
International Journal of Innovative
Computing, Information and Control ICIC International c©2014 ISSN 1349-4198
Volume 10, Number 3, June 2014 pp. 1229-1246

NONLINEAR FEEDBACK CONTROL BASED ON POSITIVE
INVARIANCE FOR A NUTRIENT REMOVAL BIOLOGICAL PLANT

Hicham El Bahja and Pastora Vega Cruz

Automatic and Computer Science
Faculty of Science

University of Salamanca
Plaza de los Cados s/n, Salamanca 37008, Spain

{hicham; pvega }@usal.es

Received May 2013; revised September 2013

Abstract. Activated sludge wastewater treatment processes are difficult to be controlled
because of their complex and nonlinear behavior; however, the control of the dissolved
oxygen and nitrogen levels in the reactors plays an important role in the operation of the
facility. For this reason a new approach is proposed in this work. The paper describes
the theory and applications of a nonlinear control technique, i.e., the so-called nonlinear
feedback control. The control law consists of a linear feedback part which is designed
using the positive invariance concept technique and a nonlinear feedback part without
any switching elements. The control approach structure is combined with a state space
estimation algorithm, for the on-line reconstruction of unmeasured biological states of
the bioprocess. The efficiency of both the control and estimation is demonstrated via
computer simulations.
Keywords: Observation, Nonlinear control, Wastewater plant, Feedback control

1. Introduction. Wastewater treatment plants are large non-linear systems subject to
significant perturbations in flow and load, together with variation in the composition of
the incoming wastewater. Nevertheless, these plants have to be operated continuously,
meeting stricter and stricter regulations. The tight effluent requirements defined by the
European Union a decade ago (European Directive 91/271 “Urban wastewater”) become
effective in 2005 and are likely to increase both operational costs and economic penalties to
upgrade existing wastewater treatment plants in order to comply with the future effluent
standards. Many control strategies have been proposed in the literature but their evalu-
ation and comparison, either practical or based on simulation are difficult. This is partly
due to the variability of the influent, to the complexity of the biological and biochemical
phenomena and to the large range of time constants (from a few minutes to several days)
but also to the lack of standard evaluation criteria (among other things, due to region
specific effluent requirements and cost levels). In addition, the microorganisms that are
involved in the process and their adaptive behavior coupled with nonlinear dynamics of
the system make the WWTP to be really challenging from the control point of view [1-3].

A number of works focused in the control of the WWTPs are found in the literature.
The proposed control strategies differ in objectives and methods. The most important
control variable is the dissolved oxygen concentration (DO) in the aerobic reactors; it is
regulated by the aeration system. An appropriate level of DO guaranties a satisfactory
nitrification and ensures adequate stirring in the tank; however, the energy requirements
to control DO (aeration energy) are high. Therefore, most of the control strategies focus
on DO control [7]. However, another typical control variable is the nitrate concentration in
the anoxic zone and it is regulated with the internal recycle flow [8]. The control methods
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include simple control [9]; addition of a feedforward action based on the measurement
of the influent flow rate [10] and feedforward compensation [11]; linearized and optimal
control [12,13], nonlinear control [14-17], fuzzy control [18,19], optimal control [20] and
supervisory control [21]. Model Predictive Control (MPC), in particular, has been a
research topic for WWTP since the mid of 1990’s. There are many developments of
the classical MPC such as robust MPC, adaptive MPC and non linear MPC [22-26].
Furthermore, works combining estimation to the control for monitoring such process can
also be found [27].
On the other hand, the state space representation is frequently used to form multivari-

able approach to linear control system synthesis and design. These control schemes are
based on the assumption that the system state vector is available for feedback control pur-
poses. In some applications, this assumption is not satisfied because it is either impossible
or inappropriate, in practical situations, to measure all elements of system state. To retain
many useful properties of the linear state feedback control, it is necessary to overcome the
problem of the incomplete state information. The state observation problem is based on
the construction of an auxiliary dynamical system, known as the state observer, driven by
the inputs and outputs of the original system [4]. The reconstructed state vector is then
substituted for the inaccessible one in the usual linear state feedback. Furthermore, as
pointed out above in many practical situations, linear systems are subjected to state and
(or) input constraints. Such constraints are generally associated with physical limitations
in process variables. The respect of these constraints can be accomplished by designing
suitable feedback control laws. In many cases, this can be done by constructing positively
invariant domains inside the set of the constraints [5]. Other important applications were
derived from this concept. In particular, one of them consists in using a large set of initial
states while the constraints on the control vector are respected [6].
The objective of this work is to design and to apply the non linear feedback control

