model Description. PMAs represent the main force control
operator in many applications, where their static and dynamic characteristics play an
important role in the overall behavior of the control system. Therefore, improving the
dynamic behavior of the pneumatic actuator is of prime interest to control system de-
signers. Two categories for the mathematical models of a pneumatic muscle actuator
are prevalent: the theoretical and the phenomenological models [21, 22, 23, 24]. In this
paper, we adopt the phenomenological model method as a combination of effects from
non-linear friction, spring and contraction components as shown in Figure 1, to describe
the dynamic behavior of a pneumatic muscle (PM) pulling a mass against gravity [5]. The
coefficients related to these three elements depend on the input pressure of the PM [2].
The equations describing approximately the dynamics of a PM are given by

Mi + B(P)i + K(P)z = F(P) — Mg (12)
K(P)= Ko+ K, P (13)

B(P) = By; + By;P(inflation) (14)
B(P) = Byg + BiaP(deflation) (15)
F(P)=Fy+ F,P (16)

where M is the mass, ¢ is the acceleration of gravity, x = 0 corresponds to the fully
deflated position, and P is the input pressure. The coefficients K(P) and B(P) are
pressure dependent for the spring and the damping, respectively. The contractile element
presents the effective force F'(P). The damping coefficient depends on whether the PM

JKP) | B | FP)

Elj ™
L ,

FIGURE 1. Pneumatic muscle (PM) components
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is inflated and deflated. From the dynamic Equations (12)-(16), we can write for the PM
the following dynamic model:
Ty = Ty

; 17
x2:ﬁ[(Fo—Mg—Boxz—Ko«Tl)‘F(Fl_leZ_lel)P] )

From the dynamic Equations (12)-(16), with 1 = = the system state (actual position),
Ty = 1 is the speed of the system and X = [ Ty T ]T we can obtain

X=f(X)+b(X)P (18)

where f(X) = [y < (Fy— Mg — Byzy — Koxy) |* and b(X) = [0 (F, — Bz,
—Kiz;)]". In summary, the dynamic model of PM can be concretely represented as

4. Design of the Proposed Robust Control. Robust control stabilizes an uncertain
system by assuming that its uncertainties are bounded in size by a known function [7].
Typically implemented in a computer, the action of a controller may be understood in
energy terms as another dynamical system interconnected with the nonlinear system to
modify its behavior. The control problem can then be recast as finding a dynamical
system and an interconnection pattern such that the overall energy function takes the
desired form. This “energy-shaping” approach is the essence of passivity-based control
(PBC), a controller design technique that is very well-known in mechanical systems [1].

4.1. PBC controller design. For imprecisely known parameter values, the dynamic
behavior of PM-System is actually described by

Suppose that the desired position, speed and acceleration of the system are described by
x4, T4 and Z4, then the corresponding errors are defined as e = v — x4, ¢ = & — 24 and
€ =7 — iq. After we defined Hy = Miq+ Boig + Kozqg + (Mg — Fp) and

H1 = F1 — Bl.'L’ — Kl.'L’
we can suppose for the right side of Equation (20) as the following

(F1 —Bll‘—Kll‘)P: M.ﬁi’d‘f‘Bgi‘d‘f‘K@l‘d‘f‘ (Mg—F()) +u

w=H,P— Hy (21)

where u is an auxiliary function to be determined. Substituting Equation (21) in (20),
we obtain error dynamic equation

Mé + Byé + Koe = u (22)

For Equation (22) we define 1 = e and x5 = é + e as state variables. Obviously, we have

thrn e =0 and thrn ¢ = 0 if and only if lim z (¢) = 0. In the new coordinate we assume
—00 —00 t—00

the nonlinear disturbance is w. The error dynamic model in Equation (22) can then be
translated into the following equation of state:

i‘1:—1‘1+{L’2
iy =L ((By— Ko — M) xy — (By — M)y — Hy) + 2P + Lo (23)
Y= T2

This in general can be written as

X=fX)+a(X)P+g(X)w (24)
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where
X=[d @] i
f(X)=] -z 4z 3;(Bo—Ko— M)z — (By — M)z, — Hp) | (25)
g (X)=[0 1" px)=[0 %]
Equation (24) can be written as
92 (X)w=X—f(X) =g (X)P (26)

In this paper, a nonlinear disturbance observer to estimate the disturbance w of system
(23) is proposed as

T

b=a(X=f(X)- g (X)P—g(X)d) (27)
where « is the observer gain and @ is the estimated disturbance. We choose the non-linear
observer gain o as a constant matrix

o= [ c1 €y ] (28)
where ¢; > 0 and ¢, > 0. Substitution of Equations (25) and (28) into (27) yields

