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Abstract. The multiscale transforms extend their robust capabilities to all the fields of
image processing. With the strength of the capabilities such as multiresolution, localiza-
tion, critical sampling, directionality, anisotropy, sparsity, the multiscale transforms are
employed and they perform well in a wide range of applications over Fourier and DCT
based approaches. Image denoising is a prime part of image processing that attracts nu-
merous researchers worldwide. Finding the better transform for denoising is considered
to be a challengeable task among the researches. This paper presents a comprehensive
treatise on the suitability of various multiscale image representations for denoising ap-
plication. In this context, a comparability study is carried out on various aspects of the
different transforms and their capabilities with their performance on image denoising in
order to find the suitable transforms for denoising applications. This paper offers an in-
sight into various multiscale image representations and their desirable features for image
denoising.
Keywords: Multiscale transforms, Image representation, Image denoising, Wavelet,
Contourlet, Overcomplete, Multiscale directional filter banks

1. Introduction. The digital images play a key role in information and communication
systems in the digital age. Visual information transmitted/received in the form of digital
images are often corrupted with noise, the corrupted images must to be pre-processed
before using in any applications. Denoising is the process of estimating the original image
X from the observed noisy image Y . It is common to model the noise η as an additive
or multiplicative component, the noisy image Y can be mathematically shown as (1) and
(2) respectively.

Y = X + η (1)

Y = Xη (2)

A good image denoising model has the significant characteristic of removing noises while
preserving edge details of the image. The two major approaches followed in image de-
noising are namely (i) Spatial domain denoising and (ii) Transform domain denoising.

The Spatial domain denoising approach uses conventional linear filters such as Gaussian
filter, Wiener filter, mean filter [1] or partial differential equation (PDE) model and non-
linear filters such as order statistic filters [2] and Total Variation (TV) filter. These filters
can handle discontinuities in a much better way and preserve edges of image with minimum
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Figure 1. Transform domain denoising approach

computations. On the other hand, the transform domain denoising approach adopts
various mathematical transforms for denoising as shown in Figure 1. These transforms
perform well in image denoising with minimum computational complexity and energy
compaction compared with the spatial domain approaches.
The Fourier transform successfully removes noise from the images, as it separates the

various frequency components of the image. However, the major limitation of Fourier
transform is that, it is not localized in time and frequency simultaneously [1].
Wavelet transform is an efficient mathematical tool for a numerous image processing

applications. This mathematical tool is implemented with efficient algorithms and conve-
nient tree data structures. Wavelet-based denoising works with the following three steps.
First, an orthogonal transform is applied on the image. Then the threshold is calculated
for each transformed coefficient using a non linear shrinkage functions [3]. Finally, the
thresholded coefficients are reconstructed by the inverse orthogonal transform.
The literature reveals that the coefficients that correspond to noisy pixels are much

smaller in magnitude than that of the clean pixels. Hence, smaller coefficients are elim-
inated with nonlinear shrinkage functions [3] and the image is reconstructed with the
remaining coefficients.
Several wavelet-based shrinkage functions are proposed in the literature [3]. In spite

of merits such as less computational complexity, multiresolution representation and high
energy compaction, images denoised with wavelet based methods exhibit checkerboard
artefacts. This is due to nonlocal, signal independent and fixed shaped wavelet bases.
Therefore, the sharpness of the edges in the natural images is not retained with wavelet
denoising. Hence, it is not a suitable denoising method for certain applications where the
fine details of the images need to be preserved. This leads to the formulation of multi-
scale image representations that are sparse, multiresolution and highly local. Following
the multiresolution properties of wavelets, a good number of multiscale image represen-
tations have been proposed in the literature. These multiscale transforms are used as
efficient mathematical representations in various image processing applications such as
image denoising, restoration, segmentation, compression, feature extraction and pattern
recognition.
This paper presents a comprehensive study of some of the most widely used multi-

scale image representations that will be useful for the researchers in the field of image
processing. Further, we focus on the suitability of multiscale representations for image de-
noising which is an essential pre-processing stage in an image processing system. Also, the
attributes of multiscale image representation schemes such as Orthogonality, Basis Func-
tion, Reconstruction, Overcompleteness and computational complexity are compared to
provide a fair comparison of various multiscale representations.
The rest of this paper is organized as follows. In Section 2, the importance of multiscale

transforms is described. The various multiscale image representations are discussed and
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analyzed in Section 3. In Section 4, the observations are presented and the features of
multiscale representations are compared. Finally, the conclusion is drawn in Section 5.

