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Abstract. This paper focuses on the related problems of the rate of return for risk
assets held indefinitely. Under suitable assumptions, we obtain the theoretical formula
of the rate of return for risk assets held indefinitely. Several properties of the acquired
theoretical formula are given, and we prove that the theoretical formula obtained can
be represented by each-order central moment of the random rate of return. When the
random rate of return conforms to even distribution and normal distribution, through the
use of the deduced theoretical formula, we acquire the rate of return for risk assets held
indefinitely which is directly represented by the distributed parameters. When the short-
term rate of return conforms to several familiar probability distributions, we can figure
out the corresponding rate of return for risk assets held indefinitely by using numerical
integral, we also properly analyze the calculated results.
Keywords: Risk assets, Short-term rate of return, Long-term rate of return, Average
annual rate of return, Rate of return for risk assets held indefinitely

1. Introduction. The relationship between short-term rate of return and long-term rate
of return is familiar to us, the long-term rate of return is the geometric average of each
short-term rate of return and the expected value of short-term rate of return is the arith-
metic average of each short-term rate of return. In investment analysis, people are used
to measuring the income level with the expected value of short-term rate of return and
used to measure the indetermination (the risk) of investment income with the variance of
short-term rate of return. However, when investors plan to make a long-term continuous
investment, it is blind and fallible for them to estimate the income level and the risk
according to the expected value and the variance of short-term rate of return for the risk
assets. The short-term rate of return is random, and the rate of return of continuous
investment in a certain period is necessarily random too. And there are no corresponding
simple theoretical formula that can stand for the relationship between the rate of return
and variance of short term and long term.

For example, the expectation of the annual rate of return of a certain asset is 10%
and the standard deviation of the rate of return is 0.35, which conforms to the normal
distribution. If failing to measure and calculate those data carefully, people will deem that
they can obtain approximately 10% of the average annual rate of return through holding
this asset over a long term and that only the income level has the great indetermination.
The author of this paper once made the random simulation experiment [6] with the
Monte Carlo method, and the computing results indicated that the average annual rate
of return was only 2.54% that was far below 10% if investors continuously held this asset
for thirty years. However, the indetermination of the rate of return lessened a lot. Take
another asset for example. The expectation of the annual rate of return is 5% and the
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standard deviation is 0.35, which conforms to the normal distribution. The computing
results indicated that the average annual rate of return was only −2.68% if investors
continuously held this asset for twenty years. These results are unexpected because the
average annual rate of return should be positive according to the normal judgment. We
use the Monte Carlo method to make analog computation to the rate of return model
which conforms to the normal distribution and has different expectations and variances,
and the results indicate that the average annual rate of return for the risk assets held over
a long term has sensitive negative correlation with the variance of the short-term rate of
return [7], and the greater the variance of the short-term rate of return is, the more the
average annual rate of return decreases compared with the short-term rate of return.
When doing the research on the rate of return for risk assets (stock, enterprise bonds,

foreign exchange, etc.), researchers usually make assumption with normal distribution.
The method is mainly based on the statistical analysis of the rate of return of these risk
assets and the good mathematical properties of normal distribution. In the derivation
process of Black-Scholes options pricing formula, the change of stock price follows the
geometrical Brown motion model, and the mathematical expression is dSt

St
= µdt+ σdBt,

St represents stock price, µ is the expected return, σ is the volatility and Bt is the standard
Brown motion, dBt = ε

√
dt, ε conforms to the standard normal distribution and dSt

St
stands

for the stock return during the period of time dt in time t. For the stock price that follows
the geometrical Brown motion, when the holding period is ∆t, the stock return conforms
to the normal distribution N(µ∆t, σ

√
∆t). It can be seen that the geometrical Brown

motion model assumes that the expectation of the rate of return of stock (µ∆t) is a linear
function of holding period. When the stock price follows the geometrical Brown motion
model, no matter how long the holding period ∆t is, the rate of return conforms to normal
distribution, and the rate of return have nothing to do with the variance of short-term
rate of return σ2, so the average rate of return of stock is determined only by the holding
period ∆t and the expectation µ of short-term rate of return. Evidently, the properties of
the geometrical Brown motion model are inconsistent with the results obtained by using
the Monte Carlo method to make analog computation. From this point, when describing
the rate of return for different investment period, the geometrical Brown motion model
will produce significant deviation.
If investors plan to hold a risk asset for a long term, they should know not only the

