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ABSTRACT. This work introduces a new class of neuro-fuzzy systems for intelligent
agents, called Reinforcement Learning — Hierarchical Neuro-Fuzzy System. This new
class combines a hierarchical partitioning method of the input space with a Reinforce-
ment Learning algorithm to achieve the following important characteristics: automatic
creation of the model’s structure; self-adjustment of the parameters; autonomous learning
of the actions; capacity to deal with a greater number of inputs; and automatic gener-
ation of linguistic fuzzy rules. The proposed model was devised to overcome limitations
of traditional reinforcement learning methods based on lookup tables, particularly in ap-
plications involving continuous environments and/or environments considered to be high
dimensional. The paper details the hierarchical neuro-fuzzy architecture, its basic cell,
and the learning algorithm. The performance of the proposed system was evaluated in
four benchmark applications — the Mountain Car Problem, the Cart-Centering Problem,
the Inverted Pendulum and the Khepera Robot Control. The results obtained demonstrate
the capacity of the novel hierarchical neuro-fuzzy system to automatically extract knowl-
edge from the agent’s direct interaction with large and/or continuous environments. This
knowledge is in the form of fuzzy linguistic rules, with no prior definition of the number
and position of the fuzzy sets.

Keywords: Reinforcement learning, Autonomous agents, Hybrid neuro-fuzzy, Hierar-
chical partitioning, Robotics

1. Introduction. This work presents a detailed description of a new hybrid neuro-fuzzy
model, called Reinforcement Learning — Hierarchical Neuro-Fuzzy Politree (RL-HNFP),
which is based on a Reinforcement Learning algorithm to provide an agent with intelli-
gence, making it able, by interacting with its environment, to acquire and retain knowledge
for reasoning (infer an action).

The proposed model was devised based on the analysis of the limitations of existing
Reinforcement Learning (RL) models [1,2] and on the desirable characteristics for RL-
based learning systems, particularly in applications involving continuous environments
and/or environments considered to be high dimensional.
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For continuous and/or large state space, the application of traditional Reinforcement
Learning methods based on lookup tables (a table that stores value functions for a small
or discrete state space) is no longer possible, since the state space becomes too large. This
problem is known as the curse of dimensionality [2]. In order to bypass it, some form of
generalization must be incorporated into how the states are represented [3-8].

The generalization issue in RL can be seen as a structural credit assignment problem.
A structural credit assignment implies spatial propagation of costs across similar states.
However, standard RL algorithms perform temporal credit assignment, which implies
temporal propagation of costs [9]. Generalization is, therefore, a complex problem, since
there is no ‘Spatial Difference’ learning algorithm, in contrast with standard Temporal
Difference algorithms [2].

This generalization is usually obtained with the insertion of function approximation
techniques in the RL methods. In this case, value functions are updated by reinforcements
not only of the state related to the current iteration, but also of other states that are
correlated due to some common characteristics [10,11].

Current models that make use of function approximation usually require some predef-
initions, such as the specification of the number of layers and neurons in each layer for
neural network-based models and the size of the lookup table in standard RL models.
Other popular solution, the CMAC [12-16], associates different states to the same action.
In order to provide greater flexibility, some studies have applied fuzzy logic to this prob-
lem, obtaining promising results [1,6,8,17-24]. However, even in this case, predefinitions
are required, such as the number of fuzzy rules and the number and format of the fuzzy
sets used in the fuzzy rules’ antecedents and consequents.

Hasselt [6], in a recent study, confirms the trend of using fuzzy logic to provide gener-
alization in continuous environments. He highlights, however, that “A drawback of fuzzy
sets is that these sets still need to be defined beforehand, which may be difficult”.

Therefore, the main objective of this work was to propose a new hybrid neuro-fuzzy
model that would perform function approximation (for generalization purpose) with no
predefined parameters, which enhances the agent’s autonomy.

This paper is organized in four additional sections. Section 2 contains a brief description
of the hierarchical Politree partition used in the proposed model. Section 3 introduces the
proposed Reinforcement Learning — Hierarchical Neuro-Fuzzy Politree (RL-HNFP) model,
describing its basic cells, the hierarchical architecture and complete learning process.
Section 4 presents the results obtained with four case studies, chosen to compare the
performance with other similar models and to evaluate the proposed model in different
environments. Lastly, Section 5 presents the conclusions of this work.

2. Hierarchical Partitioning. The partitioning process of the input/output space has
great influence on the neuro-fuzzy system performance in relation to its desirable features
(accuracy, generalization, automatic generation of rules, etc.).

The most common partitioning methods used by the neuro-fuzzy systems currently
found in literature are: Fuzzy Grid, Adaptive Fuzzy Grid, Fuzzy Boxes and Fuzzy Clusters
[25-29]. One of the constraints of these partition methods is related to the limited number
of inputs allowed, due to the rule explosion problem [30]. For instance, a neuro-fuzzy
system with five input variables, each with its universe of discourse divided into 4 fuzzy
sets, may obtain a total of 1024 rules (4°). If the number of inputs is increased to 20, and
the same division of the universe of discourse is used, the result is an unmanageable total
of 1,099,511,627,776 rules (4?°). The use of Fuzzy Clusters as input partition reduces this
problem; however, the obtained fuzzy rules are less interpretable in this case.



HIERARCHICAL NEURO-FUZZY MODELS 1473

Another way to minimize the curse of dimensionality problem is to make use of recursive
partitionings, such as Binary Space Partitioning (BSP) [31,32], which employ recursive
processes in their generation. Additionally, by preserving the independence of the input
characteristics, these types of partitioning maintain the interpretability of the model in a
fuzzy rule format.

The use of recursive partitioning methods in hybrid neuro-fuzzy models was introduced
by Souza et al. [29] and resulted in a new class of neuro-fuzzy systems, called Hierarchical
Neuro-Fuzzy Systems. The recursive partitioning was inspired by the demonstration that
hierarchically structured rule bases present a linear growth in the number of rules [33].

