International Journal of Innovative
Computing, Information and Control ICIC International (©)2014 ISSN 1349-4198
Volume 10, Number 3, June 2014 pp. 1111-1120

ESTIMATING RELIABILITY OF SERVICE-ORIENTED
SYSTEMS: A RULE-BASED APPROACH

AsuisH SETH!, HIMANSHU AGARWAL? AND ASHIM RAJ SINGLA?
!Department of Computer Science
2University College of Engineering
Punjabi University
Patiala, India
{ ashish_may13; himagrawal }@rediffmial.com

3Department of Information Technology
Indian Institute of Foreign Trade
New Delhi, India
arsingla@iift.ac.in

Received April 2013; revised August 2013

ABSTRACT. In service-oriented architecture (SOA), the entire software system consists
of an interacting group of autonomous services. In order to make such a system reliable,
it should inhibit guarantee for basic service, data flow, composition of services, and the
complete workflow. This paper discusses the important factor of SOA and their role in
the entire SOA system reliability. We focus on the factors that have the strongest effect
of SOA system reliability. Based on these factors, we used a fuzzy-based approach to esti-
mate the SOA reliability. The proposed approach is implemented on a database obtained
for SOA application, and the results obtained validate and confirm the effectiveness of the
proposed fuzzy approach. Furthermore, one can make trade-off analyses between different
parameters for reliability.

Keywords: Reliability estimation, SOA, On-demand, Fuzzy, Rule-based

1. Introduction. Service-oriented architecture (SOA) gives you the ability to more eas-
ily integrate information technology (IT) systems, provide multi-channel access to our
systems, and automate business processes. Like any new investment in technology and
infrastructure, it is important to understand the reliability parameters of the system when
it claims to provide ad hoc solutions for dynamic requirements. One of the most important
factors for any product is its reliability in producing the expected result with maximum
accuracy. In software engineering, we have many testing methods available for estimating
the reliability of systems. In the context of service-oriented systems (SOSs), estimating
system reliability has always been a challenge.

Reliability is one of the most important non-functional requirements for software. Ac-
curately estimating reliability for SOSs is not an easy task, and many researchers have
proposed different approaches to SOS reliability estimation [1]. IEEE 610.12-1990 [2] de-
fines reliability as “The ability of a system or component to perform its required functions
under stated conditions for a specified period of time”. The primary objective of reliabil-
ity is to guarantee that the resources managed and used by the system are under control.
It also guarantees that a user can complete its task with a certain probability when it is
invoked.

Software reliability management is defined in IEEE 982.1-1988 [3] as “The process
of optimizing the reliability of software through a program that emphasizes software
error prevention, fault detection and removal, and use of measurements to maximize

1111

1112 A. SETH, H. AGARWAL AND A. R. SINGLA

reliability in light of project constraints such as resources, schedule, and performance”.
Thus any reliable system is one that must guarantee and take care of fault prevention, fault
tolerance, fault removal, and fault forecasting. The most suitable models for reliability
of SOAs are the ones based on architecture. Goseva-Popstojanova et al. classified three
distinct approaches in architecture-based reliability modeling, these are as follows:

state-based models: analytically estimate reliability by using the control flow graph of
the software architecture. These models examine the flow of control between the service
components to estimate the application reliability.

path-based models: compute all possible execution paths, and reliability is estimated
for sets of execution scenarios.

additive models: describe each service-component reliability and focus on estimating
the time-dependent failure intensity of the system using failure data for the service com-
ponents [4,5].

This paper is based on our former study [6], which we have extended to provide more
detailed reliability estimation by using a fuzzy-based approach. The rest of the paper is
organized as follows. First, we discuss the basic definition of SOA and services. Next,
we discuss the work already done in this area in different research studies and summarize
them into the form of a table in Section 2. Then the research approach for our work is
defined in Section 3. Next, the fuzzy-based algorithm used for estimation is illustrated in
Section 4. The experimentation and evaluation results are discussed in Section 5. Finally,
the conclusion is drawn in Section 6.