distribution of short-term rate of return, but also the average annual rate of return and
corresponding variance of long-term rate of return. This paper focuses on the research
on the relationship between the expectation and variance of short-term rate of return for
risk assets and the rate of return for risk assets held for a long term, and especially the
theoretical formula and the corresponding properties of the average annual rate of return
for risk assets held indefinitely. These problems have not yet been intensively studied in
the existing investment principles. Undoubtedly, the average annual rate of return for
risk assets held indefinitely has important guiding significance to the investors who hold
risk assets for a long term.
In Section 2, we derive the mathematical formula r∞ of the rate of return for risk assets

held indefinitely. In Section 3, we acquire several properties of the formula of the rate
of return for risk assets held indefinitely, the relationship between the rate of return r∞
of risk assets held indefinitely and the short-term rate of return µ of the risk assets are
obtained, and r∞ can be represented by each-order central moment of the random rate of
return. In Section 4, for several special probability distributions, we derive some tangible
results from the formula of the rate of return for risk assets held indefinitely, that is, using
parameters of probability distribution to directly represent r∞. In Section 5, we make use
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of some familiar distribution density functions to construct several diverse models of the
short-term rate of return. When the short-term rate of return respectively conforms to
these distributions, we deduce the numerical computational results of the rate of return
for risk assets held indefinitely. The last section is conclusion.

2. The Formula of the Rate of Return for Risk Assets Held Indefinitely. Take
a certain risk asset K, such as a stock, for example. For the sake of narrative convenience,
we call the annual rate of return for the risk asset K, the short-term rate of return. In
reality, short term and long term are relative, and the short-term rate of return can also
be daily, weekly or monthly rate of return. x1, x2, . . ., xn is the rate of return for n years
running. xi is a random variable conforms the same distribution density function p(x).
Because xi is the rate of return, it is required that xi > −1, i = 1, 2, . . ., n. The average
annual rate of return rn of the risk asset K held for n years running is as follows:

rn = ((1 + x1)(1 + x2)· · ·(1 + xn))
1/n − 1 (1)

We hope that, when n → ∞, we can derive the formula of the limiting value. This limiting
value is the average annual rate of return for the risk asset K held indefinitely.

Theorem 2.1. Assume that p(x) is the probability density function of the annual rate
of return for the risk asset K. When x ≤ −1, p(x) = 0. The theoretical formula of the
average annual rate of return r∞of the risk asset K held indefinitely is as follows:

r∞ = lim
N→∞

rN = e
∫+∞
−1 p(x) ln(1+x)dx − 1 (2)

Proof: Dividing the value interval (−1,+∞) into m mini-intervals [zi, zi + ∆zi] and
i = 1, 2, . . .,m, we have zi+1 = zi +∆zi. Examining the situation in interval [zi, zi +∆zi],
we make random variable to take sufficient enough values in (−1,+∞), suppose that there
are N values x1, x2, . . ., xN of short-term rate of return. Then the probability that the
values of short-term rate of return fall on [zi, zi +∆zi] approximately equals to p(zi)∆zi.
Therefore, the number of times ni that the values of short-term rate of return fall on the
[zi, zi +∆zi] is around:

ni = N · p(zi)∆zi

In the continued product of the expression (1), all the short-term rates of return that
fall on [zi, zi + ∆zi] are represented by the left endpoint zi of the interval. Hence, the
product of the short-term rate of returns that fall on [zi, zi +∆zi] can be approximately
represented by the following expression:

(1 + zi)
ni = (1 + zi)

N ·p(zi)∆zi

There is:

lim
N→∞

rN = lim
N→∞

(
N∏
i=1

(1 + xi)

)1/N

− 1

= lim
N→∞

(
m∏
i=1

(1 + zi)
N ·p(zi)∆zi

)1/N

− 1

Denote that

SN =

(
m∏
i=1

(1 + zi)
N ·p(zi)∆zi

)1/N
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And there is:

ln(SN) =
1

N

N∑
i=1

N · p(zi)∆zi ln(1 + zi)

=
N∑
i=1

p(zi)∆zi ln(1 + zi)

(3)

According to the definition of definite integral, the above-mentioned (3) is the expression
of integral sum. When m is large enough and the length ∆zi of each mini-interval is small
enough, there is:

lim
N→∞

ln(SN) =

∫ +∞

−1

p(x) ln(1 + x)dx

We can acquire the following expression:

r∞ = lim
N→∞

rN = e
∫+∞
−1 p(x) ln(1+x)dx − 1

As long as the integral
∫ +∞
−1

p(x) ln(1 + x)dx in the above-mentioned expression exists,
the above-mentioned expression is the mathematical formula of the average annual rate
of return for the risk asset K held indefinitely. The theorem is proved.
Because the function ln(1+x) is equal to −∞ when x = −1, in order to guarantee that

the integral
∫ +∞
−1

p(x) ln(1 + x)dx in expression (2) exists, we make an assumption that
the following conditions are tenable:

lim
x→−1+

p(x) ln(1 + x) = 0, lim
x→+∞

p(x) ln(1 + x) = 0

When the analytical solution of the integral
∫ +∞
−1

p(x) ln(1 + x)dx in the expression (2)
can be solved, the more concrete mathematical formula of the average annual rate of
return for the risk asset K held indefinitely will be obtained. On the contrary, when
the analytical solution of the integral

∫ +∞
−1

p(x) ln(1 + x)dx in the expression (2) cannot
be solved, we can calculate r∞ through the use of numerical integral and examine the
relationship between r∞ and the expectation and variance of short-term rate of return.