The Politree partitioning, which is a generalization of the BSP, subdivides the n-
dimensional space in m = 2" subdivisions, where each of the n inputs can assume two
linguistic values: low and high. The Politree partitioning can be represented by a tree
structure, as can be visualized in Figure 1 that presents an example of a Politree parti-
tioning with two inputs (n = 2). Figure 1(a) presents the resultant two-dimensional space
subdivision and Figure 1(b) presents the tree format. As can be seen from Figure 1, the
input space is initially divided in m = 22 = 4 partitionings. In a recursive way, partition
3 has been sub-divided in m = 22 = 4 new sub-partitionings, as the result of the applied
learning algorithm (see Section 3.3).
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FIGURE 1. (a) Example of a Politree partitioning with 2 inputs, where
m = 2% and (b) tree representation of the Politree partitioning with 2 inputs

This idea of hierarchically dividing the input space has been used in the proposed
model, as detailed in the following sections.

3. Reinforcement Learning — Hierarchical Neuro-Fuzzy Politree (RL-HNFP)
Model. The RL-HNFP model is composed of one or various standard cells called RL-
neuro-fuzzy Politree (RL-NFP) [34-37]. These cells are laid out in a hierarchical structure
in the form of a tree. The following sub-sections describe in detail the basic cells, the
resultant hierarchical structure and the complete learning algorithm proposed.

3.1. Reinforcement learning — neuro-fuzzy Politree cells. An RL-NFP cell is a
mini-neuro-fuzzy system that performs 2" partitioning (n = number of inputs variables)
of a given input space in accordance with complementary membership functions, described
in Figure 2(a), in each input dimension. The mathematical representation of the sigmoid
membership function is described by two parameters: ‘a’ that defines its slope at the
transition point, and ‘4’ which defines the transition point. Each RL-NFP cell receives
all the inputs that are being considered in the problem. Each input variable, read by one
of the agent’s sensors, is evaluated in the antecedents’ fuzzy sets (low — p(z)— and high
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FIGURE 2. (a) Membership function representation; (b) internal represen-
tation of the RL-NFP cells with 2 input variables, where {a,as,...,a;} is
the set of available actions

—u(x)), shown in Figure 2(a). Figure 2(b) depicts an example of the resultant partition
of an RL-NFP cell with two inputs (z; and x5), resulting in four sub-partitions (Quadtree
partitioning).

3.1.1. Fuzzy rule representation at each RL-NFP cell. The linguistic interpretation of the
mapping implemented by the RL-NFP cell (with two inputs) depicted in Figure 2(b) is
given by the following set of rules:

rule;: If 1 € p; and x5 € p, then y = q;

ruleg: If 21 € p; and x5 € o then y = q;

rules: If zy € py and 9 € py then y = aq,

ruleg: If xy € py and 29 € po then y = q,
where each a;, a;, a, and a4 is the chosen action from the set of possible actions available
at each partition.

3.2. RL-HNFP architecture. A complete Reinforcement Learning — Hierarchical Neu-
ro-Fuzzy Politree (RL-HNFP) model is created by interconnecting the basic cells described
above, as illustrated in Figure 3. The cells form a hierarchical structure that results in the
rules that compose the agent’s reasoning. The outputs of the cells in the lower levels are
the consequences of the cells in the higher levels. Figure 3(a) and Figure 3(b) exemplify
an RL-HNFP architecture with n inputs and, consequently, m = 2" partitions at each
level.
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FIGURE 3. Example of an architecture of the RL-HNFP model: (a) an
example of an architecture with n inputs; (b) the tree format of the archi-
tecture in Figure 3(a)

The consequence of each cell’s partitions corresponds to one of the two possible conse-
quences below:

- a singleton (fuzzy singleton consequence, or zero-order Sugeno): the case where y =
constant = ay;

- the output of a stage of a previous level: the case where y = y;., where yy
represents the output of a generic cell ‘k’, whose value is calculated by Equation (1) below.
Since the high (1 and low p membership functions are complementary (see Figure 2(a)),
the defuzzification process is simplified, with the denominator of the equation on the left
being equal to 1 for any values of inputs ‘v’; w; and a; correspond to the firing level and
the chosen action of the i-th partition, respectively.

on on on
Yy = (Zwixai/Zwi> y:Zwi-ai (1)
i=1 i=1 i=1

Although the singleton consequence is simple, it is not previously known. Each singleton
consequence is associated with an action that has not been defined a priori. Each partition
has a set of possible actions (aj, as, ...,a;), as shown in Figure 2(b), and each action is
associated with a Q-value function, which is updated according to the Reinforcement
Learning (RL) algorithm described in Subsection 3.3. The Q-value is defined as the sum
of the expected values of the rewards obtained by the execution of action a in state s, in
accordance with a policy 7. For further details about RL theory, see [2] or [38].

By means of the RIL-based learning algorithm (see Subsection 3.3), one action of each
partition (for example, a;, a;, a, and @, in the rules above) is defined as the one that
represents the desired behaviour of the system whenever that system is in a given state.
Thus, the consequences are the actions that the agent must learn along the process. The
number of actions is not related to the number of input variables or the number of cells
in the final structure.

In the architecture presented in Figure 3(a) and Figure 3(b), the poli-partitions 1, 3, 4,

.., m — 1 have not been subdivided, having as rules’ consequences the values ay, as, a4,
..., Gm_1, respectively. On the other hand, poli-partitions 2 and m have been subdivided,
so the consequences of their rules are the outputs (y, and y,,) of subsystems 2 and m,
respectively. On its turn, these subsystems have, as consequence, the values as;, @99,

oy Qom, and am1, Gma, - .., Gmm, respectively. Each ‘a;’ corresponds to a consequence
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of zero-order Sugeno (singleton), representing the action that will be identified (among
the possible actions), through Reinforcement Learning, as being the most favorable for
a certain state of the environment. The output of the system depicted in Figure 3(a)
(defuzzification) is given by Equation (2). Again, in this equation, w; corresponds to the
firing level of partition 7 and a; is the singleton consequence of the rule associated with
partition .

on on
Y= Wwi.a; + wo E Wo;.Ao; + Ws.A3 + Wa.Qq + ... + Wy E Wi -G (2)
i=1 i=1

Figure 4(a) and Figure 4(b) exemplify a particular RL-HNFP architecture with two in-
puts (n = 2). Figure 4(b) represents the partitioning of the architecture shown in Figure
4(a). Figure 4(b) also exhibits the partitions of variables 21 and x5 of a particular archi-
tecture with 2 inputs, where po(x1), po(x2), po(z1) and pg(x2) are related to membership
functions of cell RL-NFPy and p; (1), p1(x2), 1 (x1) and pq (x2) are related to membership
functions of cell RL-NFP;. Note that, in this example, after the creation of cell RL-NFP,,
the learning process has identified that the partition 2 (relating to membership function
low for input variable 2y and high for input variable x5) must be sub-partitioned to attain
better specification of the state space. Therefore, a new cell (RL-NFP) is automatically
created that recursively sub-divides the second partition into four new partitions (parti-
tions 21, 22, 23 and 24), corresponding to a sub-domain of the initial x; and x5 universe
of discourses.