1.1. Service-oriented architecture. There are many definitions of SOA, but none is
universally accepted. What is central to all, however, is the notion of service. According
to Bianco et al. [7], in an SOA system, service:

e is self-contained, highly modular, and can be independently deployed;

e is a distributed component that is available over the network and accessible through
a name or locator other than the absolute network address;

e has a published interface, so the users of the service only need to see the interface
and can be oblivious to implementation details;

e stresses interoperability such that users and providers can use different implementa-
tion languages and platforms;

e is discoverable, meaning users can look it up in a special directory service where all
the services are registered; and

e is dynamically bound, which signifies that the service is located and bound at run
time. Therefore, service users do not need to have the service implementation avail-
able at build time.

These characteristics describe an ideal service. In reality, services implemented in
SOA systems lack, or relax, some of these characteristics, such as being discoverable
and dynamically bound. Along with this, some of the constraints that apply to the SOA
architectural style are as follows [7]:

e Service users send requests to service providers.

e A service provider can also be a service user.

e A service user can dynamically discover service providers in a directory of services.

e An enterprise service bus (ESB) can mediate the interaction between service users
and service providers.

1.2. Service. Service is an implementation of a well-defined business functionality that
operates independent of the state of any other service defined within the system. It has
a well-defined set of interfaces and operates through a pre-defined contract between the

ESTIMATING RELIABILITY OF SERVICE-ORIENTED SYSTEMS 1113

client of the service and the service itself, which must be dynamic and flexible to be able
to add, remove, or modify services, according to business requirements [6]. Services are
loosely coupled, autonomous, and reusable. They have well-defined, platform-independent
interfaces, and provide access to data, business processes, and infrastructure, ideally in
an asynchronous manner, so that they can receive requests from any source, making no
assumptions as to the functional correctness of an incoming request. Services can be
written today without knowing how it will be used in the future and may stand on its
own or be part of a larger set of functions that constitute a larger service. Thus, services
within SOA:

e provide for a network-discoverable and network-accessible interface;
e keep units of work together that change together (i.e., high coupling); and
e build separation between independent units (i.e., low coupling).

From a dynamic perspective, there are three fundamental concepts that are important
to understand: the service must be visible to service providers and consumers; the clear
interface for interaction between them is defined; and the real world is affected from
interaction between services. These services should be loosely coupled and have minimum
interdependency, otherwise they can cause disruptions when any service fails or changes.

2. Related Work. So far, most of the research on software reliability engineering focuses
on system testing and system-level reliability growth models. Approach for the reliability
analysis of evolving software systems is well-illustrated in Musa work [8]. However, SOA
is not taken into account in any of these approaches. However, Goseva-Popstojanova et al.
(2001) and Gokhale (2007) did remarkable work for architecture-based empirical software
reliability analysis in relation to architecture-based empirical software reliability analyses
[9,10].

Significant work done in the direction of estimation reliability of SOA is summarized
below (see Table 1), though work stated below provides the solution for reliability, each
paper has focused on a particular area and only meets a part of SOA requirements.
Although the reliability of SOA systems cannot be completely estimated, we can estimate
the reliability to a larger extent by analyzing the SOA characteristics and identifying
the corresponding requirements. We did a thorough study in this work to identify the
characteristics and define a corresponding requirement.

3. Discussion and Research Approach. This work is an extension of our previous
work done to identify the SOA adoption trends [5]. This work is a thorough review of
articles and research from the past decade (i.e., from 2001 to 2012). We have identified
the factors that are relevant to SOA implementation and the extent to which each factor
is crucial to SOA implementation. After filtering through a total of 200 papers, we have
identified 95 articles and papers that are relevant to this study. Table 2 below shows
the number of articles dealing with each factor and the percentage of the total that they
represent.

In this work, we started with a set of questionnaires to identify the factors responsible
for system reliability in SOA context among those identified in the first phase of our work.
Using GQM (goal, question, metric) technique, metrics are proposed, and the responses
are taken from 228 people in the industry. The data, which is based on the feedback and
responses, is defined into the following three parameters:

1. AR: adhoc requirements/dynamic binding/agility
2. MG: migration/legacy system integration
3. BI: business and IT collaboration