3. Several Properties about the Formula of the Rate of Return r∞. If the asset
K has a fixed short-term rate of return r0, then it is a risk-free asset. At this time, the
probability density function p(x) of annual rate of return is a δ function that satisfies the
following expression:

δ(x− r0) =

{
0 x 6= r0
+∞ x = r0

,

+∞∫
−∞

δ(x− r0)dx = 1

According to the Formula (1), if xi = r0, i = 1, 2, . . ., n, then there are rn = ((1+r0)
n)1/n−

1 = r0 and r∞ = r0. Here, we will validate the correctness of the Formula (2).

Theorem 3.1. If asset K is a risk-free asset and the annual rate of return is r0, then the
average annual rate of return for asset K held indefinitely provided by Formula (2) is r0.

Proof: In accordance with Formula (2), there is:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1

When asset K is risk-free, the probability density function p(x) of the annual rate of
return is a δ function, that is, δ(x− r0). Then we have:

r∞ = e
∫+∞
−1 δ(x−r0) ln(1+x)dx − 1 = eln(1+r0) − 1 = r0
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The theorem is proved.
As for the common probability density function p(x) that possesses the symmetrically

distributed short-term rate of return, we hope to know the relationship between r∞ and
the expectation µ of the annual rate of return. There is the following Theorem 3.2.

Theorem 3.2. If the annual rate of return ξ of the risk asset K is a random variable which
possesses the symmetrically distributed probability density function p(x), the mathematic
expectation of ξ is µ, the variance of ξ is σ2 > 0, and the n-order central moment of ξ is

σn =
+∞∫
−∞

(x− µ)np(x)dx, then the average annual rate of return r∞ of the asset K held

indefinitely is inevitably less than the expectation µ of the rate of return of the asset K,
and there is:

r∞ = (1 + µ)e
−

∞∑
n=1

σ2n
2n(1+µ)2n − 1 (4)

Proof: Suppose the symmetric point of the density function p(x) is x = µ, that is,
p(µ+ x) = p(µ− x). Then there is:

E(ξ) =

+∞∫
−∞

xp(x)dx =

+∞∫
0

[(µ+ x)p(µ+ x) + (µ− x)p(µ− x)]dx

=

+∞∫
0

2µp(µ+ x)dx = 2µ

+∞∫
0

p(µ+ x)dx = µ

That is to say, the expectation of the annual rate of return ξ of the risk asset K is µ which
is the value in the symmetric point of p(x). Besides, there is:

+∞∫
µ

p(x)dx =
1

2
,

µ∫
−1

p(x)dx =
1

2

According to Formula (2), the mathematic formula of the average annual rate of return
r∞ of the asset K held indefinitely is as follows:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1

Consider the following integral:
+∞∫
−1

p(x) ln(1 + x)dx =

µ∫
−1

p(x) ln(1 + x)dx+

+∞∫
µ

p(x) ln(1 + x)dx

=

µ+1∫
0

p(µ− x) ln(1 + µ− x)dx+

+∞∫
0

p(µ+ x) ln(1 + µ+ x)dx

Because of the symmetry, there must be p(µ + x) = 0 when x > 1 + µ. Therefore, the
above-mentioned integral can be combined, and there is:

+∞∫
−1

p(x) ln(1 + x)dx =

µ+1∫
0

[p(µ− x) ln(1 + µ− x) + p(µ+ x) ln(1 + µ+ x)]dx

=

µ+1∫
0

p(µ+ x)[ln(1 + µ− x) + ln(1 + µ+ x)]dx
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Disposing the function ln(1 + µ− x) + ln(1 + µ+ x) mentioned in the above integral, we
get:

ln(1 + µ− x) + ln(1 + µ+ x) = ln

(
(1 + µ)

(
1− x

1 + µ

))
+ ln

(
(1 + µ)

