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Facultad de Ingenieria, Ciencias y Arquitectura
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Abstract. This paper presents a mathematical model for rectangular beams subjected to
a concentrated load localized at any point on beam of variable cross section of symmetric
linear shape to obtain the fixed-end moments, carry-over factors and stiffness factors.
The properties of the rectangular cross section of the beam vary along its axis “x”, i.e.,
the width “b” is constant and the height “h” varies along the beam, this variation is linear
type. The consistent deformation method is used to solve such problems; a method based
on the superposition of effects and by means of the Bernoulli-Euler theory obtains the
deformations at any point of the beam. Traditional methods to obtain deflections of vari-
able section members are Simpson’s rule, or any other technique to perform numerical
integration and others authors present tables which are restricted to certain relationships.
Besides the effectiveness and accuracy of the developed method, a significant advantage
is that the displacement and moments are calculated at any cross section of the beam
using the respective integral representations as mathematical formulas.
Keywords: Fixed-end moments, Carry-over factors, Stiffness factors, Variable rectan-
gular cross section, Linear shape, Consistent deformation method, Bernoulli-Euler theory

1. Introduction. One of the major concerns of structural engineering over the past 50
years is to propose elastic methods dependable to satisfactorily model to the variable
cross section members, such that it is having certainty in the determination of mechanical
elements, strains and displacements that allow properly design this type of members.

During the last century, between 1950 and 1960 were developed several design aids, as
those presented by Guldan [1], and the most popular tables published by the Portland Ce-
ment Association (PCA) in 1958 “Handbook” [2], where stiffness constants and fixed-end
moments of variable section members are presented because the limitations for extensive
calculations at that time, in the PCA tables were used several hypotheses to simplify the
problem, among the most important pondering the variation of the stiffness (linear or
parabolic, according to the case of geometry) in function of main moment of inertia in
flexure, considering independent cross section, it was demonstrated as incorrect. Further-
more, the shear deformations and the ratio of length-height of beam are neglected in the
definition of stiffness factors, simplifications can lead to significant errors in determining
stiffness factors [3].

Elastic formulation of stiffness for members of variable section was evolved over time,
and after the publication of the PCA tables, the following works deserve special mention
all based on beams theory. Just [4] was the first to propose a rigorous formulation for
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members of variable cross section of drawer type and “I” based on the classical theory of
beams of Bernoulli-Euler for two-dimensional member without including axial deforma-
tions. Schreyer [5] proposed a more rigorous theory of beams for members varying linearly,
in which the hypothesis generalized by Kirchhoff were introduced to take account of the
shear deformations. Medwadowski [6] resolved the problem of flexure in beam of shear
nonprismatic using the theory of variational calculus. Brown [7] presented a method
which used approximate interpolation functions consistent with beam elastic theory and
the principle of virtual work to define the stiffness matrix of members of variable section.
Matrices of elastic stiffness for two-dimensional and three-dimensional members of vari-

able section based on classical theory of beam by Euler-Bernoulli and flexibilities method
taking into account the axial and shear deformations, and the cross section shape is found
in Tena-Colunga and Zaldo [8] and in the appendix B [9].
In traditional methods used for the variable cross section members, the deflections are

obtained by Simpson’s rule or some other techniques to perform numerical integration,
and tables presenting some books are limited to certain relationships [10-12].
This paper presents a mathematical model to obtain the fixed-end moments, stiffness

factors and carry-over of a beam subjected to a concentrated load localized at any point
on beam of variable rectangular cross section taking into account the width “b” constant
and height “hx” varying of linear shape.

2. Mathematical Model.

2.1. General principles of the straight line. Figure 1 shows a beam in elevation and
also presents its rectangular cross section taking into account the width “b” constant and
height “hx” varying of linear shape in three different parts.

Figure 1. Rectangular section varying the height of linear shape

The value “hx” varies with respect to “x”, this gives:

hx = h+ y (1)

Now, the properties of the straight line are used:
Equation for 0 ≤ x ≤ a:

hx =
ah+ ay1 − y1x

a
(2)

Equation for a ≤ x ≤ L− a:
hx = h (3)

Equation for L− a ≤ x ≤ L:

hx =
ah+ y1x− y1L+ ay1

a
(4)
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2.2. Derivation of the equations for concentrated load.

2.2.1. Fixed-end moments. Figure 2(a) shows the beam “AB” subjected to a concentrated
load localized at any point on beam and fixed ends. The fixed-end moments are found by
the sum of the effects. The moments are considered positive in counterclockwise and the
moments are considered negative in clockwise. Figure 2(b) shows the same beam simply
supported at their ends at the load applied to find the rotations “θA1” and “θB1”. Now,
the rotations “θA2” and “θB2” are caused by the moment “MAB” applied in the support
“A”, according to Figure 2(c), and in terms of “θA3” and “θB3” are caused by the moment
“MBA” applied in the support “B”, seen in Figure 2(d) [13-16].

Figure 2. Beam fixed at its ends

The conditions of geometry are [13-17]:

θA1 + θA2 + θA3 = 0 (5)

θB1 + θB2 + θB3 = 0 (6)

The beam of Figure 2(b) is analyzed to find “θA1” and “θB1” by Euler-Bernoulli theory
to calculate the deflections [18,19]. The equation is:

dy

dx
=

∫
Mz

EIz
dx (7)

where dy/dx = θz is the total rotation around the axis “z”, E is the modulus of elasticity
of the material, Mz is the moment around the axis “z”, and Iz is the moment of inertia
around the axis “z”.

The moment any point of the beam, when the concentrated load is located to the right
of the section analyzed is [20]:

Mz = −P (L− c)x

L
(8)
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The moment any point of the beam, when the concentrated load is located to the left
of the section analyzed is [20]:

Mz = −Pc(L− x)

L
(9)

The moment of inertia for a rectangular member is:

Iz =
bh3

x

12
(10)

Equations (2), (3) and (4) for the three different segments are substituted into Equation
(9), it is presented:
Equation for 0 ≤ x ≤ a:

Iz =
b

12

[
ah+ ay1 − y1x

a

]3
(11)

Equation for a ≤ x ≤ L− a:

Iz =
bh3

12
(12)

Equation for L− a ≤ x ≤ L:

Iz =
b

12

[
ah+ y1x− y1L+ ay1

a

]3
(13)

Then, the moment of inertia for a member of rectangular section is presented in Equa-
tions (11), (12) and (13).
The beam is analyzed in three different sections, because the concentrated load can be

located between 0 ≤ x ≤ a, a ≤ x ≤ L− a, and L− a ≤ x ≤ L.
a) When the concentrated load is located of 0 ≤ x ≤ a.
Case I: the concentrated load is found to the right of the analyzed section, i.e., 0 ≤ x ≤

c ≤ a.
Equations (8) and (11) are substituted into Equation (7), it is presented:

dy

dx
= −12P (L− c)a3

EbL

∫
x

(ah+ ay1 − y1x)3
dx (14)

Integration of Equation (14) is shown:

dy

dx
= −12P (L− c)a3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
+ C1

}
(15)

Substituting x = c, into Equation (15) to find the rotation dy/dx = θc11, where the
load “P” is localized:

θc11 = −12P (L− c)a3

EbL

{
2cy1 − a(y1 + h)

2y21[cy1 − a(y1 + h)]2
+ C1

}
(16)

Equation (15) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12P (L− c)a3

EbL

{
1

y31
ln[xy1 − a(y1 + h)]− a(y1 + h)

2y31[xy1 − a(y1 + h)]
+ C1x+ C2

}
(17)

The boundary conditions are substituted into Equation (17), when x = 0 and y = 0 to
find the constant “C2”:

C2 = −
{
2 ln[−a(y1 + h)] + 1

2y31

}
(18)
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Equation (18) is substituted into Equation (17):

y = −12P (L− c)a3

EbL

{
1

y31
ln

[
xy1 − a(y1 + h)

−a(y1 + h)

]
− xy1

2y31[xy1 − a(y1 + h)]
+ C1x

}
(19)

Substituting x = c, into Equation (19) to find the displacement y = yc11, where the
load “P” is found:

yc11 = −12P (L− c)a3

EbL

{
1

y31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− cy1

2y31[cy1 − a(y1 + h)]
+ C1c

}
(20)

Case II: the concentrated load is found to the left of the analyzed section, i.e., 0 ≤ c ≤
x ≤ a.

Equations (9) and (11) are substituted into Equation (7), it is presented:

dy

dx
= −12Pca3

EbL

∫
(L− x)

(ah+ ay1 − y1x)3
dx (21)

Integration of Equation (21) is shown:

dy

dx
= −12Pca3

EbL

{
−2xy1 − y1(a+ L)− ah

2y21[xy1 − a(y1 + h)]2
+ C3

}
(22)

Substituting x = c, into Equation (22) to find the rotation dy/dx = θc12, where the
load “P” is localized:

θc12 = −12Pca3

EbL

{
−2cy1 − y1(a+ L)− ah

2y21[cy1 − a(y1 + h)]2
+ C3

}
(23)

Also into Equation (22) is substituted x = a, to find the rotation dy/dx = θa12, where
the height “hx” varies the linear shape:

θa12 = −12Pca3

EbL

{
ah− y1(a− L)

2a2h2y21
+ C3

}
(24)

Equation (22) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12Pca3

EbL

{
1

y31
ln[xy1 − a(y1 + h)] +

y1(L− a)− ah

2y31[a(y1 + h)− xy1]
+ C3x+ C4

}
(25)

Substituting x = c, into Equation (25) to find the displacement y = yc12, where the
load “P” is found:

yc12 = −12Pca3

EbL

{
1

y31
ln[cy1 − a(y1 + h)] +

y1(L− a)− ah

2y31[a(y1 + h)− cy1]
+ C3c+ C4

}
(26)

Also into Equation (25) is substituted x = a, to find the displacement y = ya12, where
the height “hx” varies the linear shape, it is:

ya12 = −12Pca3

EbL

{
− 1

y31
ln(−ah)− y1(a− L) + ah

2ahy31
+ C3a+ C4

}
(27)

Case III: the concentrated load is found outside and to the right of the section analyzed,
i.e., 0 ≤ x ≤ a ≤ c.

