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ABSTRACT. We proposed new basic theory and calculation methods for quantum bifurca-
tion, quantum circuits, and neural computer based on path integrals of quantum theory.
The problems of classical bifurcation were easily led to Schridinger equation by consid-
ering Nelson’s stochastic quantization method. Japanese Amida lottery was a kind of
classical bifurcation models because of no interference between each path of lottery. And
so we showed how to quantize electric circuits, Amida lottery and complex neural net-
work by path integrals. The bifurcation points of Amida lottery corresponded to diffraction
point of polariton in quantum theory. We constructed the method of quantization of ba-
sic circuits as AND, OR and NOT. Moreover, we assumed that we could regard classical
switches as scattering potentials (switch’s operators). Those were quantization concepts,
and those quantized circuits with switch operators corresponded to ¢-AND, ¢-NOT, and
g-OR circuits. The Proca equation of polariton approached to the quaternary Schrodinger
equation when the motion of polariton was much slower than light velocity. The kernel
K(b,a), which was propagator and an expression of the time development of system, was
related to an eigenfunction of Schridinger equation. We found that the neuro-synaptic
junctions were regarded as a kind of switch’s potential, whose concepts led to quantization
of neural networks by using path integrals.

Keywords: Polariton, Quantum circuits, Quantum lottery, Path integral, Interference,
Hamiltonian, Quaternary Schrodinger equation, Superposition

1. Introduction. The models of neurons, their networks and conducting mechanism are
not only important bases of biological brain’s functions, but also they have been produc-
ing many algorithms and their concepts of soft computing as neuro-fuzzy controls, and
mechanical learning models in many engineering and information branches [1-4]. And
those models have been based on an independence of each axon of neuron. We have been
hypothesized that there was not an electromagnetic interference between axon’s mem-
branes of neurons. Therefore, a lot of physiological books say that, each neuron holds
independence of each other, and there are not electromagnetic interactions between axons
and synapses, because the neurons are governed the law of “all or nothing”, and those
electromagnetic effects are much small since neurons are covered with lipid nonconduc-
tor’s membranes. And action potentials traveling on the axon and the neural processes
(polarization-depolarization-repolarization processes), have been believed not to affect
another axon and an ionic current for a long while [1,21]. They say that each neuron is
independent and there is not the interference between each axon of neurons.
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However, in previous paper, we have proposed the other theory and engineering models.
Each neuron has a lot of interferences caused by polarization of the membrane, leak
currents, and ionic currents (Nat, K*). Neurons have many ionic channels, their currents,
and polarizations, whose phenomena generate electromagnetic interactions on our brain
as we can detect its field by SQUID. Thus, each neuron gives rise to a holistic macro
electromagnetic field, and that electromagnetic field governs each neuron [1].

And we would like to show you another evidence of neural interference. Prof. Arvanitaki
discovered the phenomena of ephapse, which was interference between two neural axons
[1-4]. When he stimulated one neural axon and generated action potentials, that signal
affected another neuron, despite of defection of direct connections between two neurons.
He is said to be the first researcher who made up an artificial neuron. So phenomenon,
discovered by him, was named as ephapse. His experiments showed that each neuron had
directly neural interferences based on the electromagnetic interactions.

As medical examples of neural interferences, we know pathological states of neuralgia
and causalgia. However, we would like to assume that our normal brains always actively
utilize those electromagnetic interactions so as to make up our holistic and harmonic
neural system. And we show the basic equations for those electromagnetic interactions of
between each of neuron.

This paper says that those possible forms are the quaternary Schrodinger equations or
Proca equation. Moreover, an agency for those electromagnetic interactions is polariton,
which is a kind of massive photon. The polariton is the quantized polarization wave on
dielectric (cell membrane) and it has the spin-value of one (spin 1). From the stand-
point of the mesoscopic science, all electromagnetic interactions should be described as
elementary processes based on the interactions of massless or massive photons (polari-
ton), because macro electromagnetic phenomena can be reduced to an approximation of
quantum electromagnetic dynamics (Q.E.D.). In the previous paper, we referred to the
necessity of polariton, and showed the quantization’s process for macro electromagnetic
phenomena of neurons [1]. The relativistic quantized electromagnetic field of neurons is
governed by the Proca equation. And we show that the Proca equation can be reduced
to the quaternary Schrodinger equation of polariton, since a propagating velocity of the
polariton (quantized polarization waves) on neurons was so much slower than that of light
in vacuum [1].

In this paper, we discuss physical foundation of quantum interferences between artificial
neurons based on our previous papers and the Arvanitaki’s classical ephapse [1-4]. We
attempt to give the descriptions for the polariton’s motions on neural axon by using both
path integrals and quaternary Schrodinger equation of polariton. We would like to make
up the calculating toolbox for polariton’s motion, and to show applications for Amida
lottery, bifurcations, circuits, scattering problems and for network systems. In order to
describe the polariton’s theory (quaternary Schrédinger equation), we think the Feyn-
man’s path integral is suitable for the neural conductions and of neuron’s interferences.
We can automatically introduce quantum effects of polaritons to the network systems,
and its expression is much similar to classical mechanical Lagrangian. Moreover, we know
that the description of path integral is perfectly equivalent to that of Schrodinger equation
[9-11,14,15].

In Section 2, we mention that a bifurcation’s problem of decision tree and multi-step
slit are related to Markov process. Therefore, according to probability’s theory, those
processes can be expressed as the generalized stochastic equation, i.e., it is Ito equation.
Applying Nelson’s method, we can reduce that stochastic equation to Schrodinger equa-
tion of the wave function ¢ [5], whose process is called the stochastic quantization. On the
other hand, Proca equation approximately becomes the quaternary Schrodinger equation
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of electromagnetic potential (¢, A) in the case of the slow polariton’s movement [1,9,10].
And the quaternary Schrodinger equation approaches to the ordinary Schrodinger equa-
tion (one component’s equation), if a change of the magnetic field is so small (the vector
potential A is constant, or 6A =~ 0) [1,11,13]. Thus, the polariton’s motion can be ap-
proximately expressed by Schrodinger equation of scalar potential ¢, and that ¢ is related
to the bifurcation problems of classical mechanics, information theory and the stochastic
equation [14-16]. After we explained the principle of Feynman path integrals in Subsection
2.2 and calculated an action S for free polariton and for a harmonic oscillator, we apply
those path integrals to the descriptions for the Amida lottery and a slit in Section 3. They
are examples of quantum bifurcation’s problems of polariton. In Section 4, we discuss
some quantum descriptions for simple circuits (for example, AND-, NOT-, OR-circuit
and their complex ones) and switches by using path integral. Then we know the path
integral is one of the powerful tools so as to describe the quantum networks and circuits
[16-20]. Section 5 is mentioned to a perturbation method of Schrédinger equation. Then,
we express that our description of neural network based on path integrals automatically
leads to perturbation series. Then we mention that the switches of network and circuits
are regarded as synaptic junctions or scattering potential of polariton. Section 6 is shared
into summary of mathematical tools that we obtain in this paper by using path integral’s
descriptions. We show that the Schrodinger equation is perfectly equal to path integrals.
In Section 7, we conclude the paper.