2. Importance of Multiscale Transforms. The major limitation of wavelet trans-
forms is its less ability to capture directional information [4]. To overcome this, multi-
scale and directional representations are employed to capture the intrinsic geometrical
structures such as smooth contours in natural images [4-7]. These multiscale and direc-
tional representations perform scale and directional decomposition using a geometrical
transform and local directional transform respectively [5].

In this context, a number of multiscale image representations are proposed in the lit-
erature that are suitable for various areas of image processing such as denoising [5,8],
compression [5,9], segmentation [10], image retrieval [11], and feature extraction [12].
These multiscale representations are found suitable for a range of applications including
medical imaging, remote sensing and SAR imaging [10]. Even though, most of the multi-
scale representations are overcomplete and have high computational complexity, they are
preferred because of their ability to represent fine details of the natural images.

3. Multiscale Image Representations for Denoising. In this section, multiscale rep-
resentations such as Gabor Wavelets, Ridgelets, Curvelets, Steerable Pyramids, Shearlets,
Contourlets and multiscale directional filter banks are discussed in detail with a view to
the suitability of these multiscale representations for image denoising.

3.1. Gabor wavelets. Gabor wavelets are developed based on the properties of the hu-
man visual system (HVS). The image enhancement and restoration applications highly
make use of the Gabor functions to represent images. However, the classic Gabor expan-
sion is carried out with unusual dual basis functions; hence, it has high computational
complexity [13]. A Gabor basis function is a Gaussian function modulated with an expo-
nential or sinusoidal function that is defined in terms of the product of a Gaussian and
an exponential. The 2D Gabor function is given as (3)

h(x, y) =
1

2π σx σy

. e
− 1

2
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. e−2πj fr x (3)

The parameters fr, σx and σy determine the subband of Gabor filter. fr is center
frequency, σx and σy are the bandwidth of the filter [14]. Gabor functions have the
following advantages [13]:

• Maximized joint localization in both spatial and frequency domains.
• Tunable to a range of spatial positions, frequencies, and orientations using arbitrary
bandwidths.

• Orientation selectivity and can be expressed as a sum of only two separable filters.

Gabor functions are suitable for performing pre-processing tasks in multipurpose envi-
ronments of image analysis and machine vision. However, the inverse Gabor function is
computationally complex and expensive. Building a complete orthogonal basis of Gabor
functions is not possible, and hence, non-orthogonal bases have to be used. Unless an
overcomplete basis is considered, exact reconstruction is not possible. Also, since the Ga-
bor wavelet is bandpass in nature, the lower and upper extreme of the frequency spectrum
cannot be covered [15]. As discussed in [16], the total number of real operations required
to obtain the 4× 4 even channels of an N ×N image [13] is approximated as in (4).
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In spite of the fact that Gabor functions require complex reconstruction algorithm and
do not support perfect reconstruction, the images reconstructed using Gabor wavelets are
indistinguishable from the original images. The denoising performance of Gabor functions
is superior to the conventional wavelet-based denoising [14].

3.2. Ridgelet. The wavelet based denoising is fairly difficult since the edges of the images
are repeated scale after scale; and it requires a large number of wavelet coefficients to
recover the edge details properly. This difficulty is overcome with the Ridgelet transform
[17] and the ridgelet bases are constructed in order to provide sparse representation of
both smooth functions and perfectly straight edges.
A one-dimensional wavelet transform is applied to the slices of a Radon transform in

order to get the ridgelet transform [18,19]. Finally, the continuous ridgelet transforms of
both smooth functions and of perfectly straight edges can be represented with adequate
sparsity as per the algorithm described below [20].
Algorithm:
1. Apply the àtrous algorithm with J scales [21].
2. Apply the radon transform on detail sub-bands of J scales.
3. Calculate ridgelet coefficients by applying a one-dimensional wavelet transform on