23 24

21 22

Xy ——
RE e

(a) (b)

FIGURE 4. Example of an architecture of the RL-HNFP model: (a) cells
format of the architecture with 2 inputs; (b) partitioning of the variables
x1 and T9, po(x1), po(x2), po(x1) and pg(x2) are related to membership
functions of cell 0 and pi(x1), pi(z2), pi(x1) and py(z2) are related to
membership functions of cell 1 of Figure 4(a)
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FIGURE 5. Learning algorithm of the RL-HNFP model

The hierarchical characteristic of the proposed model smoothens the value function
generalization process (with the hierarchical fuzzy tree as the function approximator)
without affecting the results, which is a good requirement for process convergence [2].

3.3. RL-HNFP learning algorithm. Neuro-fuzzy learning processes are generally di-
vided into two parts: structure identification and parameter adjustment. The RL-HNFP
model performs these two tasks in a single algorithm. The flowchart shown in Figure 5
describes the complete learning algorithm of the RL-HNFP model, which consists of six
main stages that are described below.

The learning process starts out with the definition of the input variables that are
relevant to the system/environment in which an agent is inserted and of the set of actions
it may use in order to attain its objectives. The initial Q-values associated with the
actions must also be defined a priori. Applications that make use of SARSA or Q-
Learning normally start their Q-values with zero [2]. The proposed RL-HNFP learning
process is based on the SARSA method, as described in Stage 5. Therefore, all Q-values
are initialized with zero value.

The agent must run many cycles to ensure correct learning in the system/environment
where it is inserted, as in any other model based on RL. A cycle is defined by the number
of steps the agent takes in the environment from the point where the agent has been
initialized to the point considered as being its goal. Each stage comprises the complete
execution of the algorithm, from the agent’s reading of the input variables to performing
the action.

Stage 1 — Generate root-cell (or father-cell):

A root-cell is created with fuzzy sets whose domain is the range of possible values
of the selected input variables. The value of the cell’s input variables is read from the
environment, normalized and applied to the cell’s inputs. Then, the (normalized) x values
are evaluated in the [ow and high fuzzy sets, which result in two membership degrees,
p(z) and p(z), respectively, for each input variable z. Each poli-partition chooses one of
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the actions (from its set of actions), based on the methods described in Stage 4 of this
algorithm. The cell output, representing the action that will be executed by the agent’s
actuator, is calculated by the defuzzification process given by Equation (1).

Stage 2 — Calculate global reward:

After the action is carried out, the environment is read once again. This reading allows
the calculation of the global reward value from the environment, which will be used to
evaluate the action taken by the agent. This value must be calculated by means of an
evaluation function defined according to the agent’s objectives. Hence, this evaluation
function defines not only the nature of the reinforcement, by rewarding or punishing
(+1/ — 1), but also its intensity, thereby favoring a more efficient process in guiding this
agent during the learning process. This evaluation function is application-dependent and
four examples are provided in the Case Studies presented in Section 4.

Although there are cases where the agent receives a reward only at the end of each cycle
(delayed reward) [2,38], the proposed RL-HNFP model is based on a learning process that
implements the reward at each learning step. In this case the agent’s actions determine
not only its next state in the environment, but also the immediate reward. As mentioned
in [39], having a reward every time is not a restriction, since the classic delayed reward
problem can be considered as a special case with most rewards equal to zero.

Stage 3 — Backpropagate the reward:

At each step, the local reward is calculated for each partition of all active cells by means
of their participation in the resulting action. In this way, the global reward calculated by
the evaluation function is backpropagated from the root-cell to the leaf-cells, and weighted
by the firing level of each respective leaf-cell. The firing level (w;) is calculated using the
T-norm operator. Figure 6 below presents an example of RL-HNFP architecture with
two input variables x; and x5, where only partitions 1 and 4 of the root cell have been
hierarchically partitioned. The firing levels of the root cell RL-NFP, and its descendants
RL-NFP; and RL-NFP, are calculated by Equations (3), (4) and (5), respectively, and
their local rewards are defined by Equations (6), (7) and (8) (Rgioba is the calculated
global reward).

wor = po(w1).po(w2)
woz = po(T1)-po(T2)
woz = to(x1).po(T2) (3)
wos = po(21)-p1o(22)
wir = pi(x1).p1(2)
wig = p1(1).p1(22)
wig = p(x1).p1(22) (4)
).
).
).
)

Wy3 = M4($1 .

Ro1 = wo1-Rgiobal
g

Ro2 = woz2-Rgiobal
g

Roz = woz-Rglobal

Ros = w04-Rgloba1
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Ri1 = wii-Ror
Ri2 = wia.Ros (7)
Riz = wiz-Ro1
Ris = wis.Roy

Ryt = ws1.Ros
Ryo = w2 .Ros
R4z = wa3.Ros

Rys = waa.Roy
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Ficure 6. Backpropagation of the global reward of the environment for
modeling RL-HNFP

Stage 4 — Select actions:

Each poli-partition contains a set of actions that are selected during the learning pro-
cess. The selection of an action is based on the exploitation/exploration policies [2].
Usually, an agent chooses actions that are related to previously evaluated good rewards,
that is, it tries to exploit what has already been learned (exploitation). However, to find
better actions, it is necessary to search for alternatives that might be better than the
ones already experimented, that is, the agent needs to explore the environment (explo-
ration). Exploring state space is essential for discovering actions that correspond to the
best agent’s response (towards achieving an objective) when the agent is in a given state
of the environment. Therefore, each action has an associated value function and makes
use of the method called € — greedy [2], which selects an action associated with the high-
est expected Q-value with 1— € probability (greedy policy) and, with € probability, it
randomly selects any action (non-greedy policy). The maximum value of € is 0.1 (10%),
as suggested in [2].