Main purpose in this paper is to give the ways that we can express the quantum networks
containing much interference. We would like to describe the quantization tools for neural
networks, Amida lottery, quantum circuits and many complex diagrams. In our neural
networks, the polariton conveys physical information, and polariton is quantized particle
of the action potentials (impulse) of neurons [11-13]. Thus, our description’s method
and its development mean the quantum theory of network, bifurcation and circuits. For
example, one of great mathematicians, R. Penrose said that our brain cell had many
micro-turbines, which worked as conductors causing superposition of wave functions. He
thought that those wave functions made reduction to only one wave function when we
determined something for various problems [21]. We do not intend to discuss whether his
theory is true or not from biological standing points. And we would like to pick up his
concepts that our brain utilizes quantum effect and that the brain belongs to a kind of
quantum circuit. We have an idea that quantum interferences are playing important roles
for our thinking processes.

Therefore, we propose the idea of a quantum circuit and new theory for quantum
computers of neural computations in this paper. And we would like to show those
quantization-methods of the bifurcation, Amida lottery and decision trees, which contain
some fundamental ideas for quantum interferences and the reductions of wave functions.

2. Uncertainty and Superposition. First we would like to discuss a classical bifurca-
tion that contains fundamental problems. The bifurcation is related to both probability
and stochastic equations, and its theme leads to Schrodinger equation through Nelson’s
method, (stochastic quantization) [5,22].

2.1. Classical bifurcations and Nelson’s method. There is much difference between
classical bifurcation and quantum bifurcation. The former is related to classical probabil-
ity whose value is always the positive and real number. However, the latter takes complex
number, whose function is called probability amplitude.
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And the probability amplitude can be connected with a solution of Schrodinger equa-
tion. The classical probability cannot automatically expressed interference by superposi-
tion principle. However, the probability amplitude essentially contains much interference
between each bifurcated branch. And the interference, which arises from superposition
principle, plays a lot of important roles in our quantum neural theory.

In this section, we would like to show that problems of decision tree can be regarded as
a kind of Brownian motion (Markov process), and then we should notice that Brownian
motion is governed with Ito equation (general stochastic equation). And according to
Nelson’s method (stochastic quantization), the Ito equation reaches Schrédinger equation.
Thus, the problems of the decision tree can be rewritten into Schrodinger equation of
complex function x(X,¢) by both Fokker-Planck equation and Chapman equation.

At first, we show that small particles (for example electrons or photons) are flowing on
the branches of bifurcation-diagram (a kind of decision tree) (Figure 1). We assume that
the particles on the diagram diverge for each branch at an equivalent probability, 50%.

Point A

particles

—>

<

FIGURE 1. Multi-step bifurcation’s problem

When we attempt to deform the branch lines of bifurcation diagram Figure 1, then the
diagram becomes a following feature: that bifurcation diagram can be represented as the
random walk’s problem.

-1 P oy Reverse and extension
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If we concretely can show the path (from B to C), we obtain a sequence of numbers: the
sequence is (—1,+1,+1,—1,+1,+1). If we hypothesize that bifurcations of the diagram
make an infinite series, the above finite bifurcation becomes an infinite random walk’s
problem. So we notice that the infinite sequence is much similar to Markov process or
Brownian motion in one dimension. Thus that Brownian motion truly is expressed by
stochastic differential equation [5,22].

We would like to start from a generalized stochastic equation, which is called, Ito
equation,

dX (t) =b(X(t),t)dt + A(t)dw(t), (1)
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and then the dw(t) has following characteristics of Brownian motion. (deviation A(t):
diffusion coefficient, and an average b: drift coefficient).

(dw)? = (w(t + At) —w(t))* = B At (2-1)
(dw) = (w(t + At) — w(t)) =0 (2-2)

According to Nelson’s stochastic quantization method with stochastic variable X (), the
trace of a particle is divided into two parts. The one is an anterior average derivative,
and another is posterior average derivative. Those terms are defined as

[ ft+ AL — () . . o
= <

Df lAltrE] < Y f(s) is fixed for s <t anterior average derivative

(3-1)
t)— f(t— At
D, f = lim <f( )~ /T ) f(s) is fixed for s > t> posterior average derivative
A0 At
(3-2)
and both average velocities for Brownian motion are calculated as

DX (t) =b(X(t),t), D.X(t) =b.(X(t),t). (4)

An acceleration a(t) of Brownian particle was defined by Nelson method, and the a(t),

1

a(t) = 5 (DD + DD,) X(t), (5)

is obtained by performing above derivative for Equation (4). We introduce two new
variables, v and v: those are

1 1
_ — %) s _ — — 0y) . 6
v 2(b+b) u 2(b bs) (6)
Thus, the acceleration a(t) becomes
__pppBPu 10 oy Ov_ 10V
o) == 35x +3ax ) 5 T Tarax )

The symbol M means Brownian particle’s mass (we think polariton’s mass), and the V' is
potential energy. Equation (7) corresponds to Newtonian equation of motion for Brownian
particle, and it is said to be mechanical condition. Applying the anterior derivative to
Chapman equation, we can define an operator (Arf) of Equation (8) [5]. (p(X,to|Y,1):
probability that the particle which existed in an initial condition (X, #,) reaches the point
Y at time t) [5]. The operator (Arf) is expressed as

(A7 f) (X) = lim dY-f(Y)p(X’t0|Y’t+At) — (X, to| Y, 1)

: (8)

Atl0 At
Then we can obtain another expression of anterior derivative,
_ _ of | 2B0°f
(Arf) (X) = Df(X) =b(X, ) 55 + 45 555 9)

We multiply p(Xo, tp| X, ) to Equation (9), and we practice an integration: we finally
have

op 0 g0 ,
7 = . 1
51~ "3y )+ 555 (A7) (10)
That is Fokker-Planck equation [5]. For the b,, we have a similar equation:
o0 0

“ar - ax T 5ax (A1) - (1)
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We add up both equations, Equation (10) and Equation (11), whose equations assimilate
with one equation that represents a condition of motion for polariton:
2

Ou _ 0% _i(uv).

ot 20X?2 0X
To unify both condition of mechanics and that of motion, we would like to introduce a
complex variable, x(X,t) = u + iv. We transfer two variables u, v into a single variable
X

(12)