based on the positive invariance concept techniques to a WWTP. This controller consists
of a linear feedback law (computed from the invariance positive) and a nonlinear feedback
law without any switching elements. The linear feedback part is designed to yield a
closed-loop system with a small damping ratio for a quick response, while at the same
time does not exceed the actuator limits for the desired command input levels. The
nonlinear feedback law is used to increase the damping ratio of the closed-loop system as
the system output approaches the target reference to reduce the overshoot caused by the
linear part. The obtained model combines the problems of non availability of the state
to measure with the limitations of some variables. The control is achieved by an observer
based controller that can take into account constraints on the control and on the error.
The model is worked out to meet all design required conditions. The efficiency of the
controller is showed via simulations with the real plant.
The remainder of the paper is organized as follows. The modeling of the continuous

wastewater treatment plants is detailed in Section 2. In fact, the modeling of the aerated
basin, the anoxic basin and the settler are depicted. The control of the process is presented
in Section 3. The simulation results are then described in Section 4. Finally, Section 5
ends the paper with concluding remarks.
Notations:

• For two vectors x, y ∈ Rn, x ≤ y (respectively, x ≺ y) means xi ≤ yi (respectively,
xi ≺ yi), i = 1, . . . , n.

• x+
i = sup(xi, 0), x

−
i = sup(−xi, 0).
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• For A ∈ Rn×n, σ(A) denotes its spectrum and

Ã =

(
A1 A2

A2 A1

)
, A1(i, j) =

{
aij, i = j

a+ij, i 6= j
and A2(i, j) =

{
0, i = j

a−ij, i 6= j

• I and intRn
+ are respectively the identity matrix of dimension n and the interior of

Rn
+.

2. Process Modeling. A typical, conventional activated sludge plant for the removal of
carbonaceous and nitrogen materials consists of an anoxic basin followed by an aerated
one, which is aerated by a submerged air bubble system or mechanical agitation at its
surface and a settler (Figure 1). In the presence of dissolved oxygen, wastewater, that is
mixed with the returned activated sludge, is biodegraded in the reactor. Treated affluent
is separated from the sludge in the settler. A portion of the activated sludge is wasted
while a large fraction is returned to anoxic reactor to maintain the appropriate substrate-
to-biomass ratio.

Figure 1. WWTP

In this study, we consider six basic components present in the wastewater: autotrophic
bacteria XA, heterotrophic bacteria XH , readily biodegradable carbonaceous substrates
SS, nitrogen substrates SNH , SNO and dissolved oxygen SO, where XA, XH , SS, SNH ,
SNO, and SO represent the concentrations of these elements. In the formulation of the
model, the following assumptions are considered: the physical properties of fluid are
constant; there is no concentration gradient across the vessel; substrates and dissolved
oxygen are considered as a rate-limiting with a bi-substrate Monod-type Kinetic and
finally no bio-reaction takes place in the settler which is perfect.

Based on the above description and assumptions, we can formulate the full set of
ordinary differential equations (mass balance equations), making up the IWA AS Model
NO.1 [28,29].

2.1. Modeling of the aerated basin.

ẊA,nit(t) = (1 + r1 + r2)Dnit (XA,denit −XA,nit) + (µA,nit − bA)XA,nit (1)

ẊH,nit(t) = (1 + r1 + r2)Dnit (XH,denit −XH,nit) + (µH,nit − bH)XH,nit (2)

ṠS,nit(t) = (1 + r1 + r2)Dnit (SS,denit − SS,nit) + (µH,nit + µHa,nit)XH,nit/YH (3)

ṠNH,nit(t) = (1 + r1 + r2)Dnit (SNH,denit−SNH,nit) + (ixb + 1/YA)µA,nitXA,nit

− (µH,nit + µHa,nit) ixbXH,nit (4)
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ṠNO,nit(t) = (1 + r1 + r2)Dnit (SNO,denit−SNO,nit) + µA,nit
XA,nit

YA

−1− YH

2.86YH

µHa,nitXH,nit (5)

ṠO,nit(t) = (1 + r1 + r2)Dnit (SO,denit − SO,nit) + a0Qair(CS − SO,nit)

−4.57− YA

YA

µA,nitXA,nit −
1− YH

YH

µHa,nitXH,nit (6)

where µA,nit and µH,nit are the growth rates of autotrophs and heterotrophs in aerobic
conditions and µHa,nit is the growth rate of heterotrophs in anoxic conditions. Defined
by:

µA,nit = µmax,A
SNH,nit

(KNH,A+SNH,nit)
SO,nit

(KO,A+SO,nit)

µH,nit = µmax,H
SS,nit

(KS+SS,nit)

SNH,nit

(KNH,H+SNH,nit)
× SO,nit

(KO,H+SO,nit)

µHa,nit = µmax,H
SS,nit

(KS+SS,nit)

SNH,nit

(KNH,H+SNH,nit)
× KO,H

(KO,H+SO,nit)