(
1 +

x

1 + µ

))
= 2 ln(1 + µ) + ln

(
1− x

1 + µ

)
+ ln

(
1 +

x

1 + µ

)
On the basis of the theorem’s conditions, we have

∣∣∣ x
1+µ

∣∣∣ < 1. When |z| < 1, the following

Taylor’s expansion is tenable:

ln(1− z) = −
∞∑
n=1

1

n
zn

We have:

2 ln(1 + µ) + ln

(
1− x

1 + µ

)
+ ln

(
1 +

x

1 + µ

)
= 2 ln(1 + µ)−

∞∑
n=1

1

n

(
x

1 + µ

)n

−
∞∑
n=1

1

n

(
−x

1 + µ

)n

= 2 ln(1 + µ)− 2
∞∑
n=1

1

2n

(
x

1 + µ

)2n

So we have:

µ+1∫
0

p(µ+ x)[ln(1 + µ− x) + ln(1 + µ+ x)]dx

=

µ+1∫
0

p(µ+ x)

(
2 ln(1 + µ)− 2

∞∑
n=1

1

2n

(
x

1 + µ

)2n
)
dx

= 2 ln(1 + µ)

µ+1∫
0

p(µ+ x)dx− 2
∞∑
n=1

1

2n(1 + µ)2n

µ+1∫
0

p(µ+ x)x2ndx

= ln(1 + µ)−
∞∑
n=1

σ2n

2n(1 + µ)2n

We can obtained the following formula:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 = e

ln(1+µ)−
∞∑

n=1

σ2n
2n(1+µ)2n − 1

= (1 + µ)e
−

∞∑
n=1

σ2n
2n(1+µ)2n − 1

We obtain the expression (4). And the above-mentioned expression can be transformed
into the following forms:

µ− r∞ = (1 + µ)

(
1− e

−
∞∑

n=1

σ2n
2n(1+µ)2n

)
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For the common and continuously distributed random rate of return, there is σ2n > 0. So
we have:

0 < 1− e
−

∞∑
n=1

σ2n
2n(1+µ)2n < 1

From the expression of µ − r∞, we can get 0 < µ − r∞ < 1 + µ and r∞ < µ. And the
theorem is proved.

Due to σ2n > 0, there is:

r∞ = (1 + µ)e
−

∞∑
n=1

σ2n
2n(1+µ)2n − 1 < (1 + µ)e

− 1
2(1+µ)2

σ2

− 1

From the above expression, we can obtained the following formula:

µ− r∞ > (1 + µ)
(
1− e

− 1
2(1+µ)2

σ2
)

(5)

The conclusion of Theorem 3.2 indicates that for the asset whose short-term rate of
return possesses the symmetrical probability density distribution, if it is held for a long
term, the average annual rate of return must be less than the expectation of the annual
rate of return. And from the expression (5), it can be easily derived that the greater the
variance of the short-term rate of return is, the greater the difference µ− r∞. If failing to
thoroughly probe, people will easily believe that holding the risk asset for a long term can
gain the average annual rate of return that is approximately equal to the short-term rate
of return. For numerous financial assets, such as stock, bonds and foreign exchange, their
short-term rates of return approximately conform to the symmetrical normal distribution.
Hence, it can be asserted that the average annual rate of return obtained by holding these
financial assets for a long term are inevitably less than the expectation of the annual rate
of return. And when the variance of the short-term rate of return is relatively great (which
means that the risk is great), the average annual rate of return obtained by holding these
financial assets for a long term will decrease sharply.

As for the common probability density function p(x) without symmetry, the following
Theorem 3.3 is tenable.

Theorem 3.3. If the annual rate of return ξ of the risk asset K is a random variable
that possesses a common probability density function p(x), the mathematic expectation of
ξ is µ and the variance of ξ is σ2 > 0. Suppose lim

x→−1+
p(x) ln(1 + x) = 0, when x ≤ −1

then p(x) = 0, the variance σ2 of ξ is greater than zero. Then there is:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 ≤

+∞∫
−1

xp(x)dx = µ (6)

Proof: For ai ≥ 0, i = 1, 2, . . ., n, the following well-known inequality is tenable:

(a1a2· · ·an)1/n ≤ a1 + a2 + . . .+ an
n

(7)

In this inequality, the necessary and sufficient condition under which the sign of equality
is tenable is that ai takes the same value. For the sequence of the annual rate of return
x1, x2, . . ., xn, the average value of the annual rate of return is x1+x2+...+xn

n
and the average

annual rate of return of n-year continuous investment is ((1+x1)(1+x2)· · ·(1+xn))
1/n−1.