radon coefficients.
4. Get the multiscale ridgelet coefficients for J scales.
This algorithm is represented as a flow graph [20] in shown in Figure 2. An image

of size N × N results in a ridgelet transform of an image of size 2N × 2N [20], this
introduces a redundancy factor of 4. The redundancy and over completeness of the ridgelet
transform offers advantages, particularly in avoiding visual artifacts, in spite of weak
critical sampling and orthogonality. However, Ridgelets have global length and variable
widths exhibiting fixed anisotropy. Additionally, each step of the ridgelet transform is
invertible therefore demonstrates exact reconstruction. A discrete version of the ridgelet
transform is computationally efficient with O(N2 log(N)) floating point operations for
an N × N image. As discussed in literature [20,22], the ridgelet transform significantly
improves the visual quality and performance of denoising over wavelet denoising. The
denoised images contain only a few artifacts, exhibiting high visual quality.

Figure 2. Flow graph of
ridgelet transform

Figure 3. Flow graph of
curvelet transform
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3.3. Curvelet. The most important member of the multiscale family is the curvelet
transform. It allows objects with edges an optimal non-adaptive sparse representation [20]
by combining multiscale ridgelets with a spatial bandpass filtering operation for isolating
different scales. Figure 3 depicts the curvelet decomposition that is described in the
following steps [7]:

• Sub-band decomposition of the object into a sequence of sub-bands.
• Windowing each sub-band into blocks of appropriate size, depending on its center
frequency.

• Applying the ridgelet transform on those blocks.

The curvelet transform has a redundancy factor of 16J + 1 with J scales. Faster
implementations of discrete curvelet transform exhibit a reduced redundancy factor of
about 2.8 when wavelets are chosen at the finest scale, and 7.2 otherwise [23]. The major
advantage of curvelet transforms is that exact reconstruction is possible. In addition,
curvelet bases have variable anisotropy with a variable width and variable length obeying
the parabolic scaling law width ≈ length2 [20].

The curvelet transform is much more attracted by several fields of image processing such
as denoising [24,25], medical image processing [26], compression [27], retrieval, feature ex-
traction [28], pattern recognition and the most recent application seismic data processing
[29]. It works with adaptive algorithms for denoising [30] and the denoised images have
very less artefacts compared with wavelet and contourlet-based denoising [20,30,31]. Still
it suffers with the following limitations. Curvelets are not singly generated and rotation
operations do not preserve the digital lattice used to construction of curvelet bases [32].
The curvelet construction is simple in the continuous domain rather than discrete do-
main since the implementation for discrete images needs to be sampled on a rectangular
grid [4,5]. However, the curvelet construction demonstrates representation of images with
smooth contours via a fixed transform to remove the noise from the images with very less
artefacts [20].

3.4. Shearlet. Shearlet is another category of multiscale transform [33], able to sparsely
represent anisotropic features by optimal encoding of several classes of multivariate data.
In contradiction to curvelets, shearlets use shearing to control the directional selectivity.
A single or finite set of generators develop the Shearlet system ensuring a unified handling
of the continuum and digital world since the shear matrix reserves the integer lattice. The
elements of Shearlet representation are listed below [34]:

• A single or a finite set of generating functions
• Optimally sparse approximations of anisotropic features in multivariate data
• Compactly supported analyzing elements
• Fast algorithmic implementations
• A unified treatment of the continuum and digital realms
• Association with classical approximation spaces

The compactly supported shearlets achieve directionality and excellent spatial localiza-
tion [35]. They are tight frames hence requires iterative methods for synthesis process yet
possess the property of stable reconstruction [34].