Stage 5 — Update Q-values:

Based on the values of the rewards calculated for each cell in the structure, the Q-values
associated with the actions that have contributed to the resulting action carried out by
the agent must be updated. The objective is to reward the value of Q by updating it
according to Equation (9).

Q(sp,ar) = (1 — 0y).Q (81, ar) + [rigr + YQ(St41, App1)] 9)
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where the Q-value (s, a;) (of an active cell at time t) is updated based on its current
value Q(sy, a;); the immediate local reward 7,41 (this is the reward calculated in Stage 3);
a parameter v that specifies a percentage of the contribution of the Q-value associated
with the next action a1y chosen (Q(s;11,a:41,)) when the system is in state s;y1; and
ay which is the parameter that is proportional to the relative contribution of this local
action within the global action (that is, the ratio between local and global reward).

Besides the update of Q-values, there is an adjustment in the rates of € — greedy
(exploration/exploitation) parameter. This update is based on the analysis of the current
and previous global reward:

I. global reward value is higher than the previous global reward value
(Rgiobal,t+1 > Rgiobar,t) = In this case, there is a reduction in the € — greedy explo-
ration rates that are associated with each partition (set of actions) of each active
cell.

II. global reward value is lower than or equal to the previous global reward
value (Rgiobart > Rgiobari+1) = The values of the € — greedy parameters of the
partitions involved are, in this case, increased, which allow different actions to have
more chances of being chosen when this partition is active again, providing better
exploration of the environment.

Stage 6 — Partitioning:

In the proposed RL-HNFP model, for a cell to be partitioned, a poli-partition must
satisfy two criteria: Growth Variable Criterion and Value Function Variation Criterion.
The first criterion prevents the structure from growing as a result of a bad performance
caused by a still immature choice of actions (that is, it is supposed that the size of
the structure might be adequate but the actions are not yet properly tuned); the second
criterion encourages partitioning when there are significant variations in the actions’ value
functions. In other words, there are two main problems in the learning process: a) the
structure might be still too small (few cells) and therefore does not answer correctly in
all states (structure’s cells); b) the actions associated with each cell have not yet been
properly explored. Therefore, the main objective of the two proposed criteria (Growth
Variable and Value Function Variation) is to control the learning process, avoiding an
excessive growth of the structure. These two criteria are detailed below.

3.3.1. Growth variable criterion. For the first condition, a growth variable and a growth
function were created so as to allow or prevent structure growth. The growth variable
measures how big the variation of the Q-value has been during a certain period and is
constantly compared with a pre-determined growth function. When the growth variable
becomes higher than the value obtained from the growth function, the first criterion for
partitioning is satisfied.

The growth variable is calculated as follows. As the cells are being updated, the Q-value
variation percentage (AQ) of the associated actions is checked. When the variation of the
QQ-value associated with the action is greater than a percentage of the highest variation
that has occurred for this cell partition, this poli-partition is considered to present growth
potential and the growth variable is increased; otherwise, it is reduced. A high Q-value
variation may indicate that the actions being taken in the poli-partition in question are not
suitable for the sub-domain relative to this poli-partition, so the cell must be sub-divided.

The growth function, which has been defined heuristically, may be a constant [40] or it
may be a function of the number of steps, the size of the structure (tree depth), or any
other function related to the learning process or objective. In the case studies presented
in this paper, the growth function is a function of the number of steps and of the number
of cycles, as shown in Figure 7. Thus, whenever the growth variable is greater than the
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FicUure 7. Chosen growth function to the case studies

value evaluated in the growth function (given the number of steps and cycles that the
algorithm has performed at that point), the partition will satisfy the first requirement for
performing the partitioning.

Ideally, the growth function must be less demanding in the beginning of the learning,
(which allows the cells to sub-divide more quickly in the beginning of the learning process)
and, as the system evolves, the growth function becomes more demanding, allowing the
structure to grow only with higher values of the growth variable. As mentioned before,
the function presented in Figure 7 was defined heuristically and used in the experiments
carried out in the case studies. However, any other function with similar behavior could
also have been used.

3.3.2. Value function variation criterion. In addition to the previous criterion, the dis-
persion in the AQ-value (difference between ;1 and ;) is evaluated along the learning
process. A large dispersion of AQ-value may indicate that the environment is not yet
divided as necessary, making it hard to find a good Q-value for that poli-partition. There-
fore, the mean and standard deviation of the AQ-values are calculated and whenever the
mean absolute value is higher than twice the standard deviation, the second criterion that
determines whether or not a cell must be partitioned is satisfied. Hence, structure growth
occurs according to the following two criteria:

I. the growth variable is higher than the growth function; and
IT. |p| > 20, where p and o are the average and the standard deviation of the AQ-values.

When a poli-partition has all the necessary requirements for partitioning, a leaf cell
is created and connected to that poli-partition. Its domain will be the sub-domain that
corresponds to its closest ancestor. Leaf cells also inherit the set of actions with its
respective (Q-values from this ancestor.

These six stages are performed until a sufficient number of cycles for the exploration of
the environment are reached. This proposed model has been evaluated in four different
benchmark applications, as detailed in the following section.

4. Case Studies. Two versions of the hierarchical neuro-fuzzy structure have been im-
plemented and evaluated: the RL-HNFP, where all input variables are considered in each
cell, and a particular case, called RL-HNFB, where each cell allows only one input. In
this case, the specification of each cell’s input variable (x;) is determined by a heuristic
procedure (for example, considering the variables that are more important), where a cer-
tain order of variables is chosen to be presented at each level of the hierarchy. When there
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are more levels than input variables, the order of variables is repeated, starting from the
first variable used.