0
= 2 [ -
X_AﬁaXln\If (13-1)
i
BX.0) = o) exp (-~ [ n(0ar) (13-2)
and the transcription into single equation is achieved as
.0 A?B 92 1
o0 = |20 )] e (1)

If we take A28 — h/M, we find Equation (14) to be the common Schrédinger equation.
Therefore, the probability density p(X,t) is given as

p(X,1) =] o(X, 1), (15)
by a complex probability amplitude ¢. If we take ¢ — it, Equation (15) is reduced to
Feynman-Kac equation. However, there is difference between Schrodinger equation and
Feynman-Kac equation. The Feynman-Kac equation has always real number’s solution.
On the other hand, the Schrodinger equation almost takes complex number’s solution.
Thus, the Feynman-Kac equation can describe only classical bifurcation and its probabil-
ity. However, the Schrodinger equation, whose solution is permitted to have the complex
number (probability amplitude), is truly suitable for descriptions of interferences between
each quantum state. We should notice that the complex number is an essential character-
istic for quantum theory, and that the real number is a character of classical bifurcation
problem. And the classical bifurcation’s problem is always reduced to Weiner process
(Brownian motion) and Markov process. So the classical bifurcation is quantized through
the Nelson’s method [5]. Thus, the classical stochastic problem can be translated into
quantum one by introducing the complex variable and the probability amplitude.

We would like to discuss effects of superposition of the probability amplitude, and we
mention those of the sensitive limitation caused by uncertainties. If all paths of Figure 1
are governed by uncertainty principle, we find the quantum fluctuations and interferences
to exist between each bifurcation’s branches. And the fluctuations of position Az should
satisty the following relation, which is uncertainty:

Az > h/(Ap). (16)

Therefore, a path less than the range Az, is directly governed by effects of quantum
mechanics.

We can easily explain the difference between quantum bifurcation and classical one. If
particles obey to single-step’s bifurcation, a total state vector is written as the superpo-
sition and linear combination of all base state vectors. Let us consider two state’s model,
i.e., those quantum states are ¢; and ¢,. If there are those states within uncertainty’s
range Az, then a total state ¢ is the summation of the two states:

¢ = apy + bos. (17)
Thus the total probability density of the above state is expressed as

1617 = |al* 1] + [b]* |$2]” + a”b; b2 + ab” b1 5. (18)
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We notice that the first and second terms of Equation (18) correspond to classical prob-
ability densities. The third and fourth terms, which are expression of quantum effects,
mean quantum interference’s terms. Uncertainty principle tells us that we cannot detect
them as the different two states, if their states do not keep away more than the fluctua-
tions’ range Ax from each state (Figure 2). As uncertainty of momentum Ap gradually
goes to the large value, it is more difficult for us to observe an aspect of bifurcation of
particles. Therefore, it will be more clear the difference of both the classical probability
and the quantum one.

Three states are detected as two states.
(Classical theory) (Quantum theory)

4(x) ¢ =ag +bg,

—_— "I'J""’lﬁ—';--“ Mixed state
ss t {
4,(x) ess than /v x

—>

E More than/x Lt St
¢ (x)

FIGURE 2. Uncertainties and sensitive limitation

Strictly restriction Loosing or free
| X
< | Y 7 -
| dendrimer monomer  bifurcation slit

FIGURE 4. Various

FIGURE 3. Multi-step bifurcations s <
restricted conditions

(Explanation of Figure 3)

To fix particles on the nano-scale conductors (wires), an external force or some potential
is impressed on the particles. If it were not for those restricting conditions, many of
particles deviate from their paths or conductors, and then they behave as free particles.
And we can apply an example of conductors to the model of slits. So we look upon
the bifurcation diagrams as multi-step slits when those restricted conditions are going to
weaken.

(Explanation of Figure 4)

When the range of uncertainty Az is nearly equal to sizes of atoms (A), those processes
approach to molecular wires of dendrimer monomers.

2.2. Description of Feynman path integrals. We would like to mention the principle
of Feynman path integrals, and intend to apply its method to the motion of free polariton.
Subsequently, we describe the scattering problem or the diffraction of the polariton, by
its integrals in order to obtain mathematical tools. At first, we consider a particle whose
generalized Lagragian has the following form,

L =a(t)t® + b(t)ix + c(t)2? +d(t)T + e(t)x + f(1). (19)
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An action S of its motion is given by the time’s integral of the Lagragian between two
fixed points, i.e., starting point a and ending point 5. We determine the Feynman’s kernel
K (b, a) that is defined as

b : b
K(ba) = / exp [7—25] Da(t), ~S= / L, 1) dt, (20)
(a: starting point of path, b: ending point of path). Here if we attempt to define a
quantum action S[z(¢)] in an interval [a,b], then the quantum variable z(¢) should be
divided into two parts. Thus, its variable z(¢) is composed of classical path term z.(t)
and quantum fluctuation §(¢), and so we have a relation, z(t) = z¢(t) + §(t). And the
integral (Dx(t)) should be performed over all paths in the interval [a,b]. Then the action
S[x(t)] becomes

Slz(t)] = S[ra(t) + 5(1)] :/ dtfa(t) (2 + 2006 + 62) + - - -]. (21)

ta

If it were not for all § terms, then Equation (21) equals just the classical mechanical
action S.. Notice that S, contains the only classical variable z.(¢). On the other hand,
the quantum action S[z(t)] is composed of two parts. They are the classical action S,
and the second quantum fluctuation’s term in Equation (22),

Slz(t)] = Seze] + /tb dt[ad® + b6d + ¢6?]. (22)

ta

Thus, the kernel K (b, a), which is calculated in [a, b], can be written as

b . tb
K(b,a) = / eli/MSelbal | oy {% / [ad® + b0 + c6%]dt | Dx(t). (23)
a t

a

We would like to give an explicit S[z(¢)] and kernel of free particle. So the classical
action S, are described as

2 m (zy — )
L =m— and S¢|b,a] = ———=. 24
my and Sclb,a] = 5 = (24)
Thus, the kernel of Equation (24) of the free particle is given as
omih(ty — t,)] /? im(zy — 4)?
K(ba) = |——= —_— 25-1
(b, a) { m } P\ ont, — ) (25-1)
Finally the existence probability of free polaritons at point b, P(b)dz, becomes
m 2
Pb)dr = ———d K(b : 25-2
(O = 5 s o [K b,o) (252

Moreover, the wave function of Schrédinger equation W(b) is expressed by the kernel
K(b,a), and then we have a simple relation,

P(b) = /_00 K(b,a)p(a)dre, b= (xp,ty), a = (Ta,ta)- (26)

The quantum-polarized waves, which are composed of many photons (there are massive
photons), are considered as assembles of harmonic oscillators. The Lagrangian of harmonic
oscillator, which means vibration of polariton’s field, is given as

mi?  mw? ,
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Then the kernel is calculated by the same method as the free particle:

K = F(T) - exp [%SC] , (28)
o imw 9 9 _
Se = FonaT (2 + x7) coswT — 2x,ms) (29)
mw 1/2
FT)=|—F—— .
(T) (2m’hsin wT) (30)

We give some comments on the calculation of path integral. The all paths (branches) of
particle are divided into N divisions so as to obtain the kernel of the propagating particle
from point a to point b. The kernel means that we find out a particle at an initial point a,
and then it goes to the point a to point z;. Then it goes ahead from z; to 5. Finally the
particle from xy ; arrives at an endpoint b. Therefore, the final kernel K (a,b) is given
by multi integrals and product of infinitesimal kernels K (i + 1,i), i = a,1,2,b.