Equations (8) and (11) are substituted into Equation (7), it is presented:

dy

dx
= −12P (L− c)a3

EbL

∫
x

(ah+ ay1 − y1x)3
dx (28)
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Integration of Equation (28) is presented:

dy

dx
= −12P (L− c)a3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
+ C5

}
(29)

Substituting x = a, into Equation (29) to find the rotation dy/dx = θa13, where the
height “hx” varies the linear shape:

θa13 = −12P (L− c)a3

EbL

{
y1 − h

2ah2y21
+ C5

}
(30)

Equation (29) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12P (L− c)a3

EbL

{
1

y31
ln[xy1 − a(y1 + h)]− a(y1 + h)

2y31[xy1 − a(y1 + h)]
+ C5x+ C6

}
(31)

The boundary conditions are substituted into Equation (31), when x = 0 and y = 0 to
obtain the constant “C6”:

C6 = −
{
2 ln[−a(y1 + h)] + 1

2y31

}
(32)

Equation (32) is substituted into Equation (31):

y = −12P (L− c)a3

EbL

{
1

y31
ln

[
xy1 − a(y1 + h)

−a(y1 + h)

]
− xy1

2y31[xy1 − a(y1 + h)]
+ C5x

}
(33)

Substituting x = a, into Equation (33) to find the displacement y = ya13, where the
height “hx” varies the linear shape:

ya13 = −12P (L− c)a3

EbL

{
1

y31
ln

(
h

y1 + h

)
+

1

2hy21
+ C5a

}
(34)

b) When the concentrated load is located of a ≤ x ≤ L− a.
Case I: the concentrated load is found outside and to the left of the section analyzed,

i.e., c ≤ a ≤ x ≤ L− a.
Equations (9) and (12) are substituted into Equation (7), it is presented:

dy

dx
= − 12Pc

Ebh3L

∫
(L− x)dx (35)

Integration of Equation (35) is shown:

dy

dx
= − 12Pc

Ebh3L

(
Lx− x2

2
+ C7

)
(36)

Substituting x = a, into Equation (36) to find the rotation dy/dx = θa21, where the
height “hx” varies the linear shape:

θa21 = − 12Pc

Ebh3L

(
La− a2

2
+ C7

)
(37)

Also substituting x = L − a, into Equation (36) to find the rotation dy/dx = θLa21,
where the height “hx” varies the linear shape:

θLa21 = − 12Pc

Ebh3L

{
L(L− a)− (L− a)2

2
+ C7

}
(38)
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Equation (36) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = − 12Pc

Ebh3L

(
Lx2

2
− x3

6
+ C7x+ C8

)
(39)

Substituting x = a, into Equation (39) to find the displacement y = ya21, where the
height “hx” varies the linear shape:

ya21 = − 12Pc

Ebh3L

(
La2

2
− a3

6
+ C7a+ C8

)
(40)

Now substituting x = L− a, into Equation (39) to obtain the displacement y = yLa21,
where the height “hx” varies the linear shape:

yLa21 = − 12Pc

Ebh3L

[
L(L− a)2

2
− (L− a)3

6
+ C7(L− a) + C8

]
(41)

Case II: the concentrated load is found to the right of the analyzed section, i.e., a ≤
x ≤ c ≤ L− a.

Equations (8) and (12) are substituted into Equation (7), it is presented:

dy

dx
= −12P (L− c)

Ebh3L

∫
(x)dx (42)

Integration of Equation (42) is presented:

dy

dx
= −12P (L− c)

Ebh3L

(
x2

2
+ C9

)
(43)

Substituting x = a, into Equation (43) to find the rotation dy/dx = θa22, where the
height “hx” varies the linear shape:

θa22 = −12P (L− c)

Ebh3L

(
a2

2
+ C9

)
(44)

Now substituting x = c, into Equation (43) to find the rotation dy/dx = θc22, where
the load “P” is found:

θc22 = −12P (L− c)

Ebh3L

(
c2

2
+ C9

)
(45)

Equation (43) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12P (L− c)

Ebh3L

{
x3

6
+ C9x+ C10

}
(46)

Substituting x = a, into Equation (46) to find the displacement y = ya22, where the
height “hx” varies the linear shape:

ya22 = −12P (L− c)

Ebh3L

{
a3

6
+ C9a+ C10

}
(47)

Now substituting x = c, into Equation (46) to find the displacement y = yc22, where
the height “hx” varies the linear shape:

yc22 = −12P (L− c)

Ebh3L

{
c3

6
+ C9c+ C10

}
(48)

Case III: the concentrated load is found to the left of the analyzed section, i.e., a ≤ c ≤
x ≤ L− a.
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Equations (9) and (12) are substituted into Equation (7), it is presented:

dy

dx
= − 12Pc

Ebh3L

∫
(L− x)dx (49)

Integration of Equation (49) is shown:

dy

dx
= − 12Pc

Ebh3L

(
Lx− x2

2
+ C11

)
(50)

Substituting x = c, into Equation (50) to find the rotation dy/dx = θc23, where the
load “P” is found:

θc23 = − 12Pc

Ebh3L

(
Lc− c2

2
+ C11

)
(51)

Now substituting x = L − a, into Equation (50) to find the rotation dy/dx = θLa23,
where the height “hx” varies the linear shape:

θLa23 = − 12Pc

Ebh3L

{
L(L− a)− (L− a)2

2
+ C11

}
(52)

Equation (50) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = − 12Pc

Ebh3L

{
Lx2

2
− x3

6
+ C11x+ C12

}
(53)

Substituting x = c, into Equation (53) to find the displacement y = yc23, where the
load “P” is found:

yc23 = − 12Pc

Ebh3L

{
Lc2

2
− c3

6
+ C11c+ C12

}
(54)

Now substituting x = L − a, into Equation (53) to find the displacement y = yLa23,
where the height “hx” varies the linear shape:

yLa23 = − 12Pc

Ebh3L

{
L(L− a)2

2
− (L− a)3

6
+ C11(L− a) + C12

}
(55)

Case IV: the concentrated load is found outside and to the right of the section analyzed,
i.e., a ≤ x ≤ L− a ≤ c.
Equations (8) and (12) are substituted into Equation (7), it is presented:

dy

dx
= −12P (L− c)

Ebh3L

∫
(x)dx (56)

Integration of Equation (56) is shown:

dy

dx
= −12P (L− c)

Ebh3L

(
x2

2
+ C13

)
(57)

Substituting x = a, into Equation (57) to find the rotation dy/dx = θa24, where the
height “hx” varies the linear shape:

θa24 = −12P (L− c)

Ebh3L

(
a2

2
+ C13

)
(58)

Now substituting x = L− a, into Equation (57) to obtain the rotation dy/dx = θLa24,
where the height “hx” varies the linear shape:

θLa24 = −12P (L− c)

Ebh3L

{
(L− a)2

2
+ C13

}
(59)
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Equation (57) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12P (L− c)

Ebh3L

(
x3

6
+ C13x+ C14

)
(60)

Substituting x = a, into Equation (60) to find the displacement y = ya24, where the
height “hx” varies the linear shape:

ya24 = −12P (L− c)

Ebh3L

(
a3

6
+ C13a+ C14

)
(61)

Now substituting x = L− a, into Equation (60) to obtain the displacement y = yLa24,
where the height “hx” varies the linear shape:

yLa24 = −12P (L− c)

Ebh3L

{
(L− a)3

6
+ C13(L− a) + C14

}
(62)

a) When the concentrated load is located of L− a ≤ x ≤ L.
Case I: the concentrated load is found outside and to the left of the section analyzed,

i.e., c ≤ L− a ≤ x ≤ L.
Equations (9) and (13) are substituted into Equation (7), it is presented:

dy

dx
= −12Pa3c

EbL

∫
(L− x)

(ah+ y1x− y1L+ ay1)3
dx (63)

Integration of Equation (63) is shown:

dy

dx
= −12Pa3c

EbL

{
2y1x+ y1(a− 2L) + ah

2y21[y1x+ y1(a− L) + ah]2
+ C15

}
(64)

Substituting x = L − a, into Equation (64) to find the rotation dy/dx = θLa31, where
the height “hx” varies the linear shape:

θLa31 = −12Pa3c

EbL

{
h− y1
2ah2y21

+ C15

}
(65)

Now substituting x = L, into Equation (64) to find the rotation dy/dx = θL31, where
the height “hx” varies the linear shape:

θL31 = −12Pa3c

EbL

{
1

2ay21(y1 + h)
+ C15

}
(66)

Equation (64) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = −12Pa3c

EbL

{
1

y31
ln[xy1 + y1(a− L) + ah] +

a(y1 + h)

2y31[xy1 + y1(a− L) + ah]
+ C15x+ C16

}
(67)

The boundary conditions are replaced into Equation (67), when x = L and y = 0 to
find the constant “C16” in function of “C15”:

C16 = −2 ln[a(y1 + h)] + 1

2y31
− C15L (68)