And there is:

r∞ = lim
n→∞

((1 + x1)(1 + x2)· · ·(1 + xn))
1/n − 1, µ = lim

n→∞

x1 + x2 + . . .+ xn

n
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Denote a1 = 1+x1, a2 = 1+x2, . . . , an = 1+xn. Because xi is the annual rate of return,
there must be 1 + xi > 0, i = 1, 2, . . ., n. Because σ2 > 0, so ai, i = 1, 2, . . ., n are not the
same value. According to the expression (7), there is:

((1 + x1)(1 + x2) · · · (1 + xn))
1/n <

(1 + x1) + (1 + x2) + . . .+ (1 + xn)

n

Expand and simplify the above expression, there is:

((1 + x1)(1 + x2) · · · (1 + xn))
1/n − 1 <

x1 + x2 + . . .+ xn

n

Solving the limit of both sides of the above expression and relying on the expression (2),
we gain:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 ≤

+∞∫
−1

xp(x)dx = µ

The theorem is proved.
We guess that when σ2 is greater than zero, there must be r∞ < µ. Nonetheless, the

proof procedure of Theorem 3.3 indicates that we can only assert r∞ ≤ µ.

Theorem 3.4. If the annual rate of return ξ of the risk asset K is a random variable
which possesses a common probability density function p(x), suppose that when ξ ≤ −1
or ξ ≥ 2µ + 1 then there is p(x) = 0, the mathematic expectation of ξ is µ, the variance

of ξ is σ2 > 0, and the n-order central moment of ξ is σn =
+∞∫
−∞

(x− µ)np(x)dx, then

the formula of the average annual rate of return r∞ of the asset K held indefinitely is as
follows:

r∞ = (1 + µ)e
−

∞∑
n=1

(−1)n σn
n(1+µ)n − 1 (8)

Proof: On the basis of the expression (2), the mathematical formula of the average
annual rate of return r∞ of the asset K held indefinitely is as follows:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1

For the above expression, we make the variable transform x = z+µ and then we can get:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 = e

∫ 1+µ
−1−µ p(z+µ) ln(1+z+µ)dz − 1

For the integrand, we process it in the following way:

ln(1 + µ+ z) = ln

(
(1 + µ)

(
1 +

z

1 + µ

))
= ln(1 + µ) + ln

(
1 +

z

1 + µ

)
According to the conditions of the theorem, there is

∣∣∣ z
1+µ

∣∣∣ < 1. When |z| < 1, the

following Taylor’s expansion is tenable:

ln(1 + z) =
∞∑
n=1

(−1)n+1

n
zn

We have:

ln(1 + µ) + ln

(
1 +

z

1 + µ

)
= ln(1 + µ)−

∞∑
n=1

(−1)n

n

(
z

1 + µ

)n
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So we have:
µ+1∫

−µ−1

p(µ+ z) ln(1 + µ+ z)dz

=

µ+1∫
−µ−1

p(µ+ z)

(
ln(1 + µ)−

∞∑
n=1

(−1)n

n

(
z

1 + µ

)n
)
dz

= ln(1 + µ)

µ+1∫
−µ−1

p(µ+ z)dz −
∞∑
n=1

(−1)n

n(1 + µ)n

µ+1∫
−µ−1

p(µ+ z)zndx

= ln(1 + µ)−
∞∑
n=1

(−1)n
σn

n(1 + µ)n

Therefore, there is:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 = e

ln(1+µ)−
∞∑

n=1
(−1)n σn

n(1+µ)n − 1

= (1 + µ)e
−

∞∑
n=1

(−1)n σn
n(1+µ)n − 1

The theorem is proved.
If there exist simple computational formulas for n-order central moment σn of the

random rate of return with probability density function p(x), then it is convenient to
calculate r∞ and r∞ − µ through the use of expression (8). In this way, the decreasing
amplitude of the rate of return can be examined.

Theorem 3.5. If the annual rate of return ξ of the risk asset K is a random variable
which possesses a common probability density function p(x), suppose that when ξ ≤ −1 or
ξ ≥ 2µ+1 then there is p(x) = 0, the mathematic expectation of ξ is µ, the variance of ξ

is σ2 > 0, and the n-order central moment of ξ is σn =
+∞∫
−∞

(x− µ)np(x)dx, then assume

that the following condition tenable for all n ≥ 2:

abs(σn)

n(1 + µ)n
>

abs(σn+1)

(n+ 1)(1 + µ)n+1

Then there must be r∞ < µ.