K(bya)=[--[du;---doy 1 K(b,N—1)---K(i+1,i)---K(1,a). (31)

When the particles to go ahead from (z;,¢) to (z;11,t + ¢) during an infinitesimal time
interval ¢, an explicit expression of Equation (31) is
Tip1 — T Tip1 25 tipr + 1

K(i+1,i)£<i+1|i>:exp[%L( T

)] , L : Lagragian.

(32)
The second term of kernel K (i 4+ 1,7) corresponds to an expression of an inner product
using Dirac bra vector (i + 1| and ket vector |i). Moreover, we should notice that the
inner product (B|A) contains a time development operator, U-hat,

A~

(B| Ay = (p| Ultp,ta) [£a) . Ultn,ta) = exp {—ifl(tp — ta) /R }
B:(IL’B,tB), A:(I‘A,tA).

And the above H-hat is Hamiltonian of Schrodinger equation. The motion of particle
from point a to point b reduces to the Dirac bra & ket vector description,

K(bya)=[--[dzy---deyy (b N —=1)---(i+1]d)---(1]a)

(33)

= [ [doy - doy1de(0) 30

Equation (34) mentions to take inter product between the (i 4+ 1)-th bra and the (i)-th
ket vectors and to perform integration over all variables x;.

3. Description of Quantum Bifurcation and Diffraction. We would like to discuss
a relationship between path integral and bifurcation diagram in this section. And we
apply the path integral to descriptions of polariton’s motion on a slit and on Amida
lottery. The path integral is another expression of quantum mechanics, and it is perfectly
equivalent of Schréodinger equation. According to path integral, the probability P(a,b) is
proportion to the absolute square of kernel K (b, a), i.e., P(b,a) o< |K(b,a)|?. Therefore,
the final amplitude K (b, a) is the sum of contribution of each path ¢[z(t)],

K(b’ Cl) - Zover all path ¢ [l‘(t)] (35)

The weight of each path is proportional to an exponential of the action S:

¢ [x(t)] = const. x exp (%S[m(t)]) : (36-1)
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At first we consider a bifurcation diagram of a single-step slit (Figure 5).

Sla(t)] = / L(z, i, 1) dt = / (T = V)dt. (36-2)

A particle goes through a hole GG1 of slit A, and then it experiences the bifurcation by slit
B. Finally this particle reaches from the point A to the point B (Figure 5). As shown in
Equation (34), the path is written as

N-1
=1li K(i+1,1).
o] =tim [T KG+ 1. (37)
We would like to show one example of diffraction in the point x + «, at time 7. When
a free particle goes ahead from the point z to = + «a., it is diffracted in the point = + a.
by a slit. After that diffraction, the particle arrives at a point (s, %) on the screen. The
probability amplitude ¢[z(t)] with the diffraction becomes

b

oln(t)] = /_b dov (ot | 20 + 0, T) {2y + 0, T | 31, 11) (38)

at the point (z + a.,T). Note that the range of that integral is limited by an interval
[—b, b], which is a size of the hole of slit (not infinite). If we assume a Gaussian slit of the
width 2b whose shape is described by exp[—a?/2b], then we can perform integration of
Equation (38). The result of probability amplitude is given by Equation (39), since the
particle goes through either hole G2-a or G2-b: that result is shown as

Slr(t)] =4/ —= |:TT (l L1 ﬂ)} ~1/2

2mih T 71 bm

im (2?12 (im/h)? (39)
1
xexp |0 (T Iy L WMy,
exp {271 <T N T) 4(im 2R }
where W means W = I/T;f/;ia%//ﬁm), T=to—T, 0 =219 — 1.

Finally, the total wave function of Figure 5 becomes a summation of both paths, G1 —
G2a — B and G1 — G2b — B. If there is not an interaction at point GG1 on slit A and a
particle (polariton) freely goes through the slit G1, the particle obeys complete condition
at point G1,

/ dre |G1) (G| = 1. (40)
G2a
Gl
AH< i
B
G2b

SlitA Skt B Screen

FIGURE 5. Interference of a single-step slit
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However, if both gates G2a and G2b are simultaneously open, the probability amplitude
of kernel is calculated by Equation (34). Thus the total result of amplitude is given as

Gan(x) :// drcidraa, (B | G2a) (G2a | G1) (G1 | A) "

Then <G1 |A> = <Gl| U(tGl, t()) |A0(t0)>, U(t — t()) = exp(—zH(t — tg)/h)

Notice that those ket vectors |) in Equation (41) are not a constant vector, but they
contain the time development factors which are related to Hamiltonian of Schrédinger
equation. If a particle has no interaction with all slits, then Equation (41) simply reduces
to free particle’s (free polariton) expression from the point A to the B,

Spreclwna) = (B(1) | Alto)) = K(B,A) =[] (G+11) )
from point A — point B

If a single slit is set in the point ¢ and the particle is diffracted at that point ¢ (A < ¢ < B),
then a trace of particle has following expression:

pur(en) = [ 01011 o = [ (5086 A
:/Hi<j+1|j>-Hj<k+1|k>dxC:A_>(c)_>B.

An Amida lottery is discussed as an example of complex bifurcations and that lottery is
a kind of multi-slit (Figure 6). Therefore, Japanese Amida lottery is commonly regarded
as one of the examples of classical probability problems. To translate the classical lottery
into quantum one, we apply the path integral for classical Amida lottery and introduce
quantum interferences into classical Amida lottery. Therefore, those processes are a kind
of quantization of Amida lottery. As represented in Figure 6, the photon is diffracted at
those following points, {G11,G12, G21,G22,G23,G24,G25,G31,G32,G33}. This quan-
tum Amida lottery has a lot of paths so as to go ahead from area A to area B, because
of sum for all possible paths.