The trade-off among compact support of Shearlet generators, tight frames and sepa-
rability of the Shearlet generators is also considered [36]. The frequency support of the
Shearlet satisfies parabolic scaling. There is no restriction on the number of directions
and the size of the supports for shearing, unlike the construction of the directional filter
banks in contourlet transforms [37]. The inversion of the discrete Shearlet transform is
formed by summing all the shearing filters rather than inverting a directional filter bank.
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The Shearlet transform denoise the images with very less Gibbs-type residual when the
shearing filters of small support sizes are used [37]. An overcomplete decomposition of the
image is introduced to prevent the blocking artefacts, and then synthesized by a lapped
window scheme [20].
The Shearlet decomposition is significantly redundant, because the down-sampling is

applied only in the vertical and horizontal directions with no anisotropic sub-sampling.
Given an image of size N×N , three-level decomposition would result in 2jN2+2j−1(N/4)2

+(N/16)2 coefficients when 2j directional subbands are chosen at the first decomposition
level [37].
As stated in [35], the discrete Shearlet transform has a redundancy ratio less than

or equal 2, and shows significant improvement in redundancy ratio with O(N2 logN)
computations. The Shearlet approach can also be extended to multidimensional and
multiresolution analysis too [38].

3.5. Steerable pyramid. The steerable pyramid is a multi-scale, multi-directional rep-
resentation similar to a two-dimensional discrete wavelet transform with directional sub-
bands of the image. Critically sampled translation-variant schemes such as wavelets suffer
with instability and aliasing in the presence of noise. Steerable pyramids deal this issue us-
ing a rotation and translation invariant overcomplete basis that is optimized for increased
orientation selectivity [39]. As proved by Raphan and Simoncelli, this representation is
overcomplete by a factor of 4K/3+1, where K is the number of orientation bands utilized
[40]. However, the overcompleteness is very useful in image analysis. Translations and
rotations of a single function are the basis filters of the steerable pyramid. The filter at
any orientation can be computed as a linear combination of the basis filters [41]. Figure 4
shows the decomposition scheme of the steerable pyramid. The image is decomposed into
low-pass and high-pass subbands and decomposition is iterated in the lowpass subband
[42].
Natural images contain oriented or elongated structures (such as lines, edges, and tex-

tures), while noise components do not possess any preferred orientation. Hence, an image
representation based on steerable pyramid easily determines whether the structure is due
to noise or image. So, the steerable pyramid can be effectively used for image enhance-
ment and restoration as it tends to preserve the contents of the image representation that
correspond to visually significant oriented structures in the image [39].

3.6. Bandelet. Wavelet bases exploit only the isotropic regularity of square domains
of varying sizes. However, the geometric regularity in images along edges exhibits an
anisotropic regularity. The bandelet transform exploits anisotropic regularity in images by
constructing orthogonal vectors that are elongated in the direction of maximum regularity.
Critically sampled orthogonal bandelet bases are obtained from a wavelet basis with an
additional cascade of orthogonal operators parameterized by the local geometry of the
image [43].
Bandelet decomposition is derived with a wavelet filter bank followed by directional

orthogonal filters. Each geometric direction leads to a different transform, and the optimal
set of filters can be found using the best basis algorithm [44]. The bandelet bases are
obtained with a bandeletization of warped wavelet bases, which takes advantage of the
image regularity along the geometric flow. Orthogonal bandelet bases are constructed by
dividing the image support in regions inside which the geometric flow is parallel.
A fast discrete bandelet (FDB) transform was introduced in [6] that is computed from

a fast separable wavelet transform along a fixed direction and along the image flow lines.
The image partitioning associated with the FDB transform has three phases:
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Figure 4. Steerable pyra-
mid decomposition

Figure 5. Iterative double
filter bank structure for con-
tourlet transform

• A resampling, that computes the image sample values along the flow lines in each
region of the partition;

• A warped wavelet transform with a subband filtering along the flow lines, which goes
across the region boundaries;

• A bandletization that transforms the warped wavelet coefficient to compute bandlet
coefficients along the flow lines.

The fast inverse bandlet transform includes the three inverse steps:

• An inverse bandletization that recovers the warped wavelet coefficient along the flow
lines;

• An inverse warped wavelet transform with an inverse subband filtering;
• An inverse resampling which computes image samples along the original grid from
the samples along the flow lines in each region using fast algorithms that implement
these three steps, with O(n2) operations for an image of ‘N ’ pixels.