A. SETH, H. AGARWAL AND A. R. SINGLA

1114

[epow ueIsoArg

-oserd udisep oY) Suump | e ojul spEpow Jueuodwod TIN[) (100g) [opow jueu
JueIDIge AJI[IqRI[l ST [opow urIseAeyg | uororpard AJ[IQRI[ed 0] Pasn a¢ ue)) | pajejouur uwwojsuery o031 posodorg [T] Te 1o yBuig -odwoo pesodoirg 6
sdiys
"SOIYIYUD -UOT)e[aI 1197} pue syueuoduwod Jo s1sh
Suowre Aouspuadop OI[0AD OU ST 9I9Y], -feue oY} YSNOIY} SOOIAIdS 931soduod (30072)
"STIRJ 91 [[3IM POIRIDOSS® B)RD AUR USM ‘diys | Jo uorjeN[RAd pUR (SOOIAIOS OIWIOJR [PPOIN ANTIqeI[oy
S[re] UOIIPUOY) "SOIN[IR] MOU SR | -UOIR[RI IO} pue jueuoduwiod Yors | JO AIQRI[DI SY) d)eN[eAd 0} SUIISe) 9IRM)JOS POIULLI()
-1oue3 Jeadu suorjeredo JuemUSISSE | JO A[IQRI[ed 9} SUIULI)ep 0} sl 9] | dnoi8 :sede)s om) Jo sISISU0D 9] [TT] Te 10 Tesy, -901A19G ‘INHOS 8
ueu
-odwoo ® Jo A}1SUL)UL SIN[IR]) SO)RI ‘poonpai sem juouodwod 1od A3is
-od1oour ey} [ppow sse00xd UOSSIO | -Uop J[ne] o9y} JI ‘pPasealdoul og pnod soger (c007)
SN0sUOWOT-UIOU PAOURT[US JT[} Pas() | AIIqer[or weIsAs oY) Jey) punoj | amnfrejy juweuodwod Suryewrryse I0 | [€T] Te 90 o[RUN0Y) | HIYVHS PozA[uY .
“A1[IqRI[aI UoI3Isoduod 901A
-Tos 3ursATeur 10J pasn axe (SOINILA) podoAUT UaYM I[SB) SIT N0 (g00g) uorny
Surey)) AOYIRJA] 9WIL],-919I0SI(] 901AI8S | AL1ed A[[NJSsedons 0} AI[Iqe SIdIAIeS ® | poyjewl uorgoipaid A3I[Iiqer[el [euory -otpaad Ag1qIqerel
oeo [3IM PorsTqnd UOTIRULIOJUI POs() | JO 9INSBOWL © Sk PaMdIA ST Aj[Iqeral | -isodwod pue osrpewojne uwe pasodoid [8T] 1SSRIN) A | POSLq-0INI0e)IYDIY 9
opod oy sjuou &g (9002) (SINS)
JO UOIJRJUSTUNIISUI [RNURW BIA SJUSU | -0dUWI0D USOMIO(SUOTIISURI} POPIOIDI | -RI[OI WAISAS o1} S3OIpaxd pue SomIiq wWoYSAS oy IRt
-0dwo0 UeoMIe(SUOTIISURI) PIPIOddY | woly senrqeqord uorjisuel) poAlL(| -eqoxd ainjrey jusuoduwos 0y paddepy [c1] Te 10 Suep NP0)s-pazATeuy [
ANqiqeror uorpsodurod 9dIAIeS (600g) 10Mm
SutsAeue 10] posn ore (SOINIA) ANIqer[ar evjep SULISPISUOD AQ PISSIP -owey Jurepouwr
surey) AONIR[N OWI], 9J9I0sI(] aaTyeuIo) e dnyorq se sjood 901AIds | -pe ST sodlales oldurts Jo Ajfiqeral | [LT] ‘[e 90 Suepp T | AY[iqerpI payru() i
“I9STL (0T07) swe)sAg
9OIAIOS JUAILIND YY) 10] uorporpard Ay SUI9)SAS POJUSLIO POIURLI)-9IAISG JO
‘Juopuedopurl oIk | -[IqRI[eI SUI{RW IOJ SIOST 9OIAISS IR | -90IAISS JO AY[Iqel[dd 3uroipeld Ioj UoIOIPaIg AM[IqRI]
semyre] jueuoduIOd 90IAISS sowmsse | -Twals Jo ejep oinfrej jsed sfojdure | pasodoid ST YIomourelj 9ATIRIOQR[[0D | [Ig] T8 90 UIqIZ 7 | -9y 0AIYRIOqR[[0)) ¢
WSTURTDOW 90URID[0) | AJ[IqRI[el pajorpald o) U0 sdouangul Ayqiqe
-)[Ne] UOWWIOD [9POUWT O} SIONIIS | SARY UOIIRINSGUOD UOIJRIO[[R JUAId) | -I[ad W)sAs o) uo sarsojodoy juauod [0g]
-0D [oAS[-I1oy31Y opiaoid 09 syoe] 9] | -JIp OS[e INQ ‘orempley oy} A[UO JON | -W0D JUSISPIP Jo joedwll o1} ojen[ead | ‘Te 1o yYosolg g (0102) ININVS C
'$59001d AI9A0D9I-32R([[O1
*9IN[IR] 1) §)0910p PUR JIAISS | O} 9JRIIUI URD (S SIT ‘S[re] 9o1A SOOIAIOS pUR JUSID Aq poAtedIod
o) s10ytuout jey) (JS) MU AX01d | -10s ' USYA\ 'sseooid sseulsng ' | A[JU9)SISUOD oIe sosseo0ld sseursnq [g]
90IAISG ® SI oIaY) 9JIAISS [O®d IO | JO 9Je)S oY) SIoA0dal A[jueredsuel) | Jey) seinsus jey) [epowr ' pesodoid | 'Te 1o o9[IUR("y (110Z) HATOSOY 1
opew suonydwmnssy sSurpur g suorydrIoso(] Tosodoig Iea g /TOPOIN ON 'S