SNO,nit

(KNO+SNO,nit)
.ηNO

2.2. Modeling of the anoxic basin.

ẊA,denit(t) = Ddenit(XA,in + r1XA,nit) + α.r2Ddenit

×Xrec − (1 + r1 + r2)DdenitXA,denit

+(µA,denit − bA)XA,denit (7)

ẊH,denit(t) = Ddenit(XH,in + r1XH,nit)− (1 + r1 + r2)

×DdenitXH,denit + (1− α)r2DdenitXrec

+(µH,denit − bH)XH,denit (8)

ṠS,denit(t) = −(µH,denit+µHa,denit
)
XH,denit

YH

− (1 + r1 + r2)

×DdenitSS,denit +Ddenit(SS,in − r1SS,nit) (9)

ṠNH,denit(t) = Ddenit(SNH,in + r1SNH,nit)− (1 + r1 + r2)

×DdenitSNH,denit − (ixb + 1/YA)µA,denit

×XA,denit − (µH,denit +muHa,denit)

×ixbXH,denit (10)

ṠNO,denit(t) = Ddenit(SNO,in + r1SNO,nit)− (1 + r1 + r2)

×DdenitSNO,denit +
µA,denitXA,denit

YA

−1− YH

2.86YH

µHa,denitXH,denit (11)

where

µA,denit = µmax,A
SNH,denit

(KNH,A+SNH,denit)

µH,denit = µmax,H
SS,denit

(KS+SS,denit)

SNH,denit

(KNH,H+SNH,denit)

µHa,denit = µmax,H
SS,denit

(KS+SS,denit)

SNH,denit

(KNH,H+SNH,denit)
× SNO,denit

(KNO+SNO,denit)
ηNO
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2.3. Modeling of the settler. A mass balance on the settler leads to the following
equation:

Ẋrec = (1 + r2)Ddec(XA,nit +XH,nit)− (r2 + w)DdecXrec (12)

where r1, r2 and w represent respectively, the ratio of the internal recycled flow Qr1 to
influent flow Qin, the ratio of the recycled flow Qr2 to the influent flow and the ratio of
waste flow Qw to influent flow, and CS is the maximum dissolved oxygen concentration.
Dnit, Ddenit and Ddec are the dilution rates in respectively, nitrification, denitrification,
denitrification basins and settler tank; Xrec is the concentration of the recycled biomass.
The other variables and parameters of the system Equations (1)-(12) are defined in Tables
1 and 2.

3. The Control Problem. Before computing and applying the nonlinear feedback con-
trol, the linearization and the decomposition of the nonlinear system are needed. Also the
reconstruction of the unmeasurable states has been achieved by the Luenberger observer.

Table 1. Process characteristics

Variables Value Description
Vnit 1333m3 Volume of nitrification basin
Vdnit 1000m3 Volume of denitrification basin
Vdec 6000m3 Volume of settler
Qin 18446m3/j Influant flow rate
Qw 385m3/j Waste flow rate
XA,in 0mg/l Autotrophs in the influent
XH,in 30mg/l Heterotrophs in the influent
SNH,in 30mg/l Ammonium in the influent
SNO,in 2mg/l Nitrate in the influent
SO,in 0mg/l Oxygen in the influent

Table 2. Kinetic parameters and stoechiometric coefficient characteristics

Variables Value Description
YA 0.24 Yield of autotroph mass
YH 0.67 Yield of heterotroph mass
ixb 0.086
KS 20mg/l Affinity constant
KNH,A 1mg/l Affinity constant
KNH,H 0.05mg/l Affinity constant
KNO 0.5mg/l Affinity constant
KO,A 0.4mg/l Affinity constant
KO,H 0.2mg/l Affinity constant
µAmax 0.8l/j Maximum specific growth rate
µH max 0.6l/j Maximum specific growth rate
bA 0.2l/j Decay coefficient of autotrophs
bH 0.68l/j Decay coefficient of heterotrophs
ηNO 0.8l/j Correction factor for anoxic growth
α 0.5
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3.1. Linearization. Biological Wastewater treatment models can be generally repre-
sented as follows: {

dx
dt(t)

= f(u(t), x(t))

y(t) = g(u(t), x(t))
(13)

where x(t) is a vector of variables reflecting the systems state, called state variables, u(t)
is a vector of input variables, and y(t) is a vector of outputs or measured variables. The
linear model is formed by numerically evaluating the change in function values (f and g)
resulting from small changes in model variables (x, u) at any particular operating point:

A =
∂f

∂x

∣∣∣
OP

; B =
∂f

∂u

∣∣∣
OP

(14)