Proof: In terms of the conclusion of Theorem 3.4, we have:

r∞ = (1 + µ)e
−

∞∑
n=1

(−1)n σn
n(1+µ)n − 1

It is easy to prove that σ1 =
+∞∫
−∞

(x− µ)p(x)dx = 0, and then we have:

r∞ = (1 + µ)e
−

∞∑
k=1

(
σ2k

2k(1+µ)2k
−

σ2k+1

(2k+1)(1+µ)2k+1

)
− 1

According to the conditions the theorem provides and σ2k > 0, there is:

γ =
∞∑
k=1

(
σ2k

2k(1 + µ)2k
− σ2k+1

(2k + 1)(1 + µ)2k+1

)
> 0
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Therefore, there is e−γ < 1, and we have:

r∞ = (1 + µ)e−γ − 1 < (1 + µ)− 1 = µ

The theorem is proved.

4. Some Conclusions Derived from the Formula of the Rate of Return r∞. We
will examine a simple case that the annual rate of return ξ of the risk asset K conforms to
the equally distributed situation. ξ is equally distributed in the interval [a, b] and a > −1.
The density function of ξ is p(x). And there is:

p(x) =

{ 1

b− a
a ≤ x ≤ b

0 x < a or x > b

The mathematical expectation of ξ is a+b
2
. In accordance with Formula (2), the mathemat-

ical formula of the average annual rate of return r∞ of the risk asset K held indefinitely
is as follows:

r∞ = e
∫+∞
−1 p(x) ln(1+x)dx − 1 = e

1
b−a

∫ b
a ln(1+x)dx − 1

Then we have the following Theorem 4.1.

Theorem 4.1. If the annual rate of return ξ of the risk asset K conforms to the even
distribution in the interval [a, b] and a > −1, then the average annual rate of return for the
risk asset K held indefinitely is inevitably less than a+b

2
, and its mathematical expression

is as follows:

r∞ =
1

e

[
(1 + b)(1+b)

(1 + a)(1+a)

] 1
b−a

− 1 (9)

Under some conditions, there is r∞ < 0, when a+b
2

> 0.

Proof: Because the evenly distributed function is symmetric about the point a+b
2
,

according to Theorem 3.2, the average annual rate of return for the risk asset K held
indefinitely is inevitably less than the mathematical expectation µ = a+b

2
of the annual

rate of return. Examining the integral:

r∞ = e
1

b−a

∫ b
a ln(1+x)dx − 1

This integral can be solved, because of
∫
ln(x)dx = x ln(x)− x+ C. We have:

r∞ = e
1

b−a

∫ b+1
a+1 ln(x)dx − 1 = e

1
b−a

(x ln(x)−x)|b+1
a+1 − 1

= e
1

b−a

(
ln

(1+b)(1+b)

(1+a)(1+a)
−(b−a)

)
− 1 = e

ln

[
(1+b)(1+b)

(1+a)(1+a)

] 1
b−a

−1
− 1

=
1

e

[
(1 + b)(1+b)

(1 + a)(1+a)

] 1
b−a

− 1

Taking a = −0.8, b = 0.9 and µ = a+b
2

= 0.05 > 0, that is, the mathematical expectation
of the annual rate of return is 5%, and substituting the values of a and b into the expression
(9), we can gain:

r∞ =
1

e

(
1.91.9

0.20.2

) 1
1.7

− 1 = −8.91%

As for the asset K whose annual rate of return is evenly distributed in [−0.8, 0.9], the
average value of its annual rate of return is 5%. However, the average annual rate of
return for the risk asset K held indefinitely is −8.91%. The theorem is proved.
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Theorem 4.2. If the annual rate of return ξ of the risk asset K conforms to the normal
distribution N(µ, σ2) in which µ > 0 and µ− 3σ > −1, then the mathematical formula of
the average annual rate of return for the risk asset K held indefinitely is as follows:

r∞ = (1 + µ)e
−

∞∑
n=1

(2n)!
2n·n!

(
σ√

2(1+µ)

)2n

− 1 (10)

Proof: The moment generating function of normal distribution is M(s):

M(s) = e
σ2s2

2
+µs

We can obtain the expression of each-order central moment:

σ2n =
(2n)!

n!

(
σ2

2

)n

, σ2n+1 = 0, n = 1, 2, 3, . . .

Substituting the above expression into the expression (8) and simplifying it, we get the
expression (10). The theorem is proved.

Because of
+∞∫
−1

p(x)dx = 1, we simplify the expression (6) and we have:

e
∫+∞
−1 p(x) ln(1+x)dx ≤

+∞∫
−1

(x+ 1)p(x)dx

Take the logarithm of both sides of the above expression, and the expression (6) can be
transformed into the following form:∫ +∞

−1

p(x) ln(1 + x)dx ≤ ln

 +∞∫
−1

(x+ 1)p(x)dx

 (11)

For any p(x) ≥ 0, if there is
+∞∫
−1

p(x)dx = 1 and the integral
+∞∫
−1

p(x) ln(1 + x)dx exists,

then the inequality (11) is tenable. Apart from conveying the relationship between the
long-term and the short-term rate of return, the inequality (11) should be able to realize
its theoretical value or application value in other fields.