Equation (68) is substituted into Equation (67):

y = −12Pa3c

EbL

{
1

y31
ln

[
xy1 + y1(a− L) + ah

a(y1 + h)

]
+

L− x

2y21[xy1 + y1(a− L) + ah]
− C15(L− x)

}
(69)



860 A. LUÉVANOS ROJAS, R. LUÉVANOS ROJAS, I. LUÉVANOS SOTO ET AL.

Substituting x = L − a, into Equation (69) to find the displacement y = yLa31, where
the height “hx” varies the linear shape:

yLa31 = −12Pa3c

EbL

{
1

y31
ln

[
h

(y1 + h)

]
+

1

2hy21
− C15a

}
(70)

Case II: the concentrated load is found to the right of the analyzed section, i.e., L−a ≤
x ≤ c ≤ L.
Equations (8) and (13) are substituted into Equation (7), it is presented:

dy

dx
= −12P (L− c)a3

EbL

∫
x

(ah+ y1x− y1L+ ay1)3
dx (71)

Integration of Equation (71) is shown:

dy

dx
= −12P (L− c)a3

EbL

{
− 2y1x+ y1(a− L) + ah

2y21[y1x+ y1(a− L) + ah]2
+ C17

}
(72)

Substituting x = L − a, into Equation (72) to find the rotation dy/dx = θLa32, where
the height “hx” varies the linear shape:

θLa32 = −12P (L− c)a3

EbL

{
y1(a− L)− ah

2a2h2y21
+ C17

}
(73)

Now substituting x = c, into Equation (72) to find the rotation dy/dx = θc32, where
the load “P” is found:

θc32 = −12P (L− c)a3

EbL

{
− 2cy1 + y1(a− L) + ah

2y21[cy1 + y1(a− L) + ah]2
+ C17

}
(74)

Equation (72) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = − 12P (L− c)a3

EbL

{
− 1

y31
ln[xy1 + y1(a− L) + ah]

− y1(a− L) + ah

2y31[xy1 + y1(a− L) + ah]
+ C17x+ C18

} (75)

Substituting x = L − a, into Equation (75) to find the displacement y = yLa32, where
the height “hx” varies the linear shape, it is:

yLa32 = −12P (L− c)a3

EbL

{
−2ah ln(ah) + y1(a− L) + ah

2ahy31
+ C17(L− a) + C18

}
(76)

Now substituting x = c, into Equation (75) to find the displacement y = yc32, where
the height “hx” varies the linear shape:

yc32 = − 12P (L− c)a3

EbL

{
− 1

y31
ln[cy1 + y1(a− L) + ah]

− y1(a− L) + ah

2y31[cy1 + y1(a− L) + ah]
+ C17c+ C18

} (77)

Case III: the concentrated load is found to the left of the analyzed section, i.e., L−a ≤
c ≤ x ≤ L.
Equations (9) and (13) are substituted into Equation (7), it is presented:

dy

dx
= −12Pa3c

EbL

∫
(L− x)

(ah+ y1x− y1L+ ay1)3
dx (78)
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Integration of Equation (78) is shown:

dy

dx
= −12Pa3c

EbL

{
2y1x+ y1(a− 2L) + ah

2y21[y1x+ y1(a− L) + ah]2
+ C19

}
(79)

Substituting x = c, into Equation (79) to find the rotation dy/dx = θc33, where the
load “P” is found:

θc33 = −12Pa3c

EbL

{
2y1c+ y1(a− 2L) + ah

2y21[y1c+ y1(a− L) + ah]2
+ C19

}
(80)

Now substituting x = L, into Equation (79) to find the rotation dy/dx = θL33, where
the load “P” is found:

θL33 = −12Pa3c

EbL

{
1

2ay21(y1 + h)
+ C19

}
(81)

Equation (79) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y = − 12Pa3c

EbL

{
1

y31
ln[xy1 + y1(a− L) + ah]

+
a(y1 + h)

2y31[xy1 + y1(a− L) + ah]
+ C19x+ C20

} (82)

The boundary conditions are replaced into Equation (82), when x = L and y = 0 to
find the constant “C20” in function of “C19”:

C20 = −
{
2 ln[a(y1 + h)] + 1

2y31

}
− C19L (83)

Equation (83) is substituted into Equation (82):

y = − 12Pa3c

EbL

{
1

y31
ln

[
xy1 + y1(a− L) + ah

a(y1 + h)

]
+

L− x

2y21[xy1 + y1(a− L) + ah]
− C19(L− x)

} (84)

Substituting x = c, into Equation (84) to find the displacement y = yc33, where the
height “hx” varies the linear shape:

yc33 = − 12Pa3c

EbL

{
1

y31
ln

[
cy1 + y1(a− L) + ah

a(y1 + h)

]
+

L− c

2y21[cy1 + y1(a− L) + ah]
− C19(L− c)

} (85)

First condition:
The concentrated load is located of 0 ≤ x ≤ a.
Equilibrium conditions are generated to obtain the integration constants:

θc11 = θc12 θa12 = θa21 θLa21 = θLa31

yc11 = yc12 ya12 = ya21 yLa21 = yLa31
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The constants used to obtain the rotations in the support “A” and “B” are:

C1 = − 1

(L− c)y31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− 2c

(L− c)y31L
ln

[
(y1 + h)

h

]
+
2cy31(a− c)(2a3 − 3a2L+ 3aL2 − L3)

6a3h3y21L(L− c)[y1(a− c) + ah]

−achy21[2a
3 − 6a2c+ 3aL(2c− L)− L2(3c− 2L)]

6a3h3y21L(L− c)[y1(a− c) + ah]

+
3a2ch2y1[2a

2 − 4ac+ L(2c− L)] + 3a3h3[4ac− L(3c− L)]

6a3h3y21L(L− c)[y1(a− c) + ah]
(86)

C15 = − 1

cy31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− 2

y31L
ln

[
(y1 + h)

h

]
+
y31(a− c)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a− c) + ah]
− ahy21(2a

3 − 6a2c+ 6acL− L3)

6a3h3y21L[y1(a− c) + ah]

+
6a2h2y1(a

2 − 2ac+ cL) + 3a3h3(4a− 3L)

6a3h3y21L[y1(a− c) + ah]
(87)

Important note: the subscripts appearing in rotations are:
The first corresponds to the supports “A” or “B”; the second is for Figure 2(b) and

the third is for the load application: the 1 is for interval 0 ≤ x ≤ a, the 2 is for interval
a ≤ x ≤ L− a, and the 3 is for interval L− a ≤ x ≤ L.
Equation (86) is substituted into Equation (15) to obtain the rotations anywhere of

span 0 ≤ x ≤ a:

dy

dx
= − 12P (L− c)a3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
− 1

(L− c)y31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− 2c

(L− c)y31L
ln

[
(y1 + h)

h

]
+

2cy31(a− c)(2a3 − 3a2L+ 3aL2 − L3)

6a3h3y21L(L− c)[y1(a− c) + ah]

− achy21[2a
3 − 6a2c+ 3aL(2c− L)− L2(3c− 2L)]

6a3h3y21L(L− c)[y1(a− c) + ah]

+
3a2ch2y1[2a

2 − 4ac+ L(2c− L)] + 3a3h3[4ac− L(3c− L)]

6a3h3y21L(L− c)[y1(a− c) + ah]

}
(88)

Substituting x = 0, into Equation (88) to find the rotation in support “A”, it is pre-
sented:

θA11 = − 12P (L− c)a3

EbL

{
− 1

2ay21(y1 + h)
− 1

(L− c)y31
ln

[
a(y1 + h)− cy1

a(y1 + h)

]
− 2c

(L− c)y31L
ln

[
(y1 + h)

h

]
+

2cy31(a− c)(2a3 − 3a2L+ 3aL2 − L3)

6a3h3y21L(L− c)[y1(a− c) + ah]

− achy21[2a
3 − 6a2c+ 3aL(2c− L)− L2(3c− 2L)]

6a3h3y21L(L− c)[y1(a− c) + ah]

+
3a2ch2y1[2a

2 − 4ac+ L(2c− L)] + 3a3h3[4ac− L(3c− L)]

6a3h3y21L(L− c)[y1(a− c) + ah]

}
(89)
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Equation (87) is substituted into Equation (64) to obtain the rotations anywhere of
span L− a ≤ x ≤ L:

dy

dx
= − 12Pa3c

EbL

{
2y1x+ y1(a− 2L) + ah

2y21[y1x+ y1(a− L) + ah]2
− 1

cy31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− 2

y31L
ln

[
(y1 + h)

h

]
+

y31(a− c)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a− c) + ah]

− ahy21(2a
3 − 6a2c+ 6acL− L3)

6a3h3y21L[y1(a− c) + ah]

+
6a2h2y1(a

2 − 2ac+ cL) + 3a3h3(4a− 3L)

6a3h3y21L[y1(a− c) + ah]

}
(90)

Substituting x = L, into Equation (90) to find the rotation in support “B”, it is
presented:

θB11 = − 12Pa3c

EbL

{
1

2ay21(y1 + h)
− 1

cy31
ln

[
cy1 − a(y1 + h)

−a(y1 + h)

]
− 2

y31L
ln

[
(y1 + h)

h

]
+

y31(a− c)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a− c) + ah]

− ahy21(2a
3 − 6a2c+ 6acL− L3)

6a3h3y21L[y1(a− c) + ah]

+
6a2h2y1(a

2 − 2ac+ cL) + 3a3h3(4a− 3L)

6a3h3y21L[y1(a− c) + ah]

}
(91)

Second condition:
The concentrated load is located of a ≤ x ≤ L− a.
Equilibrium conditions are generated to obtain the integration constants:

θa13 = θa22 θc22 = θc23 θLa23 = θLa31

ya13 = ya22 yc22 = yc23 yLa23 = yLa31

The constants used to obtain the rotations in the support “A” and “B” are:

C5 = − (2c− L)

(L− c)y31L
ln

[
y1 + h

h

]
+

y21[2a
3(2c− L) + 3a2L(L− c) + cL(c− 2L)(L− c)]

6a3h3(L− c)y21L

+
3a2hy1[L(c− L)− a(2c− L)]

6a3h3(L− c)y21L
+

3a2h2[2a(2c− L)− L(c− L)]

6a3h3(L− c)y21L
(92)

C15 = −(2c− L)

cy31L
ln

[
y1 + h

h

]
+

y21[2a
3(2c− L)− 3a2cL− c3L+ cL3]

6a3ch3y21L

+
3a2hy1[cL− a(2c− L)]

6a3ch3y21L
+

3a2h2[2a(2c− L)− cL]

6a3ch3y21L
(93)

Equation (92) is substituted into Equation (29) to obtain the rotations anywhere of
span 0 ≤ x ≤ a:

dy

dx
= − 12P (L− c)a3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
− (2c− L)

(L− c)y31L
ln

[
y1 + h

h

]
+

y21[2a
3(2c− L) + 3a2L(L− c) + cL(c− 2L)(L− c)]

6a3h3(L− c)y21L

+
3a2hy1[L(c− L)− a(2c− L)]

6a3h3(L− c)y21L
+

3a2h2[2a(2c− L)− L(c− L)]

6a3h3(L− c)y21L

} (94)
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Substituting x = 0, into Equation (94) to find the rotation in support “A”, it is pre-
sented:

θA12 = − 12P (L− c)a3

EbL

{
− 1

2ay21(y1 + h)
− (2c− L)

(L− c)y31L
ln

[
y1 + h

h

]
+

3a2hy1[L(c− L)− a(2c− L)] + 3a2h2[2a(2c− L)− L(c− L)]

6a3h3(L− c)y21L

+
y21[2a

3(2c− L) + 3a2L(L− c) + cL(c− 2L)(L− c)]

6a3h3(L− c)y21L

} (95)

Equation (93) is substituted into Equation (64) to obtain the rotations anywhere of
span L− a ≤ x ≤ L:

dy

dx
= − 12Pa3c

EbL

{
2y1x+ y1(a− 2L) + ah

2y21[y1x+ y1(a− L) + ah]2
− (2c− L)

cy31L
ln

[
y1 + h

h

]
+

y21[2a
3(2c− L)− 3a2cL− c3L+ cL3]

6a3ch3y21L

+
3a2hy1[cL− a(2c− L)]

6a3ch3y21L
+

3a2h2[2a(2c− L)− cL]

6a3ch3y21L

} (96)

Substituting x = L, into Equation (96) to find the rotation in support “B”, it is
presented:

θB12 = − 12Pa3c

EbL

{
1

2ay21(y1 + h)
− (2c− L)

cy31L
ln

[
y1 + h

h

]
+

y21[2a
3(2c− L)− 3a2cL− c3L+ cL3]

6a3ch3y21L

+
3a2hy1[cL− a(2c− L)] + 3a2h2[2a(2c− L)− cL]

6a3ch3y21L

} (97)

Third condition:
The concentrated load is located of L− a ≤ x ≤ L.
Equilibrium conditions are generated to obtain the integration constants:

θa13 = θa24 θLa24 = θLa32 θc32 = θc33

ya13 = ya24 yLa24 = yLa32 yc32 = yc33

The constants used to obtain the rotations in the support “A” and “B” are:

C5 =
1

(L− c)y31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2

y31L
ln

[
y1 + h

h

]
− y31(a+ c− L)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a+ c− L) + ah]

+
ahy21[2a

3 + 6a2(c− L) + 6aL(L− c)− L3]

6a3h3y21L[y1(a+ c− L) + ah]

− 6a2h2y1[a
2 + 2a(c− L)− L(c− L)] + 3a3h3(4a− 3L)

6a3h3y21L[y1(a+ c− L) + ah]

(98)
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C19 =
1

cy31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2(L− c)

cy31L
ln

[
y1 + h

h

]
+

2y31(a+ c− L)(c− L)(2a3 − 3a2L+ 3aL2 − L3)

6a3ch3y21L[y1(a+ c− L) + ah]

+
ahy21(L− c)[2a3 + 6a2(c− L) + 3aL(L− 2c) + L2(3c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]

+
3a2h2y1(c− L)[2a2 + 4a(c− L)− L(2c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]

+
3a3h3[4a(c− L)− L(3c− 2L)]

6a3ch3y21L[y1(a+ c− L) + ah]

(99)

Equation (98) is substituted into Equation (29) to obtain the rotations anywhere of
span 0 ≤ x ≤ a:

dy

dx
= − 12P (L− c)a3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
+

1

(L− c)y31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2

y31L
ln

[
y1 + h

h

]
− y31(a+ c− L)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a+ c− L) + ah]

+
ahy21[2a

3 + 6a2(c− L) + 6aL(L− c)− L3]

6a3h3y21L[y1(a+ c− L) + ah]

−6a2h2y1[a
2 + 2a(c− L)− L(c− L)] + 3a3h3(4a− 3L)

6a3h3y21L[y1(a+ c− L) + ah]

}
(100)

Substituting x = 0, into Equation (100) to find the rotation in support “A”, it is
presented:

θA13 = − 12P (L− c)a3

EbL

{
− 1

2ay21(y1 + h)
+

1

(L− c)y31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2

y31L
ln

(
y1 + h

h

)
− y31(a+ c− L)(4a3 − 6a2L+ L3)

6a3h3y21L[y1(a+ c− L) + ah]

+
ahy21[2a

3 + 6a2(c− L) + 6aL(L− c)− L3]

6a3h3y21L[y1(a+ c− L) + ah]

−6a2h2y1[a
2 + 2a(c− L)− L(c− L)] + 3a3h3(4a− 3L)

6a3h3y21L[y1(a+ c− L) + ah]

}
(101)

Equation (99) is substituted into Equation (79) to obtain the rotations anywhere of
span L− a ≤ x ≤ L:

dy

dx
= − 12Pa3c

EbL

{
2y1x+ y1(a− 2L) + ah

2y21[y1x+ y1(a− L) + ah]2
+

1

cy31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2(L− c)

cy31L
ln

[
y1 + h

h

]
+

2y31(a+ c− L)(c− L)(2a3 − 3a2L+ 3aL2 − L3)

6a3ch3y21L[y1(a+ c− L) + ah]

+
ahy21(L− c)[2a3 + 6a2(c− L) + 3aL(L− 2c) + L2(3c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]
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+
3a2h2y1(c− L)[2a2 + 4a(c− L)− L(2c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]

+
3a3h3[4a(c− L)− L(3c− 2L)]

6a3ch3y21L[y1(a+ c− L) + ah]

} (102)

Substituting x = L, into Equation (102) to find the rotation in support “B”, it is
presented:

θB13 = − 12Pa3c

EbL

{
1

2ay21(y1 + h)
+

1

cy31
ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+

2(L− c)

cy31L
ln

[
y1 + h

h

]
+

2y31(a+ c− L)(c− L)(2a3 − 3a2L+ 3aL2 − L3)

6a3ch3y21L[y1(a+ c− L) + ah]

+
ahy21(L− c)[2a3 + 6a2(c− L) + 3aL(L− 2c) + L2(3c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]

+
3a2h2y1(c− L)[2a2 + 4a(c− L)− L(2c− L)]

6a3ch3y21L[y1(a+ c− L) + ah]

+
3a3h3[4a(c− L)− L(3c− 2L)]

6a3ch3y21L[y1(a+ c− L) + ah]

}
(103)

Now, the beam of Figure 2(c) is analyzed to find “θA2” and “θB2” in function of “MAB”
[18,19].
The moment at any point of the beam on axis “x” is [20]:

Mz =
MAB(L− x)

L
(104)

a) For the segment 0 ≤ x ≤ a:
Equations (11) and (104) are substituted into Equation (7), it is presented:

dy

dx
=

12MABa
3

EbL

∫
(L− x)

[ah+ ay1 − y1x]3
dx (105)

Integration of Equation (105) is shown:

dy

dx
=

12MABa
3

EbL

{
−2xy1 − y1(a+ L)− ah

2y21[xy1 − a(y1 + h)]2
+ C1

}
(106)

Substituting x = a, into Equation (106) to find the rotation dy/dx = θa1, where the
height “hx” varies the linear shape:

θa1 =
12MABa

3

EbL

{
ah− y1(a− L)

2a2h2y21
+ C1

}
(107)

Equation (106) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
12MABa

3

EbL

{
− ln[xy1 − a(y1 + h)]

y31
+

y1(L− a)− ah

2y31[a(y1 + h)− xy1]
+ C1x+ C2

}
(108)

The boundary conditions are replaced into Equation (108), when x = 0 and y = 0 to
find the constant “C2”:

C2 =

{
2a(y1 + h) ln[−a(y1 + h)] + y1(a− L) + ah

2ay31(y1 + h)

}
(109)
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Equation (109) is substituted into Equation (108):

y =
12MABa

3

EbL

{
− ln[xy1 − a(y1 + h)]

y31
+

y1(L− a)− ah

2y31[a(y1 + h)− xy1]
+ C1x

+
ln[−a(y1 + h)]

y31
+

y1(a− L) + ah

2ay31(y1 + h)

} (110)