C =
∂g

∂x

∣∣∣
OP

; D =
∂g

∂u

∣∣∣
OP

(15)

where all of the above partial derivatives are evaluated at the chosen operating point and
will, therefore, change depending on the operating point. This results in the well known
linear “state-space” model format:{

dx
dt

= Ax+Bu
y(t) = Cx+Du

(16)

To obtain a model in the state space, the state vector is considered as

X(t) = [XA,nit(t) XH,nit(t) SS,nit(t) SNH,nit(t) SNO,nit(t) SO,nit(t) XA,denit(t)

XH,denit(t) SS,denit(t) SNH,denit(t) SNO,denit(t) Xrec(t)]
T (17)

Further, to complete the model, the following input and output vectors are used:

Y (t) = [SNH,nit(t) SNO,nit(t) SO,nit(t)]
T (18)

U(t) = [Qr1 Qr2 Qair]
T (19)

Linearizing the system around the equilibrium point computed from the nonlinear equa-
tions leads to the new variables (x, u, y) that are now deviation variables. That is, they
are deviations from the point the model is linearized about, not their original absolute
values. The equilibrium point is given by

x̄(t) = [69.6 623 13.5 3.2 10.4 2.4 68.9 624.6 20.9 8.9 5.3 1356.8]T (20)

The constraints on the control are given by the following limitations: −Q̄r1 ≤ Qr1 ≤ 4Q̄r1

−Q̄r2 ≤ Qr2 ≤ Q̄r2

−Q̄air ≤ Qair ≤ 2Q̄air

(21)

with Q̄r1 = 2300m3/j, Q̄r2 = 18446m3/j and Q̄air = 100m3/j.

3.2. Decomposition. In order to apply the concept of positive-invariance, the studied
system must be controllable and observable. However, our system does not completely
satisfy the two later conditions. For this reason, we used the decomposition process that
allows us to extract only the controllable and observable part.
Any representation in the state space can be transformed into the equivalent form using

the transformation Z = Tox [5]: {
Ż = ĀZ + B̄u
y(t) = C̄Z

(22)

with
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Ā =

(
Ano A12

0 Ao

)
; B̄ =

(
Bno

Bo

)
C̄ =

(
0 Co

)
; Z =

(
Zno

Zo

)
Therefore, we obtain the following system of equations: Żno = AnoZno + A12Zo +Bnou

Żo = AoZo +Bou
y = CoZo

(23)

where Ao and Co are constant matrices of appropriate dimension and the pair (Ao, Bo)
is controllable. It is assumed that Ao possesses at last (n − m) stable eigenvalues. The
control u is constrained in the set Ω defined as follows:

Ω = {u ∈ Rm − umin ≤ u ≤ umax. umin, umax ∈ intRm
+} (24)

using a state feedback control:

u(t) = sat(Fx(t)), F ∈ Rn×n (25)

where the saturation function is as follows:

sat(Fx(t)) =


umax if Fx ≥ umax

u if − umin ≺ Fx ≺ umax

−umin if Fx < −umin

leads to a domain of linear behavior for the closed loop system that is given by:

D(F, umin, umax) = {x ∈ Rn, −umin ≤ Fx ≤ umax} (26)

and the closed loop system in this case

ẋ(t) = (Ao +BoF )x(t) (27)

Hence, if the domain (27) is positively invariant, in the sense of the definition given below,
one guarantees the respect of the control constraints for all t ≥ 0.

Definition 3.1. A subset D of Rm is said to be positively invariant with respect to system
(28) if the condition x(t0) ∈ D implies that x(t) ∈ D, ∀t ≥ t0.

3.3. Luenberger observer. Since the objective of the use of an observer is to reconstruct
the unavailable states, the presence of p linear combinations of the state in the output
suggests that the remaining n−p linear combinations may be reconstructed by an observer
of order no greater than n − p. Such an observer is called a minimal-order observer [5].
Thus, we wish to generate the remaining state combinations as follows:

z(.) = TZo(.) (28)

where matrix T is chosen in such a way that the matrix

(
Co

T

)
is invertible. Using

this linear combination, with the matrix T of dimension (n− p, n), the estimated state is
obtained from:

Ẑo =

(
Co

T

)−1(
y(.)
z(.)

)
=

(
Vo Po

)( y(.)
z(.)

)
(29)

Furthermore, the amount TZo(.) can be measured which leads us to generate z(.) from
an auxiliary dynamical system as follows:

ż(.) = Doz(.) + Eoy(.) +Gou(.) (30)
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where z(.) is the state of the observer dynamics. Note here that the matrices Vo, Co, T ,
Po, satisfy

VoCo + PoT = I. (31)

The control problem with constraints via an observer of minimal order may be stated in
the following way

u(.) = sat
(
FẐo(.)