5. Numerical Results of the Risk Asset Whose Short-Term Rate of Return
Takes Different Distributions. The value of µ − r∞ is significant in investment. As
Theorem 3.2 and Theorem 3.3 indicate, the average annual rate of return for the risk asset
held indefinitely is inevitably less than the average value (expectation) of the annual rate
of return for risk assets. For the common probability distribution, as Theorem 3.4 shows,
it is impossible to ascertain the value of µ − r∞ if we merely know the expectation and
variance of the random rate of return ξ. To ascertain the value of µ−r∞, we need calculate
each-order central moment. Form the qualitative viewpoint, the greater the variance of the
annual rate of return for risk assets is, the more the average annual rate of return for the
risk asset held indefinitely decrease, compared with the expectation of the annual rate of
return. The variance of the annual rate of return is a major factor that determines µ−r∞.
For common probability distributions, it is difficult to put the analytical expressions (4)
and (8) of µ− r∞ into use. And in this section, through numerical integration, we use the
integral expression ascertained by the expression (2) to examine the quantitative relations
between the average annual rate of return r∞ of the risk asset held indefinitely and the
expectation µ and the variance σ2 of the annual rate of return for the risk asset.
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Table 1. The computational results of the average annual rate of return r∞
when the annual rate of return for risk assets conforms to several common-
used distributions

The expectation µ The average The difference
Probability model Parameter and standard annual rate of of the rate
and probability selection deviation σ of return r∞ of the of returns
density function the annual asset K held µ− r∞

rate of return indefinitely (%) (%)

Normal distribution model:

1√
2πσ

e−
(x−µ)2

2σ2

x ≥ −0.99
Expectation = µ
variance = σ2

µ = 0.05 µ = 0.05 4.85 0.15
σ = 0.025 σ = 0.025
µ = 0.05 µ = 0.05 1.74 3.26
σ = 0.25 σ = 0.25
µ = 0.05 µ = 0.05 −5.35 10.35
σ = 0.45 σ = 0.45
µ = 0.25 µ = 0.25 14.49 10.51
σ = 0.45 σ = 0.45

Even distribution model:{
1

b−a
a ≤ x ≤ b

0 x < a or x > b
Expectation = a+b

2
,

variance = (b−a)2

12

a = 0.0067 µ = 0.05 4.85 0.15
b = 0.0933 σ = 0.025
a = −0.383 µ = 0.05 1.88 3.12
b = 0.483 σ = 0.25

a = −0.7294 µ = 0.05 −6.43 11.43
b = 0.8294 σ = 0.45
a = −0.5294 µ = 0.25 14.89 10.11
b = 1.0294 σ = 0.45

Right-shift t distribution model:

α
Γ(n+1

2
)√

nπΓ(n
2
)

(
1 + (αx−β)2

n

)−n+1
2

x ≥ −0.99, n = 4

Expectation = β
α
,

variance = n
(n−2)α2

α = 56.57 µ = 0.05 4.85 0.15
β = 2.83 σ = 0.025
α = 5.657 µ = 0.05 2.16 2.84
β = 0.283 σ = 0.25
α = 3.143 µ = 0.05 −1.67 6.67
β = 0.157 σ = 0.45
α = 3.143 µ = 0.25 16.87 8.13
β = 0.786 σ = 0.45

Left-shift χ2 distribution model:
α

2
n
2 Γ(n

2
)
(αx+ β)

n
2
−1e−

αx+β
2

x ≥ −β/α and x ≥ −0.99

Expectation = (n−β)
α

,
variance = 2n

α2 , n = 8

α = 160.0 µ = 0.05 4.85 0.15
β = 0.0 σ = 0.025
α = 16.0 µ = 0.05 2.24 2.76
β = 7.2 σ = 0.25

α = 8.889 µ = 0.05 −4.14 9.14
β = 7.556 σ = 0.45
α = 8.889 µ = 0.25 16.15 8.85
β = 5.778 σ = 0.45

Left-shift Fdistribution model:

α (αx+β)
m
2 −1

B(m
2
,n
2
)

(m
n
)
m
2

(
1 + m(αx+β)

n

)−m+n
2

x ≥ −β/α and −β/α ≥ −0.99

Expectation =
( n
n−2

−β)