(43)

G32 G33

Area A Area B

FIGURE 6. Quantum Amida lottery circuit

For example, the amplitude of the paths from area A to Bl is given by sum of three
paths, i.e., A1 — Bl, A2 — Bl, and A3 — Bl. On the other hand, the classical
Amida lottery teaches us no way from point Al to Bl, because the point Al can only
lead to B2: {Al — G11 — G22 — G23 — G32 — G33 — G25 — B2}. However,
quantum Amida lottery has the other paths to point B1 from Al: there are two paths,
Al - G11 - G12 —» B1, Al — G11 — G22 — G23 — G24 — G12 — B1l. We can
show three paths to Bl from point A2: A2 — G21 — G22 — G23 — G24 — G12 — BI,
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A2 - G21 - G22 —- G11 — G12 — Bl1, A2 —» G21 — G31 — G32 — G23 — G24 —
G'12 — B1. For the path from A3 to Bl: A3 — G31 = G32 — G23 — G24 — G12 —
B1, A3 — G31 —» G21 — G22 — G11 — G'12 — B2. All of those paths give us a total
probability amplitude to B1 from the area A, ¢[B1, A], whose complex paths cause many
quantum interferences. Here the total amplitude ¢[B1, A] can be written down by linear
combination of those three amplitudes. Therefore, they are superposition of those paths,

¢[B1, Al = Ca11¢ [B1, Al] 4+ Cas1 ¢ [B1, A2] + Cuz16 [B1, A3]. (44)

An each term of right side of Equation (44) is given by path integrals. The ¢[Al — B1]
is

(/)[Bl,Al] :/dellde12 <Bl ‘ G12> <G12 | G11> <G11 | A1> + /dIGQ4d$Glzd.’EGH

- dramdras (Bl | G12) (G12 | G24) (G24 | G23) (G23 | G22) (G22 | G11) (G11 | Al).
(45)
For ¢[B1, A2], we obtain the relation:

(/) [Bl,A2] _/dxg21d.’1,"c22d$23d$24d$12 <B1 ‘ G12> <G12 ‘ G24> <G24 | G23>
(623 ] G22) (G22 | G21) (G21 | A2) + / d o dzgmdren drars (B1 | G12) (G12 | G11)

. <G11 ‘ G22> <G22 | G21> <G21 ‘ A2> +/dl‘GZldl’gg4d$gggdl‘032d$31dl‘012 <Bl ‘ G12>

(G112 | G24) (G24 | G23) (G23 | G32) (G32 | G31) (G31 | G21) (G21 | A2).
(46)
And ¢[A3 — B1] becomes an expression:

¢ [B]., A?)] = / d.Z'GlgdIGQ4dI023dI032d.IG31 <B]. | G12> <G12 | G24> <G24 ‘ G23>

. <G23 ‘ G32> <G32 | G31> <G31 | A3> +/d.ﬁgud.’ﬁgndxgggdxggld.’ﬁggl <Bl | G12> (47)

H{G12 | G11) (G11 | G22) (G22 | G21) (G21 | G31) (G31 | A3).

We apply the same method to the other paths and full total path, i.e., ¢[B2, A] and
®[B3, A]. So, their descriptions are described as

¢ [B2, Al = Ca12¢ [B2, Al] 4+ Casedp [B2, A2] + Cuso) [B2, A3]. (48)
¢[B3, A] — CA13¢[B3, Al] + OA23¢ [B3, A2] + OA33¢ [B3, A3] (49)

Finally, the total probability amplitude from area A to area B, ¢[B, A], is a summation
of those paths. Its expression,

¢ [B,A] = Cy1¢[B1, Al + C a0 B2, A] + C'a3¢ [B3, A, (50)
is given by substituting above equations, Equation (44), Equation (48) and Equation (49)
into Equation (50). To observe a part of interferences, we calculate a probability density
of p[A — B1] by Equation (44).
pIBL Al = [BL A" = |Canng [BL, AL + [Can§ [BL, A2]]" + [Casi ¢ [B1, A3
+ {C%1,Can10 [B1, Al]*¢ [B1, A2] + C"5,C 319 [B1, A2]*¢ [B1, A3] (51)
+ Ch351Ca110 [B1, A3]"¢ [B1, A1]} + {counter terms}.

Clearly notice that quantum interferences contain those terms {C%;;Ca21¢[B1, A1]*¢[B1,
A2]+- - - } +{counter terms} in Equation (44) and Equation (51). In quantum system, we
can find also many interferences in following three terms, |Ca110[A1 — B1]|?,|Ca910[A2
— B1]|?, |Ca316[A3 — B1]|?. Because, for example ¢[A1 — B1], its path is composed of
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the combination of many small paths, as [Al - G11 — G12 — Bl] and [Al — G11 —
G22 — G23 — G24 — G12 — B1]. The above those many terms, which vanish in the
classical bifurcation problems, represent essential quantum effects and interferences.

Really the classical probability has only one term, |C 19 ¢[B1, A2]|?, and there is not
any interferences of probability (probability amplitude). So normalization condition in
that Amida lottery is Equation (52),

/qb*[B,A] - §[B, Aldz" - - -da* = 1. (52)
And its transitional amplitude from state ¢[B1, A] to state ¢[B2, A] is defined by
@ (B24) 6(BL A = [ ¢(B2,4) 6[BL Alds' - di, (53)

in Equation (53). After all, that above transitional probability density becomes

We can finally obtain the frameworks of quantum bifurcations and interferences by
path integral. This section is discussed problems of the diffraction and bifurcations of
both the slit and the Amida lottery. We refer to scattering problems of polariton by
various potentials in the following section.

4. Switch Operators and Circuit. This section is referred to switch operator, which
corresponds to potential (scattering potential) of quantum system. And if we assume
switches of circuits and networks as scattering potentials, we can easily express classical
circuits (NOT, AND, OR) as quantum ones by path integral.

The particle as photon or polariton goes ahead to point B from point A. And that
particle is not diffracted at point ¢ but it is scattered by switch (potential) S at point c.
This process is described by the bra and ket expression, and then kernel K (B, A) becomes

bolB. A = Ko(B.A) = (Bl 0 14) = [ (Ble)s(e) (e 14) dro = 4 (D = B, ()

Notice difference between Equation (55) and Equation (43). Equation (55) includes
the scattering process by switch potential S at point ¢, and on the other hand, Equation
(43) means the diffraction process at point ¢. Moreover, Equation (42) simply expresses
a free particle having no diffraction process and no scattering potential. Therefore, we
show typical three classical circuits which are called as AND-circuit, OR-circuit and NOT-
circuit (Figures 7-9).

s1 82 /

AND OR
— — _Q — S2 @
A B C A / C
FicURrE 7. AND-circuit FIGURE &8. OR-circuit
NOTSs1 B Saz
A

51

FIGURE 9. NOT-circuit
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To obtain quantum description, we apply both rules of Equation (54) and Equation
(43) to those circuits.

The AND-circuit can change into quantum one, g-AND, whose schema is simply drawn:
the particle goes ahead from point A to scattering center S;, and then it goes to point B.
And after scattered by potential Ss, it arrives at final destination, point C'.