)
(32)

We choose the state feedback F and matrices Do, Eo and Go are chosen so that the
asymptotic stability and the constraints on the inputs are respected.
The observation error in this case is given by

ε(.) = z(.)− TZo(.) (33)

recalling that the matrices of the observer of minimal order are given by [7]

Do = TAoPo, Eo = TAoVo, Go = TBo (34)

which is equivalent to write these matrices satisfying the following relation

TAo − EoCo = DoT (35)

where the matrices T and Po are chosen to ensure asymptotic stability of the matrix Do,
and canceling the observation error asymptotically, indeed [2]:

ε̇(.) = ż(.)− TŻo

= Doz(.) + Eoy(.) +Gou(.)− T (AoZo(.) +Bou(.))

= Doz(.)−DoTZo(.)

= Doε(.)

For the observation error, we define the field D(I, εmax, εmin) that gives us the limits
within which we allow change of the error ε(.). The reconstruction error is always given
by

e(.) = Ẑo(.)− Zo(.) (36)

and is related to the observation error in the following way:

e(.) = Voy(.) + Poz(.)− Zo(.)

= VoCoZo(.) + Poz(.)− (VoCo + PoT )Zo(.)

= Po(z(.)− TZo(.))

= Poε(.)

Lemma 3.1. The field D(I, umax, umin)×D(I, εmax, εmin) is positively invariant with respect

to the system trajectory

(
u(.)
ε(.)

)
if and only if, there exists a matrix H oinRm×m such

that: {
HoF = FAo + FBoF

M̃qε ≤ 0
(37)

where

M =

(
Ho Lr

0 Do

)
; qε =


umax

εmax

umin

εmin

 ; Lr = −FVoCoAoPo

for every pair: (u(0), ε(0)) ∈ D(I, umax, umin)×D(I, εmax, εmin).
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To compute the feedback gain, the inverse procedure is used [5,6]. Hence, matrix Ho

satisfies all required conditions such that a solution existing is chosen and the feedback
F is obtained as a solution to the equation:

FAo + FBoF = HoF (38)

Remark 3.1. Note here that all computation effort is handled off line. Choice of an
adequate matrix Ho with all required conditions is studied in [5], solution of Equation
(38) is detailed in [6].

We start by writing the equation for the evolution of the control u(t) always in the case
of a linear behavior using previous relationship (28), (31), (32):

u̇ = F
˙̂
Zo

= FPoż(.) + FVoCoŻo(.)

= FPoTAoẐo(.) + FBou(.) + FVoCoAo(Ẑ(.)− e(.))

= (FAo + FBoF )Ẑo(.)− FVoCoAoe(.)

= HoFẐo(.)− FVoCoAoPoε(.)

= Hou(.) + Lrε(.)

Therefore, the system formed by the control u(.) and the error ε(.), can be expressed
as: (

u̇(.)
ε̇(.)

)
=

(
Ho Lr

0 Do

)(
u(.)
ε(.)

)
3.4. The nonlinear feedback control. The objective here is to design a nonlinear
feedback control law for the system (16) with the constraints (21) that will cause the
output to track a step input rapidly without expressing large overshoot respecting the
constraints below. The following assumptions on the system matrices are required:
1) (Ao, Bo) is stabilizable.
2) (Ao, Bo, Co) is invertible and has no zero at s = 0.

In this section, we follow the idea of the work presented in [30] to develop a nonlinear
feedback control technique for the case where we have (n − p) states of the plant (16)
which are measurable as mentioned before. We have the following step-by-step design
procedure.
Step 1 : Design a linear feedback law

uL = Fx+Gr (39)

where r is a step command input and F is chosen such that 1) Ao + BoF is an asymp-
totically stable matrix (see the section before). Furthermore, G is a scalar and is given
by

G = −[Co(Ao +BoF )−1Bo]
−1 (40)

Here, we note that G is well defined because Ao+BoF is stable, and the triple (Ao, Bo, Co)
is invertible and has no invariant zeros at s = 0.
Step 2 : Next, we compute

H := [1− F (Ao +BoF )−1Bo]G (41)

and
xe := Ger := −(Ao +BoF )−1BoGr (42)

Given a positive-definite matrix W ∈ Rn×n, solve the following Lyapunov equation:

(Ao +BoF )TP + P (Ao +BoF ) = −W (43)
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for P > 0. Note that such a P exists since Ao +BoF is asymptotically stable. Then, the
nonlinear feedback control law uN(t) is given by

uN = ρ(r, y)BT
o P (x− xe) (44)

where ρ is any nonpositive function locally Lipschitz in y, which is used to change the
system closed-loop damping ratio as the output approaches the step command input.
Step 3. The linear and nonlinear feedback laws derived in the previous step are now
combined to form a composite nonlinear feedback controller

u = uL + uN

= Fx+Gr + ρ(r, y)BT
o P (x− xe) (45)

The following theorem shows that the closed-loop system comprising the given plant
in (16) and the nonlinear feedback control law in (44) is asymptotically stable. It also
determines the magnitude of r that can be tracked by such a control law without exceeding
the control limit.