: . 1 H w
W = Cy |:.'L’2 — M ((Bg _KO — M).’L’l — (Bg —M)IQ —Hg) — MIP— M] (29)
From Equation (23) we substitute 4 in (29) and then we can write for & as the following
: 1 5
b= [M (w— a)] - 02% (30)
We let @ = w — @ with the assumption that
o] < <mn then 0<n—N<n—w<n+1 (31)

where @ is a disturbance difference, 77 is an integer number and
n>0

Generally, in @ = w — @ there is no prior information about the derivative of the dis-
turbance w. When the disturbance varies slowly relative to the observer dynamics, it is
reasonable to suppose that & = 0 and then we have w +w = 0 = © = —w. Choose the
form of Lyapunov function as follows:

1 1 1
V= §x1Tx1 + 535;]\/[@ + 5&)2 (32)

Its time derivative along the state trajectory is given by
V =aliy + 2l My + 06 = 2Tay + 2l Miy — 00 (33)
Substituting Equation (23) in (33) yields
V=—ale +al (By—ko— M)z, — (By — M) &y + 21 + HIP — Hy +w) —ow  (34)
In Equation (34) we chose the input pressure P as
P=(—(By—ko— M)z, + (By— M)xy—x; + Hy— &> — 1) (Hy)™" (35)

Equation (34) can be written, after substituting Equation (35) and making use of Equation
(30) and assumption in (31) as

V=—aTo +al (0—n)—20?=—2Te, — 2] (n—0) — 20

. (36)
V < min (=23 (n+17), -z (n— 7))



ROBUST TRACKING CONTROL OF PNEUMATIC MUSCLE 1101

According to the minimum law, min (a, b) = %2 — ‘a—;b‘ we can write (36) as
V < min (~a (n+7), —23 (n—17)) = a3 (n+17) = —23 (37)

where = n + 1. This shows that the closed-loop system is passive from the input,
viz.[3, to the output, viz.y. According to relations of passivity and asymptotic stability,
let f = x5 and the closed-loop system is stable. Substitute Hy in (35) and consider z; = e
and zo = é + e where e = z — 4 the controller P is given by

M3y + Byt — Mé+ Koz —e+ (Mg — Fy) —o —n

F= F—Bii — Ki» (38)
Substituting Equation (35) in (21), we get
u=(By—M)é+ (Kg—1l)e—n+w (39)
Then we can write for Equation (23) following
T1 = —x1 + Ty
iy =M (z;+n+Q) (40)
Yy= T2
If Formula (40) is passive and can be written in general form
b= f(2)+g(x)n )

y=h(x)

then we have according to a Kalman-Yacubovitch-Popov (KYP) Lemma, the following
statement

ov ov

e (1) <0, Sog@) =T () (42)

4.2. Nonlinear disturbance observer (NDO). Estimation of nonlinear uncertainty
can be pursued in two ways: firstly, through developing a bounding function on the size of
the uncertainty, linearly parameterize the bounding function (or the uncertainty directly)
in terms of a number of unknown parameters, and then estimate the parameters using
adaptation laws; secondly, through generating the uncertainties as the output of some
exogenous system, allow estimation and compensation under certain conditions. In either
of these ways, certain structure property about the uncertainty or its bounding function
is needed. It is a matter of fact, that a model of the exosystems must be included into the
controller to reach the design goals. Owing to that end, a block diagram of a proposed
PBCNDO is shown in Figure 2. As seen in the figure, the composite controller consists
of two parts: a controller without or having poor disturbance attenuation ability and a
disturbance observer. As the dynamics of PM are nonlinear and hard to model precisely,
the design of the model-based control algorithm is more cumbersome. Besides the model-
ing uncertainties, external disturbances are inevitable in real environments which degrade
the control performance. Therefore, the controller should have a robust capability to
achieve the desired objective. Since the PM dynamics show highly nonlinear behavior, it
is difficult to estimate the proper norm bound and, thus, the usual robust control method
for PM control often results in a conservative design. Therefore, the use of a disturbance
observer resolves these difficulties. Considering the external disturbances and the model
error in Equation (23), the PM model is given by:

i‘l = -2+ 29

. .. . : 4
xz:ﬁ(—]\/[xd—l—]\/[e—Box—Kox—(Mg—FO))WL%P"FﬁW )
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1

Desired P

'l‘rajccmr_"_y Controller - PM_ System
X
P(X) -
Z Z
| |- Nonlinear Equation |-
F1GURE 2. The proposed PBCNDO
This can be written generally as
X=f(X)+g(X)P+g(X)w (44)