This section presents all tests that have been carried out with these models, using
four different benchmarks: the Mountain Car Problem [10]; the Car-Centering Problem
[41]; Inverted Pendulum [1]; and Khepera Robot Control [42]. The case studies chosen,
although apparently simple, are benchmarks of the RL area, used in many RL related
papers [1,2,10,41,43]. These case studies have as main objective to demonstrate that the
proposed models are able to carry out autonomous learning in continuous environments
with a minimum of information.

The following sections describe the benchmark applications and present the results
obtained when compared with other models available in the literature. Preliminary results
of the Mountain Car Problem and Khepera Robot Control have been presented in [34-37].

In all experiments presented in the following sections, the value defined for parameter ~y
of the Q-value update equation (Equation (9)) was 0.9 and the initial value of parameter
€ was established at 0.1 the moment the cell was created. The increment/decrement rate
of this parameter, when the action was respectively a penalty or a reward, was 5%. These
values were defined heuristically, but follow Sutton’s [11] recommendations.

4.1. Mountain car problem. The mountain car (see Figure 8) is a highly relevant
benchmark that has been used by different researchers [1,10,11,43] with the purpose of
testing their learning algorithms. The problem may be described as follows: a car must be
able to get to the top of a mountain; however, the car is not powerful enough to overcome
the force of gravity. Thus, in order to achieve its objective, the car must begin by moving
in the opposite direction of the target so that it may add the acceleration of gravity to
its own acceleration (Figure 8).

v

0.5

FIGURE 8. Mountain car problem

4.1.1. Global reward calculation. The calculation of the global reward considers the dis-
tance between the car and the objective (the mountain top), and the car’s velocity. Since
the car first needs to move in the opposite direction of the target, the evaluation function
increases as the car gets closer to the objective (Equation (10)) or distances itself from
the objective (Equation (11)). In either case, the evaluation function grows when the
velocity module value also grows.
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If (ZCt < ZCt+1), then
Rglobal — kle(—distance_objective) + k2€(\velocity|) (10)
If (zy > z441), then

Rglobal — kle—(l—dlstance_objectlve) + k2e(|velomty\) (11)

Parameters k; and ko are constants greater than 1 and are used for adapting the rein-
forcement values to the model.

4.1.2. Mountain car results. Tests were carried out with variations in the initial conditions
(position and velocity) and considering different action sets. The purpose of these tests
was to evaluate the performance of the models in several different situations.

Table 1 summarizes the results obtained, for different types of settings, during the
learning and testing phases for both models: RL-HNFB (one input per cell) and RL-
HNFP (all inputs per cell). Each row in the table is the average of the results obtained
in 10 independent experiments for each of the parameters settings.

As can be seen from Table 1, each model was evaluated in four different configurations,
varying the initial position and velocity, as well as the set of available actions. In the first
two settings of each model, at each cycle, the car started out alternately from x = —0.5
(position in the mountain “valley”) or x = —1.2 (position at the opposite end of the
objective to be reached by the car) at velocity zero; in the last two settings of each model,
at each cycle, the car started out randomly from any position in the interval [—1.2,0.5]
at any velocity between [—0.07,0.07].

Three different sets of actions were defined: in definition Al, the set of actions is
equal to {—1,0,1}, and the action carried out by the agent is exactly the action value
calculated at the structure’s output by the defuzzification process (Subsection 3.2); action
set A2 is the same one that was used in Al ({—1,0,1}), but the resulting action value
after the defuzzification process is submitted to a limiting function. The purpose of this
function is to turn into discrete the output value in the following cases: if the value at
the structure’s output is between 0.1 and 1, the value applied to Equation (9) is 1; if
it is between —0.1 and —1, the value applied is —1, and if the value is between —0.1
and 0.1, the value calculated during the defuzzification is actually used. In set A3, the
actions that are available to each cell belong to the {—10, -5, —1,0,1,5,10} set; after the
defuzzification, the upper and lower limits of the structure’s output value are fixed at 1
and —1, respectively. The tests with conditions A2 and A3 were intended for comparison
with other existing models, whose outputs are discrete.

The number of cycles needed for learning, that is, for the car to reach its objective, is
higher when the initial positions are randomly selected (5000 x 3000). The structure’s size
is also larger in this configuration, but fewer steps are necessary when the learning starts at
random points in the state space. When, at each cycle, the car starts from different points
in the state space, growth is stimulated in different points of the structure, generating,
on average, bigger structures. On the other hand, the initial position equals —0.5 and
velocity equals zero which is the most adverse condition for learning, resulting in more
stages in the learning process with the alternate initial position approach.

The final hierarchical structure of the best result in terms of number of steps among
the 10 experiments during learning was used for testing 1000 times with random initial
position and velocity. The results presented in Table 1 show that both models proved to
have good generalization capability, reaching the goal in few steps even in 1000 different
randomly selected initial configuration.

Even with a less favourable set of actions for solving the problem (A1l action set), the
learning process was effective. Set A1l is considered less favourable because it is hard for



1484 K. FIGUEIREDO, M. VELLASCO, M. PACHECO AND F. J. DE SOUZA

TABLE 1. Configurations of the RL-HNFB and RL-HNFP models applied
to the mountain car problem

Learning Settings Results
. . . Average steps
Model Inl.tl.al Inltlz.ll Actions No. of | Size of the learning | testing
Position Velocity Cycles structure phase phase
alternate
19 —05 0 Al ={1,0,—-1} 3000 198 230 98
Hemate 0 A2 = {1,0,—1}* | 3000 149 113 79
RL-HNFB ra.ndom. random
_ 1%
12,05 0.07, 0.07 A2 ={1,0,-1} 5000 237 90 86
random random A3 = {-10, -5,
—1.2, 0.5 —0.07, 0.07 | —1,0,1,5,10}** 5000 179 131 &
alternate
12, —0.5 0 Al ={1,0,-1} 3000 121 221 101
remare 0 A2 = {1,0,—1}* | 3000 63 151 85
RL-HNFP ra;n:iom. random
_ 1%
12,05 —0.07, 0.07 A2 ={1,0,-1} 5000 136 100 91
random random A3 = {-10, -5,
—1.2, 0.5 —0.07, 0.07 | —1,0,1,5,10}** 5000 % ol 69

* using a discretization function at the output
** the impulse applied (resulting action) is not higher than 1 or lower than —1.

the agent to optimize all the actions that must be learned by each partition of each cell
and succeed in generating outputs from the structures near the module of 1. Therefore,
the agent tends to take a greater number of steps to achieve its objective. When the
chance of having the impulse value (1 or —1) at the output is increased using sets A2 and
A3, the agent needs fewer steps in order to reach its objective.