Theorem 3.1. Consider the given system in (16), the linear control law of (25) and the
nonlinear feedback control law of (44). For any α ∈ (0, 1), let cα > 0 be the largest positive
scalar satisfying the following condition:

|Fx| ≤ umax(1− α), ∀x ∈ Xalpha := {x : xTPx ≤ cα} (46)

Then the linear control law of (25) is capable of driving the system controller output y(t)
to track asymptotically a step command input r, provided that the initial state x0 and r
satisfy

x̃0 = (x0 − xe) ∈ Xalpha, |Hr| ≤ αumax (47)

Furthermore, for any nonpositive function ρ(r, y), locally Lipschitz in y, the composite
nonlinear feedback law in (44) is capable of driving the system controller output y(t) to
track asymptotically the step command input of amplitude r, provided that the initial state
x0 and r satisfy (47).

Proof: Let x̃ = x− xe. It is simple to verify that the linear control law of (39) can be
rewritten as

uL = Fx̃(t) + [1− F (Ao +BoF )−1Bo]Gr
= Fx̃(t) +Hr.

Hence, for all x̃ ∈ Xalpha, provided that |Hr| ≤ αumax, |Fx̃+Hr| ≤ umax and the closed-
loop system is linear and it is given by

˙̃x = (Ao +BoF )x̃+ Aoxe +BoHr (48)

Noting that

Aoxe +BoHr =Bo[1− F (Ao +BoF )−1Bo]Gr

− Ao(Ao +BoF )−1BoGr

= [I −BoF (Ao +BoF )−1]BoGr

− Ao(Ao +BoF )−1BoGr

=0

the closed-loop system in (48) can then be simplified as

˙̃x = (Ao +BoF )x̃ (49)
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Similarly, the closed-loop system comprising the given plant in (16) and the nonlinear
feedback control (49) can be expressed as

˙̃x = (Ao +BoF )x̃+Bow (50)

where
w = sat (Fx̃+Hr + uN)− Fx̃−Hr (51)

Clearly, for the given x0 satisfying (47), we have x̃0 = (x0 − xe) ∈ Xα. We note that (51)
is reduced to (50) if ρ = 0. Thus, we can prove the results, respectively, under the linear
control and the non linear feedback control in one shot.

Next, we define a Lyapunov function V = x̃TPx̃, and evaluate the derivation of V along
the trajectories of the closed-loop system in (47), i.e.,

V̇ = ˙̃xTPx̃TP ˙̃x+ 2x̃TPBow

= x̃T (Ao +BoF )TPx̃+ x̃TP (Ao +BoF )x̃

+2x̃TPBow

= −x̃TWx̃+ 2x̃TPBow (52)

Note that for all

x̃ ∈ Xα = {x̃ : x̃TPx̃ ≤ cα} ⇒ |Fx̃| ≤ umax(1− α) (53)

We next study the V̇ for the different cases of the constraints on the input.
Case 1) If |Fx̃+Hr + uN | ≤ umax, then w = uN = ρBTPx̃ thus

V̇ = −x̃TWx̃+ 2ρx̃TPBoB
T
o Px̃ ≤ −x̃TWx̃ (54)

Case 2) If Fx̃+Hr + uN � umax, and by construction |Fx̃+Hr| ≤ umax, we have

0 ≺ w = umax − Fx̃−Hr ≺ uN = ρBT
o P x̃ (55)

which implies that x̃TPBo ≺ 0 and hence V̇ = −x̃TWx̃+ 2x̃TPBow ≤ −x̃TWx̃.
Case 3) Finally, if Fx̃+Hr + uN ≤ −umin, we have

ρBT
o Px̃ = un ≺ −umin − Fx̃−Hr ≺ 0 (56)

implying x̃TPBo � 0 and hence V̇ ≤ −x̃TWx̃.
In conclusion, we have shown that

V̇ ≤ −x̃TWx̃ x̃ ∈ Xalpha (57)

which implies that Xalpha is an invariant set of the closed-loop system in (50). This, in
turn, indicates that, for all initial state x0 and the step command input of amplitude r
that satisfy (51)

lim
t→∞

x(t) = xe ⇒ lim
t→∞

y(t) = r (58)

This completes the proof.