[~ (5) —B — (s) —c

So we can obtain following expressions of quantum circuit by Figure 7:

banp (B, A] = / Ko, b) K (b, a) dugs = / (c| S5 ) (b] 1 |a) dap. (56-1)

" Ky(e,h) =/<C| B) S2(B) (Bl b) dxg Z/K(C, B)S2(B)K (B, a)drg;for Sy (56-2)

Ki(bya) = / (b] @) S1 (@) (a] a) dx, = /K(b, a)S1 () K (o, a) dz,; for Sy (56-3)

Above three equations do not correspond to the expressions of classical AND but they are
quantum AND-circuit. We would like to call -AND. The rule of path integral says that
an amplitude of different paths works as the additive, and so we can perform superposition
of each path (linear combination). Therefore, we apply that rule to classical OR-circuit,
which has two parallel switches. Therefore, we can define quantum NOT-circuit,

dor [C, Al = (c| Si |a) + (c| Sz |a)

(57)
= / (c|a)Si(a){a|a)dr, + / (c| B)S2(B) (B | a) dxs.
The OR diagram becomes [4 (@ OR @ ) —C]. The NOT-circuit is described by a

following relation,
onor [B, Al = (b1 -5, |a>=/<b|a> (] a) = (b]a)Si(a)(a]|a)da,  (58)

whose diagram is [‘4_*® —C]. If three logical gates are combined with each other,

for example, NOT, AND & OR circuits, we can make up various quantum circuits and cal-
culate their probability amplitude. Those switch’s operators are quite different from com-
mon classical switches. Because the classical switches are always expressed by c-number,
quantum switches take g-number. Those three circuits belong to quantum circuits. An
example of combined circuits is showed in diagrams of Figure 10.

sS4

NOT S1

A
_/ /—Q

B C D

A =
S1 SO

FIGURE 10. Complex circuit (NOT, AND & OR Circuit ¢y 40)
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Mathematical representation of above figure is given by using multiple integral:

bwao[F, Al = / / Ay, dvade, deods sdzydea K (£, 6)S1(0)K (5, €) K (e, d)
x K (d,v)S3(7)K(7,¢)) K (c, B)Sa2(B)K (B, ) K (b, ) (1 = Si(a)) K (e, a)]
+/1~/d%mAmemamm%meg@wa@K@@K@@ﬂ«¢w&@)

x K(v,¢))K(c, B)Sa(B)K(B,b)K (b, a)(1 — Sy (a))K (a, a)]. 55)

59

Here if propagators (kernels) cause diffractions at points B, C, D, E, then we should

perform integration over the slit width. On the other hand, if switch operator S is

regarded as a kind of scattering potential, then the range of integral becomes over an

infinite range. According to quantum mechanics, physical amount should be described

by function of differential operator and time as Hamiltonian: switch operator should be
described as

S; =S, (2,p,t) = Sj(x, —ilhiV,1). (60)

We, as you know, can freely make up an arbitrary circuit by combining those three gates.,
i.e., those elements are -AND, q-NOT, and q-OR.

We would like to generalize those quantum gates to m number switch’s functions
F;(S1,S52,--+,SN), 7 = 1 to m, whose variables are composed of N number’s switch op-
erators, where F; means the arbitrary operator’s function of N number’s switch. Notice
that each switch S is an operator and so each F} is composed of various switch operators.
Thus, we can obtain a generalized description of g-AND switches in this case:

GAND [C’,A]:/dxbl---dxbm (¢ | by) (bm|Fm‘ b} - - (by] F1(Sy---Sy)| a).  (61)

We can regard that a circuit has N number’s scattering potentials when there are N
number switches in its circuit. The rule of switch operator function F}(S) is generalized
as

Z3}—>/d><- |X>Fj(51(><),---)<x|Z/dx-K( D)E(S1(00), - ) K (06 ). (62)

When N number’s switches are connected in parallel, we have a generalized -OR
J

¢or[B, A] = Z (b (S, -~ Sw) |a)
=y / dx (b X) F(S1(x)s - Sw(x) (x la) (63)
=Y [ KB 0B S0, Sy () K (a)

Moreover, we give an expression of a multiple -NOT,

quND[C’,A]:/dxbl---dxbm<c|bm> o] Eon(Sy -+ Sn)| D) -+ (01| Fi(Sy -+~ S| a) -

A

- 8=1-8 j=1,---,m (64)

Thus the logical switch can be represented by using kernels K (B, A), and so we need
perform an integration at each switch points (scattering potential S). And those procedure
and consideration naturally lead us to similarity of perturbation methods.
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5. Application for Perturbation and Scattering of Switch Potentials. Exactly
speaking the massive photon (polariton) is governed by Proca equation. We can re-
duce Proca equation to quaternary Schrodinger equation [1]. We can apply quaternary
Schrodinger equation to many biological problems since the motion of polariton on neu-
rons is much slower than the velocity of light. The quaternary Schrodinger equation has
been described as

0¢° _ 2 0
i = { Ty +V] é
L 00" a
ih—o = {——V2+V] ¢ (65)
o) = (6°(x,1), 0" (x, 1)), a=1,2,3.
At (x,t) = ¢*(x,1) - exp (—%mc%) : (66)

by using quaternary vector potential, A* or ¢*. Therefore, the quaternary potential A*
represents an total electromagnetic field of polariton (massive photon). On the other
hand, the ¢* means kinetic parts of the total field A*, and the exponential function of
Equation (66) represents longitudinal element of polariton. So the ¢° is scalar potential,
and each ¢* (a = 1,2, 3) is called vector potential of polariton without rest mass. The rest
mass limits the range of an existence of polariton. Moreover, we can reduce the quaternary
Schridinger equation to one component (scalar potential ¢°) of Schrodinger equation [1].
If a change of vector potential A is so slow or so small, the following derivative of vector
potential A is nearly equal to zero.

B(z,t) = rotA(z,t)

E t —g (ldAO _—
(:L., ) " C (9'[;

From Equations (65)-(67), the kinetic part of polariton obeys Schrodinger equation of
#°. Then the residual terms become only an electric field as shown in Equation (68),
and quaternary Schrodinger equation has only one component ¢° of potariton’s vector
potential.

E(z,t) = —grad¢’. (68)

Considering from Equations (61)-(64), we regard various switch operator’s function
as a kind of potential. So we add up those switch operators to the potential term of
Hamiltonian, and finally we have the following form,

ha¢0— —h—2V2+V( B st)+ F(Sy, -, Sh) | 6 (69)
[ at - 2m ) 1, s DN .