A3 set of actions yielded the best result for both RL-HNFB and RL-HNFP, since it
contains a greater number of actions as well as actions with higher absolute value, being
more likely that the integral value of the impulse — never greater than |1| — will be obtained
at the output.

Figures 9 and 10 illustrate the best performance obtained with the RL-HNFB model
and RL-HNFP, respectively, in terms of the average number of steps (shown in grey in
Table 1). It may be observed from the graphs that when the car starts from the valley
(position —0.5), it needs to oscillate from one side to the other so as to gain enough
momentum to overcome the force of gravity and reach the “mountaintop”. On the other
hand, when the car starts from the farthest position (position —1.2), it already has enough
potential energy to reach the objective without oscillating.

Table 2 compares the results obtained with RL-HNFB and RL-HNFP models and those
provided by different RL-based models described in [18]. The number of parameters row
relates to: the number of neurons in the hidden layer for the Neural Q-learning case; the
number of grids for the CMAC (Cerebellar Model Articulation Controller) [23] case; and
the number of rules for the Fuzzy Q-Learning (FQL) [1]. Each of these parameters is
predefined in the respective models. The average number of steps in learning and testing
phases are presented for each model, with the car starting out from any = € [—1.2,0.5]
and v € [-0.07,0.07].

Table 2 shows that the worst performance is provided by the Neural Q-learning im-
plementation. This can be explained by the fact that the Neural Q-learning approach
has to learn its state perception in addition to the Q-values. For the CMAC and FQL
models the state perception is fixed a priori. Furthermore, the weight modifications in
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FIGURE 10. Test results for the mountain car problem with the best RL-
HNFP configuration

TABLE 2. Performance comparison of the RL-HNFB and RL-HNFP models
with other models [18] for the mountain car problem

Model No. of parameters | Learning Phase | Testing Phase
Neural Q-learning 4 1724 2189
CMAC Q-learning 343 262 85

FQL 25 112 61
RL-HNFB 0 131 71
RL-HNFP 0 91 69

the Neural Q-learning process, accomplished by the backpropagation algorithm, affect
the entire neural network, whereas the modifications in the other approaches affect only
eligible rules/boxes, related to the models FQL and CMAC, respectively. Therefore, the
Neural Q-learning model is not able to successfully learn the necessary policy [1].
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In the case of the CMAC model, the active state set is perceived discretely (many
neighbouring states activate the same grid sets); on the other hand, in the case of the
FQL, RL-HNFB and RL-HNFP models the state set is perceived continuously. This
explains why the results of the FQL, RL-HNFB and RL-HNFP models are better.

Although the FQL performed a little better than the RL-HNFP model in the testing set,
it should be considered that like the CMAC, the FQL needs predefined information (fuzzy
rules and fuzzy sets) relative to the learning process. It is important to emphasize that
in the RL-HNFB and RL-HNFP models, no a priori information about the partitioning
or about the rule base is provided.

It is also important to point out that the number of characteristics in the RL-HNFB
and RL-HNFP models is considered to be zero in Table 2 because although the initial
fuzzy sets used by the first cell were pre-defined, they are subdivided a number of times
that is not pre-determined at the beginning of the learning process. The subdivisions
and consequently the final configuration of fuzzy sets are performed automatically by the
learning algorithm.

4.2. Cart-centering problem. The Cart-Centering Problem (parking the car) is gen-
erally used as a benchmark of the area of evolutionary programming, where the force that
is applied to the car is of the “bang bang” type [41]. This problem was used mainly for
the purpose of evaluating how well the RL-HNFB and RL-HNFP models would adapt to
changes in the input variables domain without having to undergo a new training phase.

The problem consists of parking, in the centre of a one-dimensional environment, a car
with mass m that moves along this environment due to an applied force F. The input
variables are the position (z) of the car, and its velocity (v). The objective is to park the
car in position x = 0 with velocity v = 0. The equations of motion are:

xt+,r:xt—FT"Utand?}t+T:Ut+T'Ft/m (12)

where 7 represents the time unit. The global reward is calculated by Equation (13) below:
If (x> 0and v <0)or (z<0andwv>D0)

Rglobal — kle(—|distance_0bjective\) + k2e(|velocity\) (13)

Else Rglobal =0.

The evaluation function increases as the car gets closer to the centre of the environment
with velocity zero. The k; and ks coefficients, as in the previous case, are constants greater
than 1 used for adapting the reward values to the model’s structure. The values used for
time unit and mass were 7 = 0.02 and m = 2.0, respectively, as used in [41].

The stopping criterion is achieved when the difference between the velocity and the
position value in relation to the objective (x = 0 and v = 0) is smaller than 5% of its
universe of discourse. Table 3 shows the average of the results obtained in 5 experiments
for each configuration.

The proposed model was evaluated in two different environments, with different size
limits imposed to the state variables during learning and testing, although, at each cycle,
the car’s starting points were always x = —3 or x = 3. Two sets of actions have also been
evaluated in these experiments: F1 = {—150, —75, —50, —30, —20, —10, —5, 0, 5, 10, 20, 30,
50,75,150} or F2 = {—150,—75,0,75,150}. The number of cycles was fixed at 1000.

As can be observed from Table 3, RL-HNFP model results in a smaller structure. This
was already expected, since each cell receives both input variables, while in the RL-HNFB
model, a different input variable is applied at each level of the BSP tree.