The direct reconstruction of an image from its bandelet coefficients leads to blocking
effects. Alternatively, the reconstruction can be performed with the classical iterative
frame algorithm on the full bandlet frame, which avoids the blocking effect but requires
an iterative reconstruction algorithm. Also, a bandlet lifting scheme has been proposed
that removes the blocking effects [45]. The bandlet estimator outperforms the wavelet
estimator for image compression and denoising. The quantitative results of [6,46] show
that optimized bandlet bases improve significantly over wavelet bases.

3.7. Contourlet. The conventional wavelet transforms are separable and fail to exploit
all the directional information in natural images because of its limited directional selectiv-
ity. Contourlet transforms overcome this by introducing basis functions which are local,
directional, and with multiresolution expansion.

First, a wavelet-like multiscale transform is applied, and then a local directional trans-
form is used to gather the nearby basis functions at the same scale into linear structures.
This representation has two basic building blocks, the Laplacian pyramid (LP) and the
Directional Filter Bank (DFB).
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A computationally efficient iterative double filter bank structure (Figure 5) proposed in
[4,5] uses Laplacian pyramid [46] to capture the point discontinuities, followed by a direc-
tional filter bank [47] to connect point discontinuities into linear structures. Contourlets
can efficiently approximate a smooth contour at multiple resolutions since they have
elongated bases at various scales, directions, and aspect ratios. The discrete contourlet
transform achieves perfect reconstruction if the LP and DFB use perfect reconstruction
filters with redundancy ratio of 4/3 [5]. Contourlet frames are compactly supported with
flexible anisotropy that follows width ≈ length2.
According to Cheng et al., if M is the length of the FIR filter, N is the number of pixels

and Ld is the levels of decomposition in DFB, the number of computations involved in
a contourlet transform is approximated to

(
16
3
+ 8

3 Ld

)
MN , where the first term is from

the pyramidal filter and the second is from the directional filter [48].
Random noise will generate only a few significant contourlet coefficients unlike wavelet

representation. Significant denoising performance is achieved with simple shrinkage meth-
ods on contourlet coefficients [4]. The contourlet transform is shown to be more effective
in recovering smooth contours, both visually as well as in terms of Peak Signal-to-Noise
Ratio (PSNR) [49].

3.8. Multiscale Directional Filter Banks (MDFBs) and Fast Multiscale Di-
rectional Filter Banks (FMDFBs). Pyramidal directional filter banks (PDFBs) or
contourlet transforms, detailed in Section 3.7 are computationally efficient while providing
a high angular resolution. In [50], a modification to the PDFB was proposed, namely the
multiscale directional filter bank (MDFB) which has fine high-frequency decomposition.
Similar to Contourlets, in MDFB the LP and the DFB are combined in order to support
the multiscale property. The MDFB is redundant and a number of possible structures are
available based on the choice of lowpass filter and the number of directional decomposi-
tion, as in the one detailed in [50]. The major advantage of MDFB is that the bandpass
images derived from MDFB decomposition do not suffer from aliasing [48]. According to
Cheng et al. [48], MDFB introduces an additional decomposition in the high-frequency
band and thereby improves the radial frequency resolution at a cost of one set of extra
scale and directional decompositions on the full image size. This result in an increased
number of computations, approximately

(
22
3
+ 14

3 Ld

)
MN . In addition, MDFB has a

higher redundancy than contourlet transforms. The over completeness and increased fre-
quency resolution of MDFB was found useful in applications like texture characterization
and retrieval [48,50].
Cheng et al. in [51,52] proposed a fast and reduced redundancy structure for MDFB

(FMDFB), shown in Figure 6. The idea behind achieving reduced redundancy and compu-
tational complexity is that, directional decomposition on the first two scales is performed
prior to the scale decomposition. This allows sharing of directional decomposition among
the two scales, thus reducing the computational complexity significantly. The resultant
scheme has the same redundancy as a contourlet transform and almost 33% reduction in
number of computations as compared with MDFB. FMDFB exhibits perfect reconstruc-
tion irrespective of the choice of low pass filters. Since the directional decomposition with
lower angular resolution is performed before scale decomposition one set of operations for
directional decomposition with lower angular resolution is saved by sharing [51].
The total number of subband coefficients is the same as the size of the original image

because of the critically sampled DFB, and hence no extra computations are introduced by
the scale decomposition. The computational complexity of FMDFB [52] is approximated
as