Applying the ordinary perturbation method to Equation (69), the lowest perturbation’s
expression with potential term V is given. Comparing the results of Equations (55)-(58)
with perturbation method of quantum mechanics, we can find easily that those expressions
of Equations (55)-(58) are much similar to the first order and the second order term of
perturbation method. Thus, the second lowest amplitude of perturbation is described
as kernel’s expression. As the q-AND circuit has two switch potential terms S;(«) and
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Ss(f3), the expression of perturbation is given in Equation (70) and Figure 11.
\ 2
i
bulC. B A = (~3) [ dsadea (c]8)5:(9) (0 @) S1(e)
(70)

- <_%>2// drgdro K (c, 3)S2(B)K (B, ) Si(a) K (e, a).

A C
_’ —’
K(a, o) K(o.8) K(8.c)

FIGURE 11. Perturbation for second order expansion and q-AND circuit

We take same procedure for g-OR and ¢-NOT circuits in order to make up perturbation
method of propagation for a particle, polariton. According to the diagrams (Figures 12
and 13), the g-OR circuit corresponds to the first ordered perturbation of two potentials
connected in parallel. Equation (55) is similar to the first ordered process of perturbation.
We know that the scattering process at point C' is given as

6c[B, A] = Ko(B.A) = /K(b, 0)S()K (¢, a)dzc :/(b | )S(e) (¢ |a) dae.

_ 4> @ —B

(71)

Kla, «) K(a.b)

Kla, a) Kl(w,b)

—_—r
A B
FIGURE 12. Perturbation of FIGURE 13. Perturbation ¢-NOT

g-OR circuit

Applying Equation (71) for both circuits, -OR and q-NOT, we can easily address the
first order expressions of perturbation.

Figure 12 shows perturbation for first order of two parallel potentials, and we should
notice that the point A or B is not diffraction’s center but port of wave function or
propagator. The first perturbation of g-OR becomes, in Figure 13,

o184 = (=) 1l Su(@l @ + (c] u(6)] al

_ (_ﬁ> [ antc. s (@K 0,0 + (—;—i) [ dsakk (e, 0)5:(0)K 5.0
(72)
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And we can know the first ordered amplitude of the switch operator ¢-NOT,
1

610084 = (1) (1= 5@l @) = (1 ) [ ok (c:0)(1 = (@) K(ara). (73)

The q-NOT circuit contains only one scattering center, which is a potential (1-S).
Therefore, the g-NOT has the first order perturbation as well as the q-OR circuit. Ac-
cording to perturbation method, we find that the q-AND is the second ordered switch
system and that both ¢-NOT and q-OR mean the first ordered switch system. Iterating
those procedures, we can easily obtain the higher ordered perturbation expansions. That
perturbation series is given as

KrlB, Al = K (B, A) + (%) /da-K(B,a)Sl(a)K(a,A)

-(%)m/---/dadﬁ---K(B,L)SL(L)---K(a,a)---

Thus, the complex form of kernel, which is propagator or Green’s function Kr[B, A],
expresses the higher multiple interactions or multi-scattering processes. We find that the
perturbation of Kr[B, A] becomes an infinite series of set of [K(y+1,y)S(y) K (y,y—1)].

We would like to apply those rules to constructing a neural network system. The
synapses of Figure 14 are looked upon as switch’s operators or scattering potentials.
Therefore, we can rewrite Figure 11 as shown in Figure 14.

j ] Oﬁ
@ﬂ () Q@ f\v
A B U(‘D Q—@\v

“O0—0O— Qoo

FIGURE 14. Similarity of models

FIGURE 15. Quantum
neural network

Figure 14 shows the similarity of the three models, and we can describe the propagation
of polariton (quantized polarization wave) from one neuron to another neuron through
synaptic junction (synapse). If those above neuron-synapse model does not have any
diffractions of polaritons at any points and synaptic junctions are expressed as some
potentials, the neuron-synapse model enables us to calculate each propagator and total
kernel Kr[D, A], (Fugure 14). That total propagator of polariton is directly given by
following expressions. Here is a kernel of Figure 14.

KD, A] = / dndg dB dC K(D, C)K(C,)Sy(€) K (€.m)S(n)K (0, B)K(B.A). (75)

2mih(t, — ta)] iz . {im(wb — Z4)?

Kb, a] = [ - Xp m] =(b|a). (76)
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Here, K [b, a| means that a free particle goes to point b from point a. The structure of both
switch operators S1 and S2 is expressed at functions of each coordinate point (x,y). If we
do not have any diffraction’s points in both intervals [A4,7n] and [, D] and the particles
are perfectly propagating freely, then both integrals dB and dC' become equal to 1. Thus,
we can remove the integrals of dB and dC from Equation (75). If a neural network is
composed of some neurons as shown in Figure 15, then the probability amplitude can be
calculated by above calculation procedure. For example, probability amplitude of neuron
D is given as

oalD]) = /dC’deBdA-K(D,C)SC(C)K(C’, H)K(H,B)Sp(B)K(B.A)SA(A)f(A).

(77)
The function f(A) of Equation (77) means an arbitrary wave function. And a free particle
occurs the diffraction at point H and is scattered both points B and C' (Figure 15). For
neuron (, we obtain the probability amplitude (propagator):

$4[G] = / dFdHdBdA - K (G, F)Syp(F)K(F, H)K (H, B)Sp(B)K (B.A)S4(A) f(A)

+ / AFAEdA - K (G, F)Sp(F)K(F, B)Sp(E)K (E, A)Sa(A)f(A). (78)

Therefore, those two wave functions, ¢4[D] and ¢4[G] show that an initial wave function
f(A) will arrive at two endpoints D and G, after f(A) was divided into two waves at
point A. The f(A) is scattered at many points, A, B, F, E' and diffracted at points H, F,
by some potentials.

Japanese Amida lottery, which is bifurcation’s problem, has many diffraction points
as multi-slit. However, Amida lottery does not have any switch’s potentials S. On the
other hand, quantum circuits and neural networks include both switch’s potentials and
diffraction’s points in their systems.

6. Summary. We would like to construct mathematical tools for quantized circuits,
neural network and Amida lottery so as to translate classical pictures into quantum ones.
Notice that the kernel K[b,a] and inner-product (B|A) are not ordinary wave functions
but they describe the time development of propagation satisfying Schrodinger equation.
They truly express the propagating motion of a particle from point (A, t4) to point (B, tp).
Thus, an expression of path integral corresponds to dynamics of particle as well as Nowto-
nian second law of motion. So we would like to summarize important descriptions of the
particle’s propagation (motion of polariton). If path integral is applied to classical neural
networks, then their networks are directly quantized and come to contain various quantum
effects in their systems, i.e., for example, tunnel effects, fluctuations and interferences.
1. Free propagation of particle: point A — point B.

] o [t

2. Dividing into two parts: two paths are A — B and B — C. Particle is free
propagation. B: relay point or diffraction point.