As can be observed from Table 3, the broader the position and velocity limits are (in
this case equal to |10]), the more difficult it is to learn. When a smaller set of available
actions (F2) is used, the search space for the best action is reduced; however, it generates



HIERARCHICAL NEURO-FUZZY MODELS 1487

TABLE 3. Configurations and results of the RL-HNFB and RL-HNFP mod-
els applied to the cart-centering problem

Model Position | Velocity | Set of Available| Average Size Average Steps
Limits | Limits Actions* of the Structure | Learning Phase
|10] |10] F1 195 cells 424
RL-HNFB 3] 13| F1 340 cells 166
13 13 F2 293 cells 268
|10] |10] F1 140 cells 221
RL-HNFP 3 3 F1 251 cells 145
3 3 F2 193 cells 186

*F1 = {—150, —75, —50, —30, —20, —10, —5, 0, 5, 10, 20, 30, 50, 75, 150}; F2 = {—150, —75,0, 75, 150}

very abrupt variations in velocity, generating more car oscillations around the central
point and, consequently, more learning steps.

Table 4 below presents the results obtained for one of the 5 experiments carried out at
each configuration shown in Table 3 when the car also started out at points {—2, —1,1, 2},
which were not used in the learning phase. Table 4 confirms the generalisation capacity
of the RL-HNFB and RL-HNFP models, demonstrating that they converge even when
the car starts out at different points from the ones used in the learning phase.

TABLE 4. Testing results of the proposed models applied to the cart-
centering problem

Initial Position

Model Bl 1 [ [
Average number of steps

387 198 141

RIL-HNFB 122 80 110

108 122 102

190 166 99

RL-HNFP 109 97 112

96 124 68

Figure 11 presents graphs of the testing performance with one of the 5 experiments
carried out with the best configurations of RL-HNFB and RL-HNFP models (grey line in
Table 3).

In order to evaluate the capacity of the autonomous agent to adapt to changes in the
environment without requiring a new learning process, a different test was carried out
with the best configurations of RL-HNFB and RL-HNFP in which the environment limits
were expanded to 10 and the velocity limits were maintained at 3. The car was positioned
in three different initial points: at the environment limits (10 and —10), halfway in the
environment (—5 and 5) and close to the objective (—1 and 1). In all cases the car was
able to achieve its objective, although the environment is three times larger than the
environment used for learning. This was possible due to the normalization of the input
variables.

The analysis of Tables 3 and 4 leads to the conclusion that the RL-HNFB and RL-
HNFP models were able to park the car in the central point of the environment and
demonstrates that the expected behaviour had been learned in all different settings that
were tested.
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4.3. Inverted pendulum. The Inverted Pendulum system is a classic control problem.
It is a suitable process to test prototype controllers due to its high non-linearity and
lack of stability. This means that standard linear techniques cannot model the nonlinear
dynamics of the system. An Inverted Pendulum is a physical device consisting of a bar
free to oscillate around a fixed pivot. The pole may move only in the vertical plane of
the cart and track and the controller can apply an impulsive force to the cart at discrete
time. The goal of the experiment is to stabilize the pendulum (bar) on the top vertical
position.

This problem has double objective: try to balance the pole through the force applied
to the cart, and do not move itself away from the center of the environment.

The Inverted Pendulum considers 4 input variables:

f: angle of the pole with the vertical;

w: pole angular velocity;

x: position on the track;

v: car velocity.

The dynamics of the cart-pole system are modelled by the following nonlinear differen-
tial equations [1]:

gsen(f) + cos(

[ Fmlw?sen( +ucsgn(v):| _ ppw
é _ me+m ml
1[4 - met)] (14)
. F+mi[w?sen(d) — 6 cos(0)] — pesgn(v)
. Me+m

where:
g: acceleration due to gravity = 9.8m/s?;
m.: mass of the cart = 1.0kg;
m: mass of the pendulum (pole) = 0.1kg;
[: the half pole length = 0.5m;
et friction coefficient of cart on the track = 0.0005;
ttp: the friction coefficient of pole on the cart = 0.000002;
: pendulum angle from vertical;
w: angular speed;
f: angular acceleration;
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x: cart position coordinate;

v: speed of the car;

Z: acceleration of the car;

F: force applied to the cart.

The force is applied at each 0.02s interval of time. The cycle finishes when the number of
steps exceeds 50000 time steps, |#]| < 12 degrees or if |x| < 2,4 m. The set of actions used
for learning was {—10,—5,0,5,10}. The evaluation function for the inverted pendulum
is calculated as follows:

[F (angle >= 0 and car_velocity >= 0 and angular_velocity <= 0) or IF (angle <= 0)
and (car_velocity <= 0) and (angular_velocity >= 0)
THEN

R = k16(7|angular_distance\) + k26(f\position\) (15)
ELSE
R=0

The evaluation function increases as the angle and car position gets closer to zero.

Similar to the previous cases, k; and ko coefficients are constants greater than 1 used
for adapting the reward values to the model’s structure.

Because the number of inputs in the inverted pendulum is greater than the previous
cases, only the RL-HNFP model was evaluated. At the end of the learning process, the
structure of the RL-NFHP model presented 780 cells. This number of cells results in 1560
parameters that were tuned automatically by the learning algorithm.

The RL-NFHP model was compared with Fuzzy Actor Critic Learning model (FACL)
[1]. This model has the following pre-defined configuration: 54 fuzzy rules, 3 triangular
membership functions for the angular input, 3 trapezoidal membership functions for the
angular speed and position, and two additional triangular membership functions for the
speed. Therefore, the state space is previously mapped.

Both models have been tested with initial conditions equal to zero for the angular
position (@), angular speed (w), car position (x) and car speed (v). FACL model executed
its tests in a similar form as RL-NFHP model, except for the fact that the former has
fixed the number of steps in 500.000. In this way, the cycle finished when it reached the
goal or when the system failed due to the angle or the position exceeding the boundary
values. The necessary number of cycles for the learning phase using FACL model was
60 and for the RL-NFHP 15000 cycles were necessary. Considering that the RL-NFHP
model does not require any previous knowledge (number of rules or fuzzy sets), the result
obtained by the RL-NFHP model was satisfactory.

Figure 12 shows the graphs for the test phase after the 15000 cycles of the learning
phase. These graphs depict only 5000 steps (for better visualization). It can be noticed
that the pendulum oscillates inside the interval (—0,006;0,002) and the car oscillates
around the central point between the limits (—0,002;0,004) (Figure 12(a)). The angular
speeds of the pendulum and of the car also are inside of the allowed limits (Figure 12(b)).