Substituting x = a, into Equation (110) to find the displacement y = ya1, where the
height “hx” varies the linear shape:

ya1 =
12MABa

3

EbL

{
1

y31
ln

(
y1 + h

h

)
− y1[y1(a− L) + ah]

2ahy31(y1 + h)
+ C1a

}
(111)

b) For the segment a ≤ x ≤ L− a:
Equations (12) and (104) are substituted into Equation (7), it is presented:

dy

dx
=

12MAB

Ebh3L

∫
(L− x)dx (112)

Integration of Equation (112) is shown:

dy

dx
=

12MAB

Ebh3L

(
Lx− x2

2
+ C3

)
(113)

Substituting x = a, into Equation (113) to find the rotation dy/dx = θa2, where the
height “hx” varies the linear shape:

θa2 =
12MAB

Ebh3L

(
La− a2

2
+ C3

)
(114)

Now substituting x = L − a, into Equation (113) to find the rotation dy/dx = θb2,
where the height “hx” varies the linear shape:

θb2 =
12MAB

Ebh3L

[
L(L− a)− (L− a)2

2
+ C3

]
(115)

Equation (113) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
MAB

Ebh3L

(
Lx2

2
− x3

6
+ C3x+ C4

)
(116)

Substituting x = a, into Equation (116) to find the displacement y = ya2, where the
height “hx” varies the linear shape:

ya2 =
12MAB

Ebh3L

(
La2

2
− a3

6
+ C3a+ C4

)
(117)

Now substituting x = L − a, into Equation (116) to find the displacement y = yb2,
where the height “hx” varies the linear shape:

yb2 =
12MAB

Ebh3L

[
L(L− a)2

2
− (L− a)3

6
+ C3(L− a) + C4

]
(118)

c) For the segment L− a ≤ x ≤ L:
Equations (13) and (104) are substituted into Equation (7), it is presented:

dy

dx
=

12MABa
3

EbL

∫
(L− x)

(ah+ y1x− y1L+ ay1)3
dx (119)
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Integration of Equation (119) is shown:

dy

dx
=

12MABa
3

EbL

{
2xy1 + y1(a− 2L) + ah

2y21[xy1 + y1(a− L) + ah]2
+ C5

}
(120)

Substituting x = L − a, into Equation (120) to find the rotation dy/dx = θb3, where
the height “hx” varies the linear shape:

θb3 =
12MABa

3

EbL

(
h− y1
2ah2y21

+ C5

)
(121)

Equation (120) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
12MABa

3

EbL

{
ln[xy1 + y1(a− L) + ah]

y31
+

a(y1 + h)

2y31[xy1 + y1(a− L) + ah]
+ C5x+ C6

}
(122)

The boundary conditions are replaced into Equation (122), when x = L and y = 0 to
find the constant “C6” in function of “C5”:

C6 = −
{
2 ln[a(y1 + h)] + 1

2y31

}
− C5L (123)

Equation (123) is substituted into Equation (122):

y =
12MABa

3

EbL

{
1

y31
ln

[
xy1 + y1(a− L) + ah

a(y1 + h)

]
+

a(y1 + h)

2y31[xy1 + y1(a− L) + ah]
− 1

2y31
− C5(L− x)

} (124)

Substituting x = L − a, into Equation (124) to find the displacement y = yb3, where
the height “hx” varies the linear shape:

yb3 =
12MABa

3

EbL

[
− 1

y31
ln

(
y1 + h

h

)
+

1

2hy21
− C5a

]
(125)

Equilibrium conditions are generated to obtain the integration constants:

θa1 = θa2 θb2 = θb3

ya1 = ya2 yb2 = yb3

The constants used to obtain the rotations in the support “A” and “B” are:

C1 =

{
− 2

y31L
ln

(
y1 + h

h

)
+

ah− ay1 + y1L

2ah2y1L(y1 + h)
− y1 − 2h

2h2y21L

−ah− ay1 + y1L

2a2h2y21
+

(a− L)3

3a3h3L
+

a3

3a3h3L

} (126)

C5 =

{
− 2

y31L
ln

(
y1 + h

h

)
− hL− y1L+ ay1 − 2ah

2ah2y21L
+

ahy1 − ay21 + y21L

2ah2y21L(y1 + h)

+
(L− a)2

2a3h3
− (L− a)3

3a3h3L
− a2

2a3h3
+

a3

3a3h3L

} (127)
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Equation (126) is substituted into Equation (106) to obtain the rotations anywhere of
the segment 0 ≤ x ≤ a:

dy

dx
=

12MABa
3

EbL

{
−2xy1 − y1(a+ L)− ah

2y21[xy1 − a(y1 + h)]2
− 2

y31L
ln

(
y1 + h

h

)
+

ah− ay1 + y1L

2ah2y1L(y1 + h)

−y1 − 2h

2h2y21L
− ah− ay1 + y1L

2a2h2y21
+

(a− L)3

3a3h3L
+

a3

3a3h3L

}
(128)

Substituting x = 0, into Equation (128) to find the rotation in support “A”, it is
presented:

θA2 =
12MABa

3

EbL

{
− 2

y31L
ln

(
y1 + h

h

)
+

[
y1(a+ L) + ah

2a2y21(y1 + h)2

]
+

[
ah− ay1 + y1L

2ah2y1L(y1 + h)

]
−
[
y1 − 2h

2h2y21L

]
−
[
ah− ay1 + y1L

2a2h2y21

]
+

(a− L)3

3a3h3L
+

1

3h3L

} (129)

Equation (127) is substituted into Equation (120) to obtain the rotations anywhere of
the segment L− a ≤ x ≤ L:

dy

dx
=

12MABa
3

EbL

{
2xy1 + y1(a− 2L) + ah

2y21[xy1 + y1(a− L) + ah]2
− 2

y31L
ln

(
y1 + h

h

)
+

[
a3h2y1 − a3hy21 + a2hy21L

2a3h3y21L(y1 + h)

]
−

[
a2h2L− a2hy1L+ a3hy1 − 2a3h2

2a3h3y21L

]
+
(L− a)2

2a3h3
− (L− a)3

3a3h3L
− a2

2a3h3
+

a3

3a3h3L

} (130)

Substituting x = L, into Equation (130) to find the rotation in support “B”, it is
presented:

θB2 =
12MABa

3

EbL

{
− 2

y31L
ln

(
y1 + h

h

)
+

h2L+ ahy1 − ay21 + y21L

2ah2y21L(y1 + h)

−hL− y1L+ ay1 − 2ah

2ah2y21L
+

(L− a)2

2a3h3
− (L− a)3

3a3h3L
− a2

2a3h3
+

a3

3a3h3L

} (131)

Subsequently, the member of Figure 2(d) is analyzed to find “θA3” and “θB3” in function
of “MBA” [18,19].

The moment at any point of the beam on axis “x” is [20]:

Mz =
MBA(x)

L
(132)

a) For the segment 0 ≤ x ≤ a:
Equations (11) and (132) are substituted into Equation (7), it is presented:

dy

dx
=

12MBAa
3

EbL

∫
(x)

[ah+ ay1 − y1x]3
dx (133)

Equation (133) is evaluated, it is shown:

dy

dx
=

12MBAa
3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
+ C1

}
(134)
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Substituting x = a, into Equation (134) to find the rotation dy/dx = θa1, where the
height “hx” varies the linear shape, it is:

θa1 =
12MBAa

3

EbL

[
(y1 − h)

2ah2y21
+ C1

]
(135)

Equation (134) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
12MBAa

3

EbL

{
ln[xy1 − a(y1 + h)]

y31
− a(y1 + h)

2y31[xy1 − a(y1 + h)]
+ C1x+ C2

}
(136)

The boundary conditions are replaced into Equation (136), when x = 0 and y = 0 to
find the constant “C2”, it is presented:

C2 = −
{
2 ln[−a(y1 + h)] + 1

2y31

}
(137)

Equation (137) is substituted into Equation (136):

y =
12MBAa

3

EbL

{
ln[xy1 − a(y1 + h)]

y31
− a(y1 + h)

2y31[xy1 − a(y1 + h)]
+ C1x

−2 ln[−a(y1 + h)] + 1

2y31

} (138)

Substituting x = a, into Equation (138) to find the displacement y = ya1, where the
height “hx” varies the linear shape:

ya1 =
12MBAa

3

EbL

[
− 1

y31
ln

(
y1 + h

h

)
+

1

2hy21
+ C1a

]
(139)

b) For the segment a ≤ x ≤ L− a:
Equations (12) and (132) are substituted into Equation (7), it is presented:

dy

dx
=

12MBA

Ebh3L

∫
(x)dx (140)

Integration of Equation (140) is shown:

dy

dx
=

12MBA

Ebh3L

(
x2

2
+ C3

)
(141)

Substituting x = a, into Equation (141) to find the rotation dy/dx = θa2:

θa2 =
12MBA

Ebh3L

(
a2

2
+ C3

)
(142)

Now substituting x = L− a, into Equation (141) to find the rotation dy/dx = θb2:

θb2 =
12MBA

Ebh3L

[
(L− a)2

2
+ C3

]
(143)

Equation (141) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
MBA

Ebh3L

(
x3

6
+ C3x+ C4

)
(144)

Substituting x = a, into Equation (144) to find the displacement y = ya2:

ya2 =
12MBA

Ebh3L

(
a3

6
+ C3a+ C4

)
(145)
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Now substituting x = L− a, into Equation (144) to find the displacement y = yb2:

yb2 =
12MBA

Ebh3L

[
(L− a)3

6
+ C3(L− a) + C4

]
(146)

c) For the segment L− a ≤ x ≤ L:
Equations (13) and (132) are substituted into Equation (7), it is presented:

dy

dx
=

12MBAa
3

EbL

∫
(x)