K[B,A] = (B | A) = K(b,a) = { (79)

KylC, A] = (C | A>B:/dB-K(C, B)K(B, A) :/dB (C|BY(B|A).  (30)
3. Diffraction at point B, slit width ¢: A — (B) — C.

K[C,A]:(C|A>:/dB-K(C’,B)K(B,A):/OﬁdB(C|B> (B|A).  (81)
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4. Various switch’s potentials, for example, synaptic junction and scattering potentials

for particles, electromagnetic potentials: A4— G.
Ky[C, Al = (C| A), = (C| 55 |A)

(82)
= /dBK(C’, B)S(B)K (B, A) :/dB-<C| B) S(B) (B| A).

5. General switch’s potentials: A — . — C, = f(S1(B), S2(B), - -+, Su(B)).
Kp[C, Al = (C| A), = (C| Fp |A)

_ /dB - K(C, B)F(S1(B), Sa(B) - - S(B)) K (B, A) (83)
— /dB-(C | B)F(S1(B),S2(B)---S,(B) (B | A) .

6. Abbreviation for line and interaction points: A — B — @ — D — FE, then free
particle at both points B and D.
KolB, A] = (E| A), = (E| Sc|A)

_ / dBdCdD - K(E, D)K(D,C)S(C))K(C, B)K(B, A) (84)
:/dc-K(E,O)S(C)K(C,A)-

7. Abbreviation for line, interaction and diffraction: A — (B) — @ — D — FE,

B: slit or diffraction points. C' is scattering point. Notice that we cannot abbreviate dB
integral.

Kc[E, A = (E| A) = (E| S¢ |4)

_ /dBd(;dD . K(E,D)K(D,C)S(C))K(C, B)K(B, A) (85)

_ / dBdC - K(E,C)S(C)K(C, B)K(B, A).

8. Propagation and time-development: initial wave function ¢(A) — final state B,
¢alB].

oalB] = [ 44+ K(B.) o) (56-1)

K[B,Al = (B | A) = (B;tp| A;t4) = (B|Ul(tp,t4) |A) (86-2)

N —7 A
U(tB,tA) = exXp <€H(t3 — tA)> .
9. Relationship between an eigenfunction of Schrodinger equation and its propagator.
KB, AL = 37, (A (B) expl—i (b5 — £)] (57)

We would like to show an above relationship between the kernel KB, A] and eigenfunc-
tion of Schrodinger equation. The wave function of S chrodinger equation, whose solution
is A* or ¢* (or static approximation of polariton ¢°), can be related to the kernel K[B, A].
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The general solution of time dependent quaternary Schrodinger equation is represented
as

Z CHY () exp(—iwht). (88)
And the quaternary wave function W%, which is an eigenfunction of stationary state,

satisfies Equation (65) or Equation (69). The U/ obeys the quaternary Schrodinger
equation: that is

[ Voo + E S, S0)] vt = Bl

(89)
B = T,
The wave function at point (A,t4) is written as
HlA; ] = Z Chvh(A) exp(—iwlta) = ZJ alyv;(A) (90)

: Cf; = a'yexp (iwta) .

On the other hand, we have a similar expression at point (B, tp),

O'[B;tp] = Z Chh(B) exp(—iwktp) = Z a Vi (B) exp(—iwlktp + iwkta) (91)

where we substituted Equation (88) into C% of Equation (89). The Equation (88) gives
us coefficient a%:

ab. = / T (A) " A; ta]dA. (92)

Substituting Equation (90) into (88) and comparing that result with Equation (84), w
can obtain an expression of kernel K [B Al

o"[Bitp] = Y {UK (A) Uk(B) expl—iv (tp — ta)]}¢"[A; ta]. (93)
KB, A=) 4"(4 )W( ) expl—iwi (tp — t4)]. (94)

7. Conclusion. We proposed new basic theory and calculation methods for quantum
bifurcation, quantum circuits, and neural computer based on path integrals of quantum
theory.

At first, we showed that a decision tree can be regarded as a kind of Brownian motion
(Markov process), and then the motion was governed with Ito equation (general stochastic
equation). And according to Nelson’s method (stochastic quantization), the Ito equation
finally reached Schrodinger equation. Thus, we knew that problems of classical bifurcation
were easily led to Schrodinger equation by considering Nelson’s stochastic quantization
method. The second example was Japanese Amida lottery, which was a kind of classical
bifurcation models because of no interference between each path of lottery. However, we
introduced a lot of diffraction points to Amida lottery, and we showed the calculating
method of quantum amplitude by path integrals. That path integral was a quantization
method of Amida lottery, which contained a lot of diffraction points. If we regarded
classical bifurcation points as diffraction points and we summed up the probability am-
plitudes of all possible paths, we could translate the classical bifurcations into quantum
interferences and diffraction’s problems of networks.

We discussed the method of quantization of basic circuits as AND, OR and NOT. Those
classical circuits did not have any quantum effects. For example, there were quantum ef-
fects as the superposition and probability interference. In order to perform quantization of
those circuits, we adopted the path integral to above three basic circuits. We assumed that
we could regard classical switches as scattering potentials (switch’s operators). Therefore,
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that was quantization concepts, and those quantized circuits with switch operators cor-
responded to q-AND, ¢-NOT, and q-OR circuits. Moreover, we succeeded to show the
calculation’s methods of complex quantum circuits and neural networks by path integrals.
The switch of each circuit was looked upon as switch’s potential of Hamiltonian. Thus,
Hamiltonian operator H could be described as

H = (kinetic energy T') 4+ (potential energy V') + (Switch’s potential F'(Sy, Sz, Sn))-

The Hamiltonian was connected to quaternary Schrédinger equation since the wave
function was related to the motion of polariton as massive photon. Exactly speaking,
the motion of polariton should be prescribed by Proca equation of relativistic kinematics.
However, the Proca equation approached to the quaternary Schrodinger equation when
the motion of polariton was much slower than light velocity.

The kernel K (b, a), which was propagator and an expression of the time development of
system, was related to an eigenfunction of Schrédinger equation. And we found that the
g-OR was similar to the first ordered perturbation of two potential scattering problems.
The q-AND was shown to have similarity to the second ordered perturbation of single
particle. It is important to notice that the wave function ¢(z,t) was an expression of
a situation of wave in the point = at time ¢, and its expression was static. The kernel
K|[B, A], however, truly represented the motion of the particle from point (A,%4) to point
(B,tg), and so its expression was dynamical. Finally, we found that the neuro-synaptic
junctions were regarded as a kind of switch’s potential, whose concepts led to quantization
of neural networks by using path integrals.

We think that quantum interference plays an essential role among many neural networks
in our brain. The normal neuron actively utilizes various interferences so as to adjust each
neural function through leak polaritons from neural axons and synaptic junctions.
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