α

variance = 2n2(m+n−2)
m(n−2)2(n−4)α2

n = 10, m = 10

α = 38.729 µ = 0.05 4.85 0.15
β = −0.686 σ = 0.025
α = 3.873 µ = 0.05 2.73 2.27
β = 1.056 σ = 0.25
α = 2.152 µ = 0.05 −1.58 6.58
β = 1.142 σ = 0.45
α = 2.152 µ = 0.25 17.66 7.34
β = 0.712 σ = 0.45

Left-shift Rayleigh distribution model:
(x+β)
α2 e−

(x+β)2

2α2

x ≥ −β and β ≤ 0.99
Expectation =

√
π
2
α− β

variance = 4−π
2
α2

α = 0.0382 µ = 0.05 4.86 0.14
β = −0.0022 σ = 0.025
α = 0.382 µ = 0.05 2.19 2.81
β = 0.428 σ = 0.25
α = 0.687 µ = 0.05 −4.97 9.97
β = 0.811 σ = 0.45
α = 0.687 µ = 0.25 15.71 9.29
β = 0.611 σ = 0.45

Left-shift lognormal distribution model:

1
α(x+β)

√
2π
e−

ln2(x+β)

2α2

x ≥ −β and β ≤ 0.99

Expectation = e
α2

2 − β

variance = eα
2
(eα

2 − 1)

α = 0.155 µ = 0.05 3.77 1.23
β = 0.962 σ = 0.025
α = 0.434 µ = 0.05 −5.57 10.57
β = 1.049 σ = 0.25
α = 0.539 µ = 0.05 −13.44 18.44
β = 1.106 σ = 0.45
α = 0.539 µ = 0.25 10.17 14.83
β = 0.906 σ = 0.45
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We choose the common probability density models, including the normal distribution
model, the even distribution model, the t distribution model, the χ2 distribution model,
the F distribution model, the Rayleigh distribution model and the lognormal distribution
model. The expectation µ of the short-term rate of return ξ of the risk asset that we
usually examine is positive number and the rate of return ξ takes its value in (−1,+∞). At
the same time, it is generally required that µ ∈ (0.05, 2.0) and the standard deviation σ ∈
(0, 0.5). Therefore, in order to ensure that the rate of return lies in the reasonable value
interval, some distributions shift the average value left, some shift the average value right,
and some make the probability density function thin. However, all of the distributions
require that the value of the random variable ξ is greater than −0.99, or that when
ξ < −0.99, the value of the density function is 0. In this way, all the selected distribution
models conform to the normal value range of the short-term rate of return for risk assets.
Table 1 is the computational results of the average annual rate of return r∞ when the
annual rate of return for risk assets conforms to several common-used distributions. The
computational formula is the integral expression (2).

From the computational results of Table 1, we know that when σ = 0.025 (lower risk),
the average annual rate of return r∞ of the asset held indefinitely decreases slightly; when
σ = 0.25, r∞ decreases by around 2% ∼ 3%; when σ = 0.45 (higher risk), r∞ decreases
by about 10%, that is, from µ = 5% down to around r∞ = −5% or from µ = 25%
down to about r∞ = 15%. Compared with normal distribution, the decreasing amplitude
of r∞ of the t distribution whose degree of freedom is n = 4 and the F distribution
(n = 10,m = 10) is slightly small; the decreasing amplitude of the r∞ of lognormal
distribution is the largest.

Marking rf as the annual rate of return of the risk-free asset and µ as the expectation
of the annual rate of return for the risk asset, we have reasons to believe that it is
unreasonable to hold this risk asset for a long term when r∞ < rf . When r∞ < 0, holding
this risk asset for a long term will lead to catastrophic results, regardless of the fact that
we can have µ > 0 at this time.

6. Conclusion. In the investment analysis, people are used to use short-term rate of
return to measure the level of rate of return, and using the variance of the short-term
rate of return to measure the indetermination (risk) of investment income. However,
when investors plan to do a long-term continuous investment, it is blind and fallible to
estimate the return level and the risk of the long-term investment on the basis of the
expectation and the variance of the short-term rate of return. In this paper, we study the
relevant problems about the rate of return for the risk asset held indefinitely and obtain
the theoretical formula under appropriate assumptions. The mathematical form of the
formula is represented by the integral of the product of the probability density function of
the random rate of return and a logarithmic function. Meanwhile, this paper offers some
properties of the obtained theoretical formula, the mathematical formula of the average
annual rate of return of the asset held indefinitely can be represented by each-order central
moment of the random rate of return. And when the short-term rate of return for the risk
asset conforms to some familiar probability density functions, we make use of numerical
integral method to compute the corresponding average annual rate of return for the risk
asset. As the computational results indicate, with the increase of the variance of the
short-term rate of return, the level of the rate of return for the risk asset held indefinitely
will decline more and more sharply, compared with the expectation of the short-term rate
of return.
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