(ah+ y1x− y1L+ ay1)3
dx (147)

Integration of Equation (147) is shown:

dy

dx
=

12MBAa
3

EbL

{
− 2xy1 + y1(a− L) + ah

2y21[xy1 + y1(a− L) + ah]2
+ C5

}
(148)

Substituting x = L− a, into Equation (148) to find the rotation dy/dx = θb3:

θb3 =
12MBAa

3

EbL

[
y1(a− L)− ah

2a2h2y21
+ C5

]
(149)

Equation (149) is integrated to obtain the displacements, because there are not known
conditions for rotations, this is as follows:

y =
12MBAa

3

EbL

∫ {
− 2xy1 + y1(a− L) + ah

2y21[xy1 + y1(a− L) + ah]2
+ C5

}
dx (150)

Integration of Equation (150) is shown:

y =
12MBAa

3

EbL

{
− ln[xy1 + y1(a− L) + ah]

y31
− y1(a− L) + ah

2y31[xy1 + y1(a− L) + ah]
+ C5x+ C6

}
(151)

The boundary conditions are substituted into Equation (151), when x = L and y = 0
to find the constant “C6” in function of “C5”, this value is:

C6 =

{
ln[a(y1 + h)]

y31
+

y1(a− L) + ah

2ay31(y1 + h)

}
− C5L (152)

Equation (152) is substituted into Equation (151):

y =
12MBAa

3

EbL

{
− ln[xy1 + y1(a− L) + ah]

y31
− y1(a− L) + ah

2y31[xy1 + y1(a− L) + ah]

+
ln[a(y1 + h)]

y31
+

y1(a− L) + ah

2ay31(y1 + h)
− C5(L− x)

} (153)

Substituting x = L− a, into Equation (153) to find the displacement y = yb3:

yb3 =
12MBAa

3

EbL

{
1

y31
ln

(
y1 + h

h

)
− y1[y1(a− L) + ah]

2ahy31(y1 + h)
− C5a

}
(154)

Equilibrium conditions are generated to obtain the integration constants:

θa1 = θa2 θb2 = θb3

ya1 = ya2 yb2 = yb3
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The constants used to obtain the rotations in the support “A” and “B” are:

C1 =

{
2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1 + a2hy1L− a2h2L

2a3h3y21L

+
−a2hy21L+ a3hy21 − a3h2y1

2a3h3y21L(y1 + h)
− (L3 − 6a2L+ 4a3)

6a3h3L

} (155)

C5 =

{
ahy21L

2 − 2a2hy21L+ a3hy21 + ah2y1L
2 + a2h3L− a3h2y1

2a3h3y21L(y1 + h)

+
2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1

2a3h3y21L
+

(L− a)3 − a3

3a3h3L

} (156)

Equation (155) is substituted into Equation (134) to obtain the rotations anywhere of
the segment 0 ≤ x ≤ a:

dy

dx
=

12MBAa
3

EbL

{
2xy1 − a(y1 + h)

2y21[xy1 − a(y1 + h)]2
− 2a3h2 − a3hy1 + a2hy1L− a2h2L

2a3h3y21L

+
−a2hy21L+ a3hy21 − a3h2y1

2a3h3y21L(y1 + h)
− (L3 − 6a2L+ 4a3)

6a3h3L
+

2

y31L
ln

(
y1 + h

h

)} (157)

Substituting x = 0, into Equation (157) to find the rotation in support “A”:

θA3 =
12MBAa

3

EbL

{
2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1 + a2hy1L− a2h2L

2a3h3y21L

+
−a2hy21L+ a3hy21 − a3h2y1 − a2h3L

2a3h3y21L(y1 + h)
− (L3 − 6a2L+ 4a3)

6a3h3L

} (158)

Equation (156) is substituted into Equation (148) to obtain the rotations anywhere of
the segment L− a ≤ x ≤ L:

dy

dx
=

12MBAa
3

EbL

{
− 2xy1 + y1(a− L) + ah

2y21[xy1 + y1(a− L) + ah]2
+

2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1

2a3h3y21L

+
ahy21L

2 − 2a2hy21L+ a3hy21 + ah2y1L
2 + a2h3L− a3h2y1

2a3h3y21L(y1 + h)
+

(L− a)3 − a3

3a3h3L

}
(159)

Substituting x = L, into Equation (159) to find the rotation in support “B”:

θB3 =
12MBAa

3

EbL

{
2

y31L
ln

(
y1 + h

h

)
− y1L+ ay1 + ah

2a2y21(y1 + h)2
− 2a3h2 − a3hy1

2a3h3y21L

+
ahy21L

2 − 2a2hy21L+ a3hy21 + ah2y1L
2 + a2h3L− a3h2y1

2a3h3y21L(y1 + h)
+

(L− a)3 − a3

3a3h3L

}
(160)

First condition:
The concentrated load “P” is located of 0 ≤ x ≤ a.
Equations (89), (129) and (158) are substituted of the support “A” into Equation (5)

and Equations (91), (131) and (160) are substituted of the support “B” into Equation (6).
Subsequently, generated equations are solved to obtain the values of “MAB” and “MBA”,
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it is as follows:

MAB =P (y1 + h)

{
6a3h3L(y1 + h)[y1(a− c) + ah][y21(2a− L) + hy1(3a− 2L)

− h2L] ln

[
y1(a− c) + ah

a(y1 + h)

]
+ 12a3ch3(y1 + h){2y31(a− c)(2a− L)

+ 2hy21[5a
2 − 3a(c+ L) + 2cL] + 2h2y1(3a

2 − 3aL+ cL)

+ ah3(c− 2L)} ln
(
y1 + h

h

)
− cy71(a− c)(2a− L)(8a3 − 12a2L+ 6aL2

− L3)− chy61[32a
5 − 16a4(c+ 5L) + 24a3L(2c+ 3L)− 4a2L2(12c+ 7L)

+ 4aL3(5c+ L)− 3cL4]− ch2y51[28a
5 − 12a4(c+ 5L) + 3a3L(4c+ 21L)

− a2L2(15c+ 32L) + 6aL3(2c+ L)− 3cL4]− ch3y41[84a
5 − 2a4(34c+ 31L)

+ 2a3L(19c+ 9L) + 6a2L2(c− 2L) + 2aL3(2L− c)− cL4]

− ach4y31[126a
4 − 4a3(14c+ 29L) + 3a2L(19c+ 6L)− 6acL2

− L3(2c− L)]− 3a2ch5y21[18a
3 + 2a2(c− 14L) + 6aL(c+ L)− cL2]

− 6a3ch6y1[a(c− 3L) + L2]

}
/{[

24a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y51(8a

3 − 12a2L+ 6aL2 − L3)

− hy41(4a
3 − 12a2L+ 9aL2 − 2L3)− h2y31(8a

3 − L3)− 24a3h3y21

− 12a3h4y1

]
[y1(a− c) + ah][y21(2a− L) + hy1(3a− 2L)− h2L]

}
(161)

MBA =P (y1 + h)ah3

{
6a2L(y1 + h)[y1(a− c) + ah][y21(2a− L) + hy1(3a− 2L)

− h2L] ln

[
y1(a− c) + ah

a(y1 + h)

]
− 12a3c2h3(y1 + h) ln

(
y1 + h

h

)
− cy41[12a

4 − 2a3(8c+ 9L) + 6a2L(3c+ L)− 3acL2 − cL3]

− chy31[30a
4 − 16a3(c+ 3L) + 3a2L(7c+ 6L)− 6acL2 − cL3]− 3ach2y21[6a

3

− 2a2(c+ 6L) + 2aL(c+ 3L)− cL2] + 6a2ch3y1[a(c+ L)− L2]

}
/{[

y51(8a
3 − 12a2L+ 6aL2 − L3) + hy41(4a

3 − 12a2L+ 9aL2 − 2L3)

+ h2y31(8a
3 − L3) + 24a3h3y21 + 12a3h4y1 − 24a3h3(y1

+ h)2 ln

(
y1 + h

h

)]
[y1(a− c) + ah][y21(2a− L) + hy1(3a− 2L)− h2L]

}
(162)

Second condition:
The concentrated load “P” is located of a ≤ x ≤ L− a.
Equations (95), (129) and (158) are substituted of the support “A” into Equation (5)

and Equations (97), (131) and (160) are substituted of the support “B” into Equation (6).
Subsequently, generated equations are solved to obtain the values of “MAB” and “MBA”,
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it is as follows:

MAB =P (y1 + h)

{
6a3h3(y1 + h){y21[2a2 + 2a(2c− L) + 2c2 − 4cL+ L2] + hy1[2a

2

+ 3a(2c− L) + 2(2c2 − 4cL+ L2)] + h2(2c2 − 4cL+ L2)} ln
(
y1 + h

h

)
− y61[4a

5 + 2a4(4c− 5L) + 2a3(2c2 − 7cL+ 4L2)− a2L(6c2 − 9cL+ 2L2)

− 2acL(c2 − 3cL+ 2L2) + cL2(c2 − 2cL+ L2)]− hy51[2a
5

+ 2a4(4c− 5L) + 3a3(2c2 − 7cL+ 4L2)− 2a2L(6c2 − 9cL+ 2L2)

− 5acL(c2 − 3cL+ 2L2) + 3cL2(c2 − 2cL+ L2)]− h2y41[4a
5

+ 3a4(2c− L) + 3a3(2c2 − 4cL+ L2)− a2L(6c2 − 9cL+ 2L2)