AIqerer YOS Ul YIom Sursixo jo Arewung "1 d@T1dVv],

ESTIMATING RELIABILITY OF SERVICE-ORIENTED SYSTEMS 1115
TABLE 2. Figures in respective columns represent number of articles; their
percentages out of total.
Factors 2001-2004 | 2005-2008 | 2009-2012 | Total
Governance Issues 6; 3.5 10; 5.9 8; 4.7 24; 14.3
Migration factors 5; 2.9 8; 4.7 9; 5.3 22; 13.1
Legacy Systems Integration 6; 3.5 11; 6.5 5; 2.9 22: 13.1
Change Management 3; 1.7 4; 2.3 4; 2.3 11; 6.5
Adhoc requirements 8; 4.7 9; 5.3 10; 5.9 | 27; 16.1
Resource Competences 1; 0.5 2; 1.1 3; 1.7 6; 3.5
Security Risk 2: 1.1 3; 1.7 3; 1.7 8; 4.7
Risk Management 1; 0.5 3; 1.7 2; 1.1 6; 3.5
Challenges in scope understanding 0; 0.0 3; 1.7 1; 0.5 4; 2.3
Integration Business and IT 3; 1.7 3; 1.7 5; 2.9 11; 6.5
Return on Investment 3; 1.7 2; 1.1 3; 1.7 8; 4.7
BPM and business agility 3; 1.7 1: 0.5 2: 1.1 6; 3.5
User involvement and
Organizational Commitment 3 1.7 0; 0.0 2 1.1 5 2.9
Training and Teaching Methodology 2; 1.1 2; 1.1 3; 1.7 7; 4.1
Total 46; 27.5 61; 36.5 60; 35.9 | 167; 100

The rules were defined for the inference engine. Three clusters were formed for the
input factors (Low, Medium, and High), and five clusters were formed for the output
reliability (Very Low, Low, Medium, High, and Very High). Therefore, with 3 clusters
and 3 input factors, a total of 27 rules were formed that yield 3% = 27 sets. These 27 sets
or classifications can be used to form 27 rules using fuzzy model.

Reliability parameters for SOA-based systems with its constituent factors

1. AR: A system capable of fulfilling the ad hoc on-demand changing requirement of
the market is assumed to be efficient and reliable. It is based upon the way the rule
engine within the model has been trained to perform dynamic binding when the demand
changes or arises. This also covers agility, which is the important issue when someone
moves from present legacy systems to SOA-based systems. It is further concluded that the
more reliable an SOA system is the more capability it has to handle dynamic binding/ad
hoc requirement/agility, i.e., SOA reliability o AR.