Figures 13(a) and 13(b) present the dynamic of the car and the pendulum (normalized
to allow better visualization), respectively, with 350 steps extracted from Figure 12.

The main objective of this example was to evaluate the performance of the proposed
model in different and more complex environments. It can be verified from the previous
graphs that the model was able to control the inverted pendulum, preventing it to fall.

4.4. Khepera robot control. As in the Inverted Pendulum case study, only the RL-
HNFP model has been evaluated since the number of input variables is bigger than the
first two cases. The RL-HNFP model, together with a Khepera robot simulator [42], was
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FIGURE 13. Dynamics of the car/pendulum with model RL-HNFP

tested in a squared environment where the agent should move from one of the corners
and reach the diametric opposite corner.

The Khepera robot acquires information from the environment using 8 sensors grouped
into four sensing variables: one ahead, one in each side and one behind. Its actions are
executed via two independent motors with power varying between —20 and 20, one in the
right side and the other in the left side. The robot scheme can be seen in Figure 14.

The simulator is composed of the robot and the navigation environment, defined by
limits (walls) and by obstacles that might exist or not. It provides the robot’s position
(x,,y,) and the angle a between the front of the robot and z axis (Figure 15). These
data are calculated in accordance with robot’s rotation and translation movements as
well as the chosen action. Angles 5 and v (Figure 15) between the front of the robot and
the goal position and between x axis and the goal, respectively, are calculated from the
information given by the simulator and are used along the process.

Sensors sensibility is defined by means of exponential functions that consider the nor-
malized Euclidian distance between sensor and obstacle. Since it is a simulator, not a
robot in a real space, some other important issues, such as avoiding inappropriate obstacle
surpassing or ambient limits overtaking must also be addressed.
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The global reward function was based on the evaluation function given by Equation
(16). The evaluation function increases as the robot gets closer to the target of the
environment with angles closer to zero (to motivate the robot, preferably, to use the front
movement) and decreases when the robot gets closer to obstacles. In Equation (16), the
value 1024 is used to normalize the value obtained by the sensor, which varies between 0
and 1023. The objective of this function (relative evaluation to the obstacle) is to reduce
the reward value globally when the robot gets closer to the obstacle. Again, parameters
ky and ko are constants greater than 1.

R = (kle_(dismnce‘mrget) + er_(‘diStance‘angmar‘)) (1 — distance_obstacles/1024)  (16)

The proposed model was tested in two different configurations: an environment without
obstacles and with a central obstacle. The results obtained are described in the following
sub-sections.

4.4.1. Environment without obstacles. One of the tests carried out without obstacles is
shown in Figure 16, where the black dot represents the front of the robot. The learning
process was performed with the robot starting at position (—2, —2) and with angles 0°
and 90°. Tests, on the other hand, were performed in different situations: position 1
with angle = 45°, position 2 with angle = 45°, position 3 with angle = 90°, position 4
with angle = 90°, position 5 with angle = —135° and position 6 with angle = —90°. The
robot’s objective was to reach position (2,2). It can be observed, for instance, that the
second and fourth positions lead the robot directly to the target position, demonstrating
that the acquired knowledge was generalized and that the obtained results conform to the
expectative.

4.4.2. Environment with central obstacle. Using the same RL-HNFP structure generated
using only the initial position (—2, —2) with angles 0° and 90°, tests were performed with
a central obstacle, also starting from different positions: position 1 with angle = 45°,
position 2 with angle = 45°, position 3 with angle = —90°, position 4 with angle = —90°,
position 5 with angle = 90°, position 6 with angle = 0°, and position 7 with angle = 0°.
Once more, the results indicate the good performance of the proposed model in avoiding
obstacles in the environment.

Table 5 presents the average number of cycles and the average number of cells of the
RL-HNFP model. In this example, it is important to stress that in this case study the
environment is more complex, with a much bigger state space than the others tests.
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TABLE 5. RL-HNFP model

Without Obstacle Central Obstacle
Cycles Cells Cycles Cells
‘ RL-HNFP 5000 498 10000 812

Even though the RL-HNFP model has not been submitted to a real robot, it seems
that the necessary computational effort would be small and the process very fast, once
a set of hierarchical rules was extracted from the generated structure at the end of the
learning procedure. In this way, at each step, the robot could refer to these rules and
execute the resulting action.

5. Conclusions. The objective of this paper was to present a new neuro-fuzzy model
which aims to improve the weak points of conventional neuro-fuzzy systems and rein-
forcement learning models. The RL-HNFP models belong to a new class of neuro-fuzzy
systems called Reinforcement Learning Hierarchical Neuro-Fuzzy Systems. These models
are able to create their own structures and allow the extraction of knowledge in a fuzzy
rule-base format without any a priori definition of the input space partitioning.

As demonstrated by the four case studies presented, the RL-HNFP models provide
the following important features: are able to create and expand the structure of rules
without any prior knowledge; extract knowledge from the agent’s direct interaction with
large and/or continuous environments (through Reinforcement Learning); and to produce
interpretable fuzzy rules, which compose the agent’s intelligence to achieve his goal(s).
The agent was able to generalize its actions, showing adequate behaviour when the agent
was in states whose actions had not been specifically learned. This capacity increases the
agent’s autonomy. Normalizing the inputs also enabled the model to adequately respond
to changes in the limits of input variables. This characteristic was also very interesting,
because it further increases the autonomy desired for this agent.

In spite of the good results obtained by the proposed model, a few points still need im-
provement. Some modifications, relative to the learning algorithm, might be implemented
to obtain a faster learning, a more compact structure and a lower computational cost. In
future the authors intend to execute tests with Eligibility Traces [2]. This is a method
that does not update only the current state function value, but also the function value of
previous states inside a predefined limit.

Additionally, the RL-NFHP model can be improved using the WoLF principle (Win or
Learn Fast) [44] to modify the learning rate that adjusts the policy. The WoLF principle
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consists of learning quickly when the agent is losing and slowly when it is winning. Finally,
the proposed model is being applied to real robots, to evaluate its performance.
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