− 3acL(c2 − 3cL+ 2L2) + 3cL2(c2 − 2cL+ L2)]− h3y31[12a
5

+ 21a4(2c− L) + a3(16c2 − 38cL+ 11L2) + cL2(c2 − 2cL+ L2)]

− 3a3h4y21[2a
2 + 6a(2c− L) + 6c2 − 16cL+ 5L2]− 6a3h5y1(c

2 − 3cL+ L2)

}
/{[

24a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y51(8a

3 − 12a2L+ 6aL2 − L3)

− hy41(4a
3 − 12a2L+ 9aL2 − 2L3)− h2y31(8a

3 − L3)− 24a3h3y21

− 12a3h4y1

]
[y21(2a− L) + hy1(3a− 2L)− h2L]

}
(163)

MBA =P (y1 + h)

{
6a3h3(y1 + h){y21[2a2 + 2a(2c− L) + 2c2 − L2] + hy1[2a

2

+ 3a(2c− L) + 2(2c2 − L2)] + h2(2c2 − L2)} ln
(
y1 + h

h

)
− y61[4a

5

− 2a4(4c+ L) + 2a3(2c2 + 3cL− L2)− a2L(6c2 − 3cL− L2)

+ 2acL(c+ L)(c− L)− c2L2(c− L)]− hy51[2a
5 − 2a4(4c+ L) + 3a3(2c2

+ 3cL− L2)− 2a2L(6c2 − 3cL− L2) + 5acL(c+ L)(c− L)− 3c2L2(c− L)]

− h2y41[4a
5 + 3a4(L− 2c) + 3a3(2c2 − L2)− a2L(6c2 − 3cL− L2)

+ 3acL(c+ L)(c− L)− 3c2L2(c− L)]− h3y31[12a
5 + 21a4(L− 2c)

+ a3(16c2 + 6cL− 11L2)− c2L2(c− L)]− 3a3h4y21[2a
2 + 6a(L− 2c)

+ 6c2 + 4cL− 5L2]− 6a3h5y1(c
2 + cL− L2)

}
/{[

24a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y51(8a

3 − 12a2L+ 6aL2 − L3)

− hy41(4a
3 − 12a2L+ 9aL2 − 2L3)− h2y31(8a

3 − L3)− 24a3h3y21

− 12a3h4y1

]
[y21(2a− L) + hy1(3a− 2L)− h2L]

}
(164)

Third condition:
The concentrated load “P” is located of L− a ≤ x ≤ L.
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Equations (101), (129) and (158) are substituted of the support “A” into Equation (5)
and Equations (103), (131) and (160) are substituted of the support “B” into Equation
(6). Subsequently, generated equations are solved to obtain the values of “MAB” and
“MBA”, it is as follows:

MAB =P (y1 + h)ah3

{
6a2L(y1 + h)[y1(a+ c− L) + ah][y21(2a− L) + hy1(3a− 2L)

− h2L] ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
− 12a3(L− c)2h3(y1 + h) ln

(
y1 + h

h

)
− (L− c)y41[12a

4 + 2a3(8c− 17L) + 6a2L(4L− 3c) + 3aL2(c− L)

+ L3(c− L)]− (L− c)hy31[30a
4 + 16a3(c− 4L) + 3a2L(13L− 7c)

+ 6aL2(c− L) + L3(c− L)]− 3a(L− c)h2y21[6a
3 + 2a2(c− 7L)

+ 2aL(4L− c) + L2(c− L)]− 6a2(L− c)h3y1[a(c− 2L) + L2]

}
/{[

y51(8a
3 − 12a2L+ 6aL2 − L3) + hy41(4a

3 − 12a2L+ 9aL2 − 2L3)

+ h2y31(8a
3 − L3) + 24a3h3y21 + 12a3h4y1 − 24a3h3(y1

+ h)2 ln

(
y1 + h

h

)]
[y1(a+ c− L) + ah][y21(2a− L) + hy1(3a− 2L)− h2L]

}
(165)

MBA =P (y1 + h)

{
6a3h3L(y1 + h)[y1(a+ c− L) + ah][y21(2a− L) + hy1(3a− 2L)

− h2L] ln

[
y1(a+ c− L) + ah

a(y1 + h)

]
+ 12a3(L− c)h3(y1 + h){2y31(a+ c

− L)(2a− L) + 2hy21[5a
2 + 3a(c− 2L)− 2L(c− L)] + 2h2y1[3a

2

− 3aL− L(c− L)]− ah3(c+ L)} ln
(
y1 + h

h

)
− (L− c)y71(a+ c

− L)(16a4 − 32a3L+ 24a2L2 − 8aL3 + L4)− (L− c)hy61[32a
5 + 16a4(c

− 6L) + 24a3L(5L− 2c) + 4a2L2(12c− 19L) + 4aL3(6L− 5c)

+ 3L4(c− L)]− (L− c)h2y51[28a
5 + 12a4(c− 6L) + 3a3L(25L− 4c)

+ a2L2(15c− 47L) + 6aL3(3L− 2c) + 3L4(c− L)]− (L− c)h3y41[84a
5

+ 2a4(34c− 65L) + 2a3L(28L− 19c)− 6a2L2(c+ L) + 2aL3(c+ L)

+ L4(c− L)]− a(L− c)h4y31[126a
4 + 4a3(14c− 43L) + 3a2L(25L− 19c)

+ 6aL2(c− L) + L3(2c− L)]− 3a2(L− c)h5y21[18a
3 − 2a2(c+ 13L)

+ 6aL(2L− c) + L2(c− L)]− 6a3(L− c)h6y1[a(c+ 2L)− L2]

}
/{[

24a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y51(8a

3 − 12a2L+ 6aL2 − L3)

− hy41(4a
3 − 12a2L+ 9aL2 − 2L3)− h2y31(8a

3 − L3)− 24a3h3y21

− 12a3h4y1

]
[y1(a+ c− L) + ah][y21(2a− L) + hy1(3a− 2L)− h2L]

}
(166)
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2.2.2. Factor of carry-over and stiffness. In order to develop the method to obtain the
factor of carry-over and stiffness, it will be helpful to consider the following problem: If
a clockwise moment of “MAB” is applied at the simple support of a straight member of
variable cross section simply supported at one end and fixed at the other, find the rotation
“θA” at the simple support and the moment “MBA” at the fixed end, as shown in Figure
3.

Figure 3. Beam simply supported at one end and fixed at the other

The additional end moments, “MAB” and “MBA”, should be such as to cause rotations
of “θA” and “θB”, respectively. If “θA2” and “θB2” are the end rotations caused by “MAB”,
according to Figure 3(b), and “θA3” and “θB3” by “MBA”, these are observed in Figure
3(c).
The conditions of geometry required are [15]:

θA = θA2 − θA3 (167)

0 = θB2 − θB3 (168)

The beam of Figure 3(b) is analyzed to find “θA2” and “θB2” in function of “MAB” are
shown in Equations (129) and (131).
The beam of Figure 3(c) is analyzed to find “θA3” and “θB3” in function of “MBA” of

the same way; these are obtained by Equations (158) and (160).
Now, Equations (131) and (160) are substituted into Equation (168):

12MABa
3

EbL

{
− 2

y31L
ln

(
y1 + h

h

)
+

h2L+ ahy1 − ay21 + y21L

2ah2y21L(y1 + h)
− hL− y1L+ ay1 − 2ah

2ah2y21L

+
(L− a)2

2a3h3
− (L− a)3

3a3h3L
− a2

2a3h3
+

a3

3a3h3L

}
− 12MBAa

3

EbL

{
2

y31L
ln

(
y1 + h

h

)
− y1L+ ay1 + ah

2a2y21(y1 + h)2
− 2a3h2 − a3hy1

2a3h3y21L

+
ahy21L

2 − 2a2hy21L+ a3hy21 + ah2y1L
2 + a2h3L− a3h2y1

2a3h3y21L(y1 + h)
+
(L− a)3 − a3

3a3h3L

}
= 0

(169)
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Equation (169) is used to obtain “MBA” in function of “MAB”:

MBA =

[{
y1(y1 + h)[y31(4a

3 − 6a2L+ L3) + hy21(L
3 − 2a3) + 6a3h2y1 + 6a3h3]

−12a3h3(y1 + h)2 ln

(
y1 + h

h

)}/{
12a3h3(y1 + h)2

[
ln

(
y1 + h

h

)]
− y1[2y

4
1(2a

3 − 3a2L+ 3aL2 − L3) + hy31(2a
3 − 6a2L+ 9aL2 − 4L3)

+ 2h2y21(2a
3 − L3) + 12a3h3y1 + 6a3h4]

}]
MAB

(170)

Therefore, the factor of carry-over of “A” to “B” is the ratio of the moment induced at
point “B” due to the moment applied at point “A”; this is the moment coefficient “MAB”
expressed in Equation (170). The factor of carry-over of “B” to “A” is equal, since the
member is symmetrical.