In this paper, a nonlinear disturbance observer to estimate the disturbance w of system
(43) is proposed as

b=a(X-f(X) - g (V)P -@(X)2) (45)

Define an auxiliary vector z = & — p(X) where z € R?, p(X) is a nonlinear function to
be designed and the non-linear observer gain « is defined as o = 8(’;(;(().

derivative of z gives us

Taking the time

=—a(f(X)+ 9 (X) P+ (X)(z+p(X))) (46)

Let @ = w — W, generally, and there is no a priori information about the derivative of the
disturbance w. When the disturbance varies slowly relative to the observer dynamics, it
is reasonable to suppose that & = 0, and then we have @ + o = 0 [21]. Now according to
Equation (45) we write

WrHo=w+a(gpX)w-0g(X)d)=0+agp(X)o=0 (47)
If we choose the gain « as a constant matrix
o= [ c1 €y ] (48)
where ¢; > 0 and ¢, > 0, in this case p (X) is given by

p(X) = 1w + cow (49)
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Substltutlng (48) and (49) i

w=2z+p(X)
¢ (=21 + ) + 2 (= Mg + Mé — Boii — Kox — (Mg — Fy) + HiP) ] (50)
—C—2 (Z +c1xy + 021'2)

in (46), the disturbance observer can be designed as

= —

Substituting Equation (38) in (50), we can write Equation (50) as the following
O==z+p(X)
f=—[(—e1 = 2)x + iy — 2]

Now if we take the error definition e = x — x4, 1 = e and x9 = é + e in consideration,
then Equation (51) can be written as the following

w==z+p(X)
i=—[-2e+ 6 — 2n| = — [—are + azé — apn)

(51)

(52)

where ag = oy = £ and ay = ¢;. Considering (38) and (43), the passive controller law
combined with disturbance observer can be deduced as
Miq+ Byt — Mé+ (Ko — L)z + 24 +1n— (Fy) — £ + My

P =
Fl—Bl(é+i'd)—K1(€+l'd)

(53)

5. Simulation Results and Discussion. The objective of this section is to demonstrate
the robustness of the proposed controller. However, the feedback linearization control law
designed above may have quite poor disturbance attenuation ability. If we consider that
unknown variable load is applied to this system, it is obvious that with the increase of
the load, the position error significantly increases. For evaluation, the performance of the
proposed controller, a sinusoidal trajectory-tracking problem, was set as in Equation (54)
and a nonlinear disturbance observer was presented to estimate the unknown exogenous
disturbances. The exogenous disturbance in our simulation system was considered as
Coulomb and Viscous friction. When we use our proposed controller (PBC) combined
with a nonlinear disturbance observer (NDO) or (PBCNDO), the external non-linear dis-
turbance can be approximately estimated by this nonlinear disturbance observer (NDO).
The desired sinusoidal trajectory is given by

z = 0.015sin (0.57 (t — 1)) + 0.023 (54)

The PM coefficients used for the simulation are shown in Table 1. The parameters
F(P), K(P) and B(P) of column C1 and C2 are chosen assuming +10% error in the
evaluation values (C). The simulation interval time was selected as 10 ms.

TABLE 1. PM coefficient sets used for the simulation

Coefficient | C (Evaluation) | C1 (0.9xC) | C2 (1.1xC)
FO(x10%) —1.0336 —0.9302 —1.137
F1(x107%) 719.75 647.78 791.73
Km0(x10%) 1.5010 1.351 1.651
Km1(x107?%) —5.703 —5.133 —6.2733
Kn0O(x10%) 2.598 2.338 2.8578
Knl(x1072) 0.858 0.772 0.9438
BO: 92.08 46.87 57.29
B1i(x1079) —124.5 —-112.1 —137.0
B0d -3.19 —2.87 —2.51
B1d(x1079) 90.22 81.20 99.24




1104 Y. M. T. ELOBAID, J. HUANG AND Y. WANG

0.05

Actual

= === Desired

0.04

0.03 4

Position (m)

0.02

0.01 1

0.00 T T v T T T v T
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FIGURE 3. PBC-Sine trajectory tracking result without NDO (n = 50 x (é + €))

0.05
—— Actual

0.044 === Desired
E  0.03-
=
2
2 0.02-
=™

0.014

0.00 . . . . . . . . .