2. MG: It is observed that, although an SOA system is strong enough in terms of its
capacity to handle the ad hoc market, if there is no provision of integrating the legacy
system or migrating successfully from old system to new one within the system; it is not
effective and will not guarantee system reliability. Moreover, it is observed that mostly
small and medium enterprises (SMEs) using the SOA system be developed from services
developed from scratch. i.e., SOA reliability oo 1/MG.

3. BI: Within a system, if the collaboration between business process and strategies is
aligned with IT capabilities, the system is assumed to be more reliable. Through surveys,
it has been observed that, although the powerful I'T system is there, it will not be of much
valuable to the organization without proper integration within the business strategies, i.e.,
SOA reliability o BI.

The factors described in the three parameters above assess different properties and
characteristics associated with SOA model reliability. These factors can easily be mea-
sured through various available methods. The values of these parameters cannot be used
independently to measure reliability. Rather, an integrated approach that considers all

1116 A. SETH, H. AGARWAL AND A. R. SINGLA

three parameters and their relative impact is required for estimating a system’s overall
reliability.

This paper proposes a fuzzy model of SOA reliability based on the effects of ad hoc
requirements, dynamic binding, agility, migration, legacy system integration, and business
and IT integration. In our work, we followed Mamdani-type inference, defined it for the
Fuzzy Logic Toolbox, which expects the output membership functions to be fuzzy sets.
After the aggregation process, there is a fuzzy set for each output variable that needs to
be defuzzified. The algorithm is discussed in detailed in the next section.

4. Fuzzy Rule-Based Reliability Algorithm.

1. Conduct a thorough survey of literature to identify the factors that are relevant to
SOA implementation and the extent to which each factor is crucial to SOA imple-
mentation.

Identify reliability parameters in SOA context among these factors.

Cluster factors into three domain clusters of reliability parameters.

Assemble a database for the value of these factors.

Design an inference engine based on the rule for identifying reliability clusters.
Using Fuzzy logic, perform the following operations:

(a) fuzzification of the input variables,

O G WD

)
(c) application of the fuzzy operator (AND) in the antecedent,
(d) implication from the antecedent to the consequent,

) aggregation of the consequents across the rules, and

For defuzzification, we used the centroid technique to produce a crisp value in the range
[0,1]. For the SOA reliability index, we used a singleton output membership function.
It enhances the efficiency of the defuzzification process, because it greatly simplifies the
computation required by the more general Mamdani method, which finds the centroid of
a two-dimensional function.

4.1. Designing a rule base for the fuzzy inference engine. Rules were designed
by considering all the possible combinations of different inputs and reliability parameters
(see appendix for the complete set of rule base). All 27 rules were entered to create a rule
base. Reliability for all 27 combinations was classified based on expert opinion as Very
High, High, Medium, Low, or Very Low. These classifications were used to form 27 rules
for the fuzzy model. Rules were fired depending on the particular set of inputs, using
Mamdani-style inferences.

4.2. Membership functions for input parameters and output parameters. Mem-
bership functions (MFs) were defined for fuzzifying the application. An MF is a curve that
defines how each point in the input space is mapped to a membership value (or degree of
membership) between 0 and 1. Out of 11 built in a membership function type, we have
used the simplest (i.e., triangular memberships function), and it has the function name
trimf. It is nothing more than a collection of three points forming a triangle. The degree
to which an object belongs to a fuzzy set is denoted by a membership value between 0 and
1. A membership function associated with a given fuzzy set maps an input value to its
appropriate membership value. As an example, the input parameter AG was divided into
three levels, Low, Medium and High. (the degree of membership function for all input
parameters and complete inference engine is found in appendix).

ESTIMATING RELIABILITY OF SERVICE-ORIENTED SYSTEMS 1117

5. Experimentation and Evaluation.

5.1. Ouput computation of the model. Let us suppose that we have following input
models:

Inputl = 7.5
Input2 = 6.2
Input3 = 1.8

When these inputs are fuzzified, we find that Inputl = 7.5 belongs to the Low fuzzy set
with membership grade .75; Input2 = 6.2 belongs the Medium fuzzy set with membership
grade .25 and the High fuzzy set with membership grade .5, and Input3 = 1.8 belongs to
the Low fuzzy set with membership grade .5. With these inputs, rule 15 and 25 are fired.
During composition of these rules we get the following:

Min (.75, .25, .75) = .25

Min (.75, .5, .5) = .5

When these two rules are implicated, we find that the first rule gives the Low output
to an extent of .25 and second rule gives the Medium output with an extent of .5.