4. Simulation Results. The simulation results are obtained using a fourth order Runge-
Kutta with the same typical values of process and kinetic parameters defined in Tables 1
and 2 and the controller is tested with two kinds of disturbances:

Thereafter decomposition, the obtained system is represented by (24), and Ao, Bo,
Co are injected in closed loop and coupled with a minimal order Luenberger observer
which has the role of estimating the non-measurable states from the measurable ones
(SNH,nit, SNO,nit, SO,nit). We assume that in our case the control constraints are such as

umax =

 5000
18466
110

, umin =

 2000
18425
80


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and reconstruction errors limits are such as:

εmax =
(
1 1 0.5 1 1 1

)
; εmin =

(
0.5 0.5 0.25 0.8250 0.5 0.5

)
we choose the matrix H assigning spectrum {−170;−55;−51} as follows:

H =

 −170 0 0
0 −55 0
0 0 −51


Hence, solving Equation (38) leads to:

F =

 0.0010 −0.0044 0.0319 0.0725 −0.0791 −0.0944 1.0349 −0.0000 0.4162
0.0001 −0.0005 0.0000 0.0001 0.0000 −0.0002 0.0017 −0.0000 0.0007
0.0148 −0.0774 0.1421 0.0036 −0.1591 −0.2023 −0.0352 −0.0024 0.0864


Figures below are devoted to present the evolution of the disturbances, outputs and

inputs of the system. In fact, the nonlinear feedback controller, as defined in the sections
above, is applied to the WWTP. The linear and non linear feedback controllers are com-
pared by computing the indices IQ, EQ, PE and ISE as summarized in Tables 3 and 4. The
output variables evolution, are SNH,nit, SNO,nit and the dissolved oxygen concentrations,
and their corresponding reference trajectories are 3.2, 10.4 and 2.4, respectively.
As general remarks asymptotic stability is obtained, all constraints are respected and

the the amount of all non desired organic matter is reduced in the output to the desired
values. Figures (3,5) and (7,9) show the performance and the effectiveness of the regulator.
In particular, one can appreciate the ability of the controller to track the desired values
of the controlled variables. Hence, in practice, the nonlinear controller is able to reduce

0 100 200 300 400 500 600 700
55

60

65

70

75

80

85

90

95

Time in hours

C
on

ce
nt

ra
tio

n 
in

 m
g/

l

Evolution of Ssin

Figure 2. Evolution of the disturbance Sin1
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Figure 3. Evolutions of the concentrations SNH,nit and SNO,nit
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Figure 4. Evolutions of the concentration SO and the dissolved oxygen Qair
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Figure 5. Evolutions of the recycled flows Qr1 and Qr2
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Figure 6. Evolution of the disturbance Sin2

Table 3. Indices of the plant with the first disturbance (Figure 1)

Indices u = ul u = ul + unl Units
Influent Quality (IQ) 5.4306e+007 5.4306e+007 gPUd−1

Effluent Quality (EQ) 8.9048e+007 8.9015e+007 gPUd−1

Pumping Energy (PE) 8.5923e+004 8.5923e+004 Whd−1

Aeration Energy (AE) 2.8433e+004 2.8173e+004 Whd−1
Integral of the Squared Error (ISE) 10.3677 1.9225

the EQ, AE and ISE with an important percentage and this is clear from Tables 3 and 4.
No change in IQ because the influent is constant.
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Figure 7. Evolutions of the concentrations SNH,nit and SNO,nit
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Figure 8. Evolutions of the concentration SO and the dissolved oxygen Qair
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Figure 9. Evolutions of the recycled flows Qr1 and Qr2

Table 4. Indices of the plant with the second disturbance (Figure 5)

Indices u = ul u = ul + unl Units
Influent Quality (IQ) 5.4678e+007 5.4678e+007 gPUd−1

Effluent Quality (EQ) 9.1354e+007 9.1306e+007 gPUd−1

Pumping Energy (PE) 8.5923e+004 8.5923e+004 Whd−1

Aeration Energy (AE) 2.8712e+004 2.8313e+004 Whd−1

Integral of the Squared Error (ISE) 15.8029 5.2772

5. Conclusion. In this paper, we introduced the nonlinear feedback control of a non
linear system with input constraints. In fact, positive invariance techniques together with
minimal order observer (software sensor) are used to control the linearized model of a
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WWTP. For this process, modeled as a linear process, some state variables are unavailable
to measure and more than that no adequate sensor exists. Hence, the introduction of the
observer is of great interest. Further, in general case, linearizing a non linear process
leads the variables (control in our case) to be limited within neighborhood of the steady
point functioning. The positive invariance techniques that had emerged as very efficient
to handle similar problems of constrained control are successfully used to control the
nitrogen removal process. The observer based constrained control, as presented above
may compete with approaches in easiness, applicability and computing effort.
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Appendix A. The linearization of the system around the equilibrium point computed
from the non linear equations gives the following matrices:

A =



−29.07 0 0 2.65 0 2.17 29.40 0 0 0 0 0
0 −29.48 6.04 0.642 0 4.40 0 29.40 0 0 0 0
0 −0.34 −38.99 −1.02 −0.05 5.01 0 0 29.40 0 0 0

−2.22 −0.02 −0.55 −40.74 0 12.23 0 0 0 29.40 0 0
2.18 0 −0.06 11.05 −29.41 9.64 0 0 0 0 29.40 0
−9.45 0 −0.18 −47.90 −0.02 −167.01 0 0 0 0 0 0
2.30 0 0 0 0 0 −38.67 0 0 0.55 0 1.84

0 2.30 0 0 0 0 0 −39.18 4.44 0.12 0 16.60
0 0 2.30 0 0 0 0 −0.78 −50.67 −0.30 −3.42 0
0 0 0 2.30 0 0 −3.06 −0.04 −0.66 −39.33 −0.19 0
0 0 0 0 2.30 0 2.99 −0.03 −0.55 1.14 −39.58 0

6.14 6.14 0 0 0 0 0 0 0 0 0 −3.13



B = 104



−0.0011 −0.0011 0
0.0023 0.0023 0
0.0102 0.0102 0
0.0079 0.0079 0
−0.0071 −0.0071 0
−0.0033 −0.0033 0.0008
0.0014 0.1233 0
−0.0031 1.1003 0
−0.0386 −0.0386 0
−0.0105 −0.0165 0
0.0094 −0.0097 0

0 −0.2042 0


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C =

 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0


The similarity matrix To is used to compute the matrices Ao, Bo and Co:

To =



0.0001 0.9975 −0.0395 0 0 0 0 −0.0561 0.0034 −0.0001 0 0.0185
−0.0014 0.0589 0.0680 0 0 0 0.0009 0.9943 −0.0573 0.0012 0.0003 −0.0003

0 −0.0184 0.0007 0 0 0 0 0.0013 −0.0001 0 0 0.9998

−0.0200 0.0355 0.9965 0 0 0 0.0064 −0.0703 0.0001 0.0172 0.0037 0
−0.0001 0 0.0041 0 0 0 −0.0214 0.0572 0.9981 0.0001 0 0
0.0001 −0.0002 −0.0064 0 0 0 0.9997 0.0008 0.0214 −0.0001 0 0
−0.9929 −0.0007 −0.0188 0 0 0 0 0 0 −0.0842 0.0821 0

−0.0017 0.0005 0.0146 0 0 0 0 0 0 −0.6895 −0.7242 0
0.1173 0.0004 0.0122 0 0 0 0 0 0 −0.7192 0.6847 0

0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0



Ao =



−38.85 28.99 −0.01 0.18 0.01 −0.02 −5.10 0.05 1.01
2.33 −50.29 −0.27 −0.25 2.72 −2.09 −0.02 0 0.01
0.01 −0.44 −38.68 −2.34 −0.33 −0.17 0.03 0 −0.01
0.01 0.07 −28.69 −29.23 −0.04 −1.26 2.26 −0.19 2.81
−0.01 1.29 −0.08 0.11 −38.99 0.81 −0.07 1.67 1.60
0.04 0.28 7.71 −1.26 −0.51 −39.77 −0.32 −1.57 1.35
0 0 0 −9.39 −0.01 1.11 −167.01 −0.02 −47.91
0 0 0 −0.24 21.29 −20.38 9.65 −29.41 11.05
0 0 0 0.25 20.27 21.41 12.24 −0.01 −40.75



Bo = 103



0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0
0.0332 0.0332 −0.0076
0.0708 0.0708 0
−0.0789 −0.0789 0


Co =

 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0


The matrix T is chosen such that only the part z(t) = TZco(t) is estimated. Further,

matrix P is chosen to ensure asymptotic stability of matrix D = TAcoP . In fact, in this
case matrix T and P are given by:

T =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 P =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


According to Equation (34), the matrices D, G and E are computed.
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D =


−38.8580 28.9925 −0.0070 0.1784 0.0119 −0.0185
2.3306 −50.2968 −0.2666 −0.2478 2.7231 −2.0948
0.0147 −0.4418 −38.6780 −2.3376 −0.3296 −0.1756
0.0119 0.0735 −28.6943 −29.2308 −0.0443 −1.2648
−0.0105 1.2947 −0.0824 0.1128 −38.9935 0.8130
0.0442 0.2873 7.7115 −1.2630 −0.5140 −39.7722



G = 103


0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0

 E =


−1.0078 −0.0489 5.1034
−0.0042 −0.0002 0.0205
0.0064 0.0003 −0.0327
−2.8104 0.1898 −2.2577
−1.6047 −1.6664 0.0718
−1.3549 1.5741 0.3185