0 2 4 6 8 10

Time (s)

FIGURE 4. PBC-Sine trajectory tracking result without NDO (n = 500 x (é + ¢))

The simulation results of the study indicate that the parameter 7 affected the stability
and the tracking performance of the PM strongly. The simulation results for different
n values for our proposed controller PBC without integrating the nonlinear disturbance
observer (NDO) are shown in Figure 3 and Figure 4. As shown in Figure 3 it is obvious
that the tracking performance of the system using a PBC is not satisfactory when there
are modeling uncertainties and perturbations. On the other hand, as shown in Figure 4,
by increasing the parameter 7, the deviation between the actual and the desired trajectory
is significantly reduced.
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FIGURE 5. PBCNDO-Sine trajectory tracking result (n = 50 x (é + €))
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g 0.03 4 |
® ol )
w \/ VU
0.00 v T r T v T T
0 2 4 6 8 10

Time (s)

F1GURE 6. Tracking result for different friction’s parameters

When using our proposed PBCNDO method, the influence of disturbances is estimated
by a disturbance observer and then compensated for based on the estimate. At that point,
the effects of disturbances and uncertainties are reduced significantly, as depicted in Figure
5. As we see in this figure, a small 7 can achieve a satisfactory tracking performance.

Considering simulations for different friction’s parameters, disturbance and uncertain-
ties have been taken to demonstrate and illustrate the significance and novelty of our
work as practical systems (see Figure 6). In this figure, different values (0.01, 10 and
30) from the Coulomb frictions were applied to show the robustness of the system. It
can be observed that the proposed controller can track the desired trajectory in spite of
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0.003 4 Coulomb friction [0.01]
] Coulomb friction [10]
0.002 - Coulomb friction [30]
E\ .
T 0.0014
E J
& 0.000
=2 4
=
k> -0.001 4
i o
-0.002 4
-0.003 1
0 2 4 6 8 10
Time (s)
Ficure 7. Effect of the variant viscous friction
Actual PID
0.044 Desired
Actual PBCNDO
— 0.034
E
=
2
= 0.024
w
[=]
B
0.01 4
0.00 ' ' . ; . ’ ; : ;
0 2 4 6 8 10

Time (s)

FiGUure 8. Comparison of PBCNDO controller with a conventional PID

these variant viscous frictions values with very small deviation. Figure 7 shows the effect
of the variant viscous frictions values; it can be noticed that the friction error behaves
proportional to the value of the viscous friction.

PID controllers are one of the most used types of controllers in practice; they can
cope reasonably well with systems having different types of dynamics and their analogue
implementation is easy to realize with operational amplifiers. However, in spite of their
simplicity and the small number of parameters that have to be adjusted, PID controller
is frequently poor for stability analysis and tuned. To show superior performance and to
verify the effectiveness of the proposed PBCNDO controller over the conventional PID
controller, a simulation comparison is performed Figure 8.



ROBUST TRACKING CONTROL OF PNEUMATIC MUSCLE 1107

0.004_. —— Error without NDO
1 === Error with NDO
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FI1GURE 9. Position error comparison with and without disturbance observer
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FiGURE 10. The time history of estimated and actual friction-disturbance

The major significance of the proposed PBCNDO controller lies in its high robustness
against disturbance and superior performance over the conventional PID controller, and
is easy of engineering implementation, which explores a convenient engineering method to
improve the performance of the PM control system. The tracking error in the simulations
associated with our composed controller of PBC and NDO is shown in Figure 9. It can
be seen that, by using a properly designed nonlinear disturbance observer and a proper
feedback, the tracking error or regulation error caused by disturbances can be suppressed
significantly.
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In Figure 10, we see the time history of the estimated disturbance-observer compared
with the actual friction-disturbance. In this figure as we can see, the disturbance-observer
tracks the actual friction-disturbance with slight time delay. The maximum mismatch
between the actual friction and estimated frication is found to be near the peaks. This
is an expected result due to the high rate of change at the peak, and the fact that the
observer was designed to track piecewise constant trajectory.

6. Conclusions. Based on PBC design technology, a nonlinear controller for PM-System
to achieve stability and other performance specifications under the assumption of a mea-
surable disturbance is first proposed in this paper. To achieve robustness and stability
a nonlinear disturbance observer for disturbance estimation combined with the proposed
controller has been additionally designed. We demonstrate by decoupling estimation er-
rors from disturbances and the controller passivity property that the overall closed-loop
system is asymptotically stable. Furthermore, to integrate the disturbance observer with
the controller, the disturbance in the control law is replaced by an estimation yielded
by the disturbance observer. The use of a disturbance-observer can help improve stabil-
ity and tracking performance of PM under closed-loop control and data show that the
proposed control-approach is superior. Finally, simulation results show that the perfor-
mance of the proposed controller based on PBC design methodology combined with NDO
is significantly improved, and that the NDO achieves a superior ability for disturbance
attenuation.
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