Now, Equations (129) and (158) are substituted into Equation (167):

θA =
12MABa

3

EbL

{
− 2

y31L
ln

(
y1 + h

h

)
+

y1(a+ L) + ah

2a2y21(y1 + h)2
+

ah− ay1 + y1L

2ah2y1L(y1 + h)
− y1 − 2h

2h2y21L

−ah− ay1 + y1L

2a2h2y21
+

(a− L)3

3a3h3L
+

1

3h3L

}
− 12MBAa

3

EbL

{
2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1 + a2hy1L− a2h2L

2a3h3y21L

+
−a2hy21L+ a3hy21 − a3h2y1 − a2h3L

2a3h3y21L(y1 + h)
− (L3 − 6a2L+ 4a3)

6a3h3L

}
(171)

Then, Equation (170) is substituted into Equation (171):

EbL

12a3
θA =MAB

{
− 2

y31L
ln

(
y1 + h

h

)
+

y1(a+ L) + ah

2a2y21(y1 + h)2
+

ah− ay1 + y1L

2ah2y1L(y1 + h)

−y1 − 2h

2h2y21L
− ah− ay1 + y1L

2a2h2y21
+

(a− L)3

3a3h3L
+

1

3h3L

}
−
{[{

y1(y1 + h)[y31(4a
3 − 6a2L+ L3) + hy21(L

3 − 2a3) + 6a3h2y1 + 6a3h3]

−12a3h3(y1 + h)2 ln

(
y1 + h

h

)}/{
12a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y1[2y

4
1(2a

3 − 3a2L+ 3aL2 − L3) + hy31(2a
3 − 6a2L+ 9aL2 − 4L3)

+ 2h2y21(2a
3 − L3) + 12a3h3y1 + 6a3h4]

}]
MAB

}{
2

y31L
ln

(
y1 + h

h

)
− 2a3h2 − a3hy1 + a2hy1L− a2h2L

2a3h3y21L

+
−a2hy21L+ a3hy21 − a3h2y1 − a2h3L

2a3h3y21L(y1 + h)
− (L3 − 6a2L+ 4a3)

6a3h3L

}
(172)
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Equation (172) is used to obtain “MAB” in function of “θA”:

MAB =Ebh3(y1 + h)2
{
y1[2y

4
1(2a

3 − 3a2L+ 3aL2 − L3)

+ hy31(2a
3 − 6a2L+ 9aL2 − 4L3) + 2h2y21(2a

3 − L3) + 12a3h3y1 + 6a3h4]

−12a3h3(y1 + h)2 ln

(
y1 + h

h

)}
/[

6[y21(2a− L) + hy1(3a− 2L)− h2L]

{
24a3h3(y1 + h)2 ln

(
y1 + h

h

)
− y1[y

4
1(8a

3 − 12a2L+ 6aL2 − L3) + hy31(4a
3 − 12a2L+ 9aL2 − 2L3)

+ h2y21(8a
3 − L3) + 24a3h3y1 + 12a3h4]

}]
θA

(173)

Therefore, the stiffness factor is the moment applied at the point “A” due to the rotation
induced of 1 radian in the support “A”; this is the coefficient of the rotation “θA” expressed
in Equation (173). The stiffness factor of the moment applied at the point “B” due to
the rotation induced of 1 radian in the support “B”, also is expressed in Equation (173),
since the member is symmetrical.

3. Application. The following example is determined the internal moments at supports
of the beam shown in Figure 4.

Figure 4. Continuous beam with straight haunches simply supported

Data of the continuous beam are:
P1 = 5000kg P2 = 10000kg P3 = 15000kg b = 30cm h = 30cm

y1 = 30cm a1 = 2.50m c1 = 2.00m c2 = 6.00m L1 = 10.00m

a2 = 3.50m c3 = 8.00m L2 = 10.00m

Span AB
Using Equations (161) and (162) to obtain moments due to the concentrated load “P1”,

these are:
MAB = 7632.45kg-m MBA = 1761.49kg-m

Using Equations (163) and (164) to obtain moments due to the concentrated load “P2”,
these are:

MAB = 11577.43kg-m MBA = 18786.21kg-m

By superposition of the effects to obtain the fixed-end moments, these add up and
taking into account the direction of the moments, are as follows:

MAB = +19209.88kg-m MBA = −20547.70kg-m
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Substituting into Equation (170) to find the carry-over factor of two ends of the beam:

CAB = 0.6233 CBA = 0.6233

Now, Equation (173) is used to obtain the stiffness factor of two ends of the beam:

KAB = 0.000521E KBA = 0.000521E

Span BC
Using Equations (165) and (166) to obtain moments due to the concentrated load “P3”,

these are:
MBC = 8753.66kg-m MCB = 19379.67kg-m

And taking into account the direction of the moments, are as follows:

MBC = +8753.66kg-m MCB = −19379.67kg-m

Substituting into Equation (170) to find the carry-over factor of two ends of the beam:

CBC = 0.5182 CCB = 0.5182

Now, Equation (173) is used to obtain the stiffness factor of two ends of the beam:

KBC = 0.000498E KCB = 0.000498E

Using the foregoing values for stiffness factor, the distribution factors are computed
and entered in Table 1. The moment distribution follows the same procedure outlined by
Hardy Cross method. The results in kg-m are shown on the last line of the table.

4. Results. Table 1 shows the application of the mathematical model developed in this
paper. Moment distribution method or Hardy Cross method was used to develop this
example to present the application of the carry-over factor, stiffness factor and fixed-end
moments.

A way to validate the proposed model is as follows: in Equations (163) and (164)
is replaced “a = 0L” to obtain the fixed-end moments “MAB = Pc(L − c)2/L2” and
“MBA = Pc2(L− c)/L2”, into Equation (170) is substituted “a = 0L” to find the carry-
over factor “CAB = CBA = 0.5” and to obtain the stiffness factor is replaced into Equation
(173) “a = 0L” and this is “KAB = KBA = Ebh3/3L = 4EI/L”. The values presented
above correspond to a constant cross section. Therefore, the model proposed in this paper
is valid and is not limited to certain dimensions or proportions as shown in some books.

Also to validate the continuity of the cross section is as follows: where the beam changes
the straight line slope “a” and “L − a”, load is placed on these points and result must
be the same. For example in Equation (161) and Equation (163) is substituted the value
of “a” for “MAB” and Equations (162) and (164) to find “MBA”, and in Equations (163)
and (165) is substituted “L− a” to find “MAB” and also in Equations (164) and (166) to
obtain “MBA”.

5. Conclusions. This paper developed a mathematical model for the fixed-end moments,
carry-over factors and stiffness for a concentrated load localized at any point on beam.
The properties of the rectangular cross section of the beam vary along its axis, i.e., the
width “b” is constant and the height “h” varies along the beam, this variation is linear
type.

The mathematical technique presented in this research is very adequate for the fixed-end
moments, rotations, factors of carry-over and stiffness for beams of variable rectangular
cross section subjected to a concentrated load localized at any point on beam, since the
results are accurate, because it presents the mathematical expression.

The significant application of fixed-end moments, rotations and displacements is in the
matrix methods of structural analysis to obtain the moments acting and the stiffness of
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Table 1. Moment distribution method

Joint A B C
Member AB BA BC CB

Stiffness factor 0.000521E 0.000521E 0.000498E 0.000498E
Distribution factor 1.0000 0.5113 0.4887 1.0000
Carry-over factor 0.6233 0.6233 0.5182 0.5182

Fixed-end moments +19209.88 −20547.70 +8753.66 −19379.67

Cycle 1
FEM +19209.88 −20547.70 +8753.66 −19379.67

Balance −19209.88 +6030.29 +5763.75 +19379.67

Cycle 2
CO +3758.68 −11973.52 +10042.54 +2986.78

Balance −3758.68 +987.31 +943.67 −2986.78

Cycle 3
CO +615.39 −2342.79 −1547.75 +489.01

Balance −615.39 +1989.23 +1901.31 −489.01

Cycle 4
CO +1239.89 −383.57 −253.40 +985.26

Balance −1239.89 +325.68 +311.29 −985.26

Cycle 5
CO +203.00 −772.82 −510.56 +161.31

Balance −203.00 +656.19 +627.19 −161.31

Cycle 6
CO +409.00 −126.53 −83.59 +325.01

Balance −409.00 +107.43 +102.69 −325.01

Cycle 7
CO +66.96 −254.93 −168.42 +53.21

Balance −66.96 +216.46 +206.89 −53.21

Cycle 8
CO +134.92 −41.74 −27.57 +107.21

Balance −134.92 +35.44 +33.87 −107.21

Cycle 9
CO +22.09 −85.00 −55.56 +17.55

Balance −22.09 +71.87 +68.69 −17.55

Cycle 10
CO +44.80 −13.77 −9.09 +35.60

Balance −44.80 +11.69 +11.17 −35.60

Cycle 11
CO +7.29 −27.92 −18.45 +5.79

Balance −7.29 +23.71 +22.66 −5.79

Cycle 12
CO +14.78 −4.54 −3.00 +11.74

Balance −14.78 +3.86 +3.68 −11.74
Total moments 0 −26115.67 +26115.67 0

a member. The factor of carry-over is used in the moment distribution method or Hardy
Cross method.
Traditional methods were used for variable section members, the deflections are ob-

tained by Simpson’s rule, or any other technique to perform numerical integration, and
tables showing some authors are restricted to certain relationships. Besides the efficiency
and accuracy of the method developed in this research, a significant advantage is that
the rotations, displacements and moments are obtained in any cross section of the beam
using the respective integral representations in mathematical expression corresponding.
The mathematical model developed in this paper applies only for rectangular beams

subjected to a concentrated load localized at any point on beam of variable cross section
of symmetric linear shape. The suggestions for future research: 1) when the member
presented another type of cross section, by example variable cross section of drawer type,
“T” and “I”; 2) when the member has another type of configuration, by example parabolic
type, circular and elliptic.
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[15] A. Luévanos-Rojas, N. I. Kalashnykova, A. Diosdado-Salazar, R. Luévanos-Rojas and F. Cortés-
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[16] A. Luévanos-Rojas, Method of structural analysis, taking into account deformations by flexure,
shear and axial, International Journal of Innovative Computing, Information and Control, vol.9,
no.9, pp.3817-3838, 2013.
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