5.2. Defuzzification. After the aggregation process, there is a fuzzy set for each output
variable that needs defuzzification. Perhaps the most popular defuzzification method is
the centroid calculation, which returns the center of area under the curve. After obtaining
the fuzzified outputs shown in Table 3, we defuzzified them to obtain a crisp value for the
output variable ‘SOAReliability’. For this we calculated the center of gravity (COG) of
the fuzzy output.
Outout f02'5 25zdz + f;5(mx + c)xdxr + f35 Srdr + f57(mx + c)xdx 3
P [22 25dx + [, (ma +)dz + [5dx + [(mz + c)dz

We simulated the effect of these rules with the MATLAB Fuzzy Logic Toolbox; the
reliability for the values above turns out to be 4.3, which is very close to the calculated
value.

TABLE 3. Rule-based output

Inputl | Input2 | Input3 | Output | Degree of membership for output
High | Medium | Low | Medium Min (.75, .25, .5)=.25
High Low Low Low Min (.75, .5, .5)=.5

5.3. Result and discussion. Our experiments simulated the effect of rules with the
MATLAB Fuzzy Logic Toolbox; the reliability for the values obtained was found to be very
close to the calculated value, thus result obtained justifies our approach by giving accurate
estimates. Our experience documented in this paper will be helpful for practitioners
in collecting the data necessary for reliability prediction. Researchers are provided a
demonstration on how the Fuzzy Logic Toolbox can be used to find the reliability of such
system on the basis of certain SOA features. Fuzzy logic is a powerful tool which has the
ability to quantify opinions with the ambiguous, contradicting and doubtful inputs.

6. Conclusion. This paper proposes the fuzzy-based rule based approach to estimate
the reliability of SOA-based systems. The estimation is based on real time factors that
are grouped into parameters. Our experimental result further justifies this approach by
giving accurate estimates. We simulated the effect of rules with the MATLAB Fuzzy
Logic Toolbox; the reliability for the values obtained was found to be very close to the
calculated value. However, the proposed approach has some limitations. It does not take

1118 A. SETH, H. AGARWAL AND A. R. SINGLA

the probability of service failure into account, and there may be some other factors on
which SOA reliability depends. Further, on the basis of our literature survey, we believe
that the parameters we identified cover the most important SOA factors.

REFERENCES

[1] T. Kirti and S. Arun, A rule-based approach for estimating the reliability of component based
systems, Advances in Engineering Software, pp.24-29, 2012.

[2] http://iecexplore.ieee.org/stamp/stamp.jsp tp=Earnumber=159342.

(3] http://www.baskent.edu.tr/~zaktas/courses/Bil573/IEEE_standards/982_1_2005.pdf.

[4] K. Goseva-Popstojanova and K. Trivedi, Architecture-based approaches to software reliability pre-
diction, IFEFE Trans. Softw. Eng., vol.46, no.7, pp.1023-1036, 2003.

[5] K. Goseva-Popstojanova, A. Mathur and K. Triverdi, Comporation of architecture-based software
reliability models, The 12th International Symposium on Software Reliability Engineering, pp.22-31,
2001.

[6] A. Seth, A. R. Singla and H. Agarwal, Service oriented architecture adoption trends: A critical
survey, Proc. of Contemporary Computing Communications in Computer and Information Science,
vol.306, 2012.

[7] P. Bianco, R. Kotermanski and P. Merson, Evaluating a Service-Oriented Architecture, Software
Engineering Institute, 2007.

[8] J. D. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York, 2004.

[9] S. S. Gokhale, Architecture-based software reliability analysis: Overview and limitations, IEEE
Trans. on Dependable Secure Comput., vol.4, pp.132-140, 2007.