(
19
3
+ 8

3 Ld

)
MN . In [8] we have introduced a multiscale denoising approach using

FMDFB for additive gaussian noise removal. Also, from our previous work [53,54], it
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is evident that denoising scheme using FMDFB yield better results than wavelet and
contourlet approaches both visually and in terms of PSNR. Moreover, it preserves fine
details such as edges when compared with wavelet and contourlet based denoising methods
[8,53].

Figure 6. Analysis and synthesis filter bank structure for FMDFB. hL and
gL are the lowpass and highpass filters respectively in LP. Bi and B−1

i rep-
resent the back sampling and inverse back sampling. DFB is the directional
filter bank for direction decomposition.

4. Observations and Discussion. Each of the multiscale image representations dis-
cussed has distinct characteristics and their own pros and cons. Wavelets were the best
tool for denoising until recently because of lower computational complexity and effective
multiresolution structures. Nevertheless, the denoised images have some checkerboard
artefacts, mainly due to the square basis functions. Wavelets lack in directionality, which
is a key characteristic in natural images. Hence, wavelets fail in situations where the
image details are very important. Multiscale image representations are a better choice
in applications where fine details such as edges, contours and textures need to be pre-
served. Almost all multiscale transforms are overcomplete with a significant redundancy
ratio. Yet, some schemes like bandlets and FMDFB are quite appealing because of their
maximally decimated (critical sampling) property. However, representations such as Ga-
bor wavelets and bandlets do not support perfect reconstruction and hence the overall
reconstruction is lossy in nature. Anisotropy is another important feature as far as mul-
tiscale representations are concerned, and most of them follow the parabolic scaling law.
A comparison of the salient features of various multiscale transforms is shown in Table 1.

From the image denoising perspective, the need for a multiscale, multiresolution and
sparse image representation that can preserve image details continues to grow. Multiscale
transforms, discussed in Section 3, have been used for image denoising in the litera-
ture. Gabor wavelets perform better than conventional wavelets, but require complex
reconstruction algorithm and do not support perfect reconstruction. Ridgelets, curvelets,
shearlets and bandlets show some artefacts in the denoised images. Steerable pyramids
can be effectively used for image enhancement and restoration since they preserve the de-
tails of the image that correspond to visually significant oriented structures in the image.
Yet, the redundancy ratio increases linearly with the number of orientation banks which
is undesirable.

In spite of a redundancy ratio of 1.33, contourlet transforms are shown to be more effec-
tive in recovering smooth contours in images, both visually as well as in terms of PSNR.
The key advantage of contourlet-based denoising is that simple thresholding schemes can
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Table 1. Comparison of salient features (Orthogonality, Basis function,
Reconstruction, Overcompleteness and Computational complexity) of vari-
ous multiscale transforms. Unless specified, J is the level of decomposition,
K is the number of orientation bands, N is the number of image pixels, and
M is the length of the FIR filters.

Multiscale
representation
/Characteristics

Orthogonality Basis function Reconstruction
Over

completeness
Computation
complexity

Wavelet Orthogonal Square Perfect
1 (Critically
sampled)

O(N)

Gabor Wavelet Non-orthogonal Gaussian Not exact overcomplete O(N logN)

Ridgelet
Weakly

orthogonal
Fixed anisotropy Perfect 4 O(N2 log(N))

Curvelet Near orthogonal
Variable
anisotropy

Perfect
16J + 1
7.8 (Fast
curvelet)

O(N2 logN) for
N ×N image

Shearlet Orthogonal Parabolic scaling Stable 2 O(N2 logN)
Steerable
Pyramid

Non-orthogonal Gaussian Perfect 4K/3 + 1 O(N logN)

Bandelets Orthogonal Elongated shape
Small

approximation
error

1 (Critically
sampled)

O(N3/2) to O(N)

Contourlet Orthogonal Elongated shape Perfect 1.33
(
16
3 + 8

3 