[10] K. Goseva-Popstojanova and K. S. Trivedi, Architecture-based approach to reliability assessment of
software systems, Perform Evaluation, vol.45, nos.2-3, pp.179-204, 2001.

[11] W. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul and N. Liao, A software reliability model for
web services, The 8th IASTED International Conference on Software Engineering and Applications,
Cambridge, MA, pp.144-149, 2004.

[12] W. L. Wang, D. Pan and M. H. Chen, Architecture-based software reliability modeling, J. Syst.
Softw., vol.79, no.1, pp.132-146, 2006.

[13] V. Grassi, Architecture-based reliability prediction for service oriented computing, Architecting De-
pendable Systems III, pp.279-299, 2005.

[14] S. Arikan, Automatic reliability management in SOA-based critical systems, Furopean Conference
on Service-Oriented and Cloud Computing, pp.1-6, 2012.

[15] H. Singh, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj, A Bayesian approach to reliability
prediction and assessment of component based systems, Proc. of the 12th International Symposium
on Software Reliability Engineering, pp.12-21, 2001.

[16] A. Danilecki, M. Holenko, A. Kobusinska, M. Szychowiak and P. Zierho_er, Re-SerVe service: An
approach to increase reliability in service oriented systems, Parallel Computing Technologies, pp.244-
256, 2011.

[17] L. Wang, X. Bai and L. Zhou, A hierarchical reliability model of service-based software system, The
33rd Annual IEEE International Computer Software and Applications Conference, 2009.

[18] V. Grassi, Architecture-based reliability prediction for service oriented computing, Architecting De-
pendable Systems II1, pp.279-299, 2005.

[19] S. Becker, Coupled Model Transformations for QoS Enabled Component-Based Software Design,
Ph.D. Thesis, University of Oldenburg, Germany, 2008.

[20] F. Brosch, H. Koziolek, B. Buhnova and R. Reussner, Parameterized reliability prediction for
component-based software architectures, Proc. of the 6th Int. Conf. on the Quality of Software
Architectures, LNCS, New York, vol.6093, pp.36-51, 2010.

[21] Z. Zheng and M. R. Lyu, Collaborative reliability prediction of service-oriented systems, ICSE’10,
ACM 978-1-60558-719-6/10/05, 2010.

ESTIMATING RELIABILITY OF SERVICE-ORIENTED SYSTEMS

Appendix I.

Inference System

System

Inputl

Input2

Input3

Output

Name = SOAReliabilitykirti
Type = mamdani
NumlInputs = 3
InLabels =

AdhocRqmt

ChangeMgmt

BIColloboration
NumOutputs = 1
OutLabels = RelaibilityImpact
NumRules = 27
AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid
Name = AdhocRqmt

NumMFs = 3
MFLabels =
ARLow
ARMedium
ARHigh
Range = [0 10]
Name = ChangeMgmt
NumMFs = 3
MFLabels =
CMLow
CMMedium
CMHigh
Range = [0 10]
Name = BIColloboration
NumMFs = 3
MFLabels =
BILow
BIMedium
BIHigh
Range = [0 10]
Name = RelaibilityImpact
NumMFs =5
MFLabels =
RI_VLow
RI_Low
RI_VHigh
RI_Medium
RI_High

Range = [0 10]

1119

1120

Appendix II.

A. SETH, H. AGARWAL AND A. R. SINGLA

Membership Function for Input and Output Parameters

=
X
e

Membership Function for Input Parameter
&AR'J

Membership Function for Input Parameter
(MG"

Membership Function for Input Parameter
GBI'!

Membership Function for Output Parameter
GB]')

X 28

B

Appendix III.

Rule Editor and Rule Viewer

(A4 AT iy § L5 R e R
2L (adrochiond B ARLIwiand (Chagiigrd. Emnmmi;lmmw

Rule Editor

rigeL o Vbt]
i)

it bad L)1)

ey

et 1)
ri T

v Db ot ks
AR W Crargebep 4 Hb) s e i B8 e it irgac 8t
5 Ao T4 6 O e BT i e Sl g 5

i T ks
F i)
i

Rule Viewer

o — e o
1 ~ —
: —=
: :
| : =
!
" .
:
2
L =
=
= — =
" = ~] ~—
' =
£l S —
a ~
: S
Bl .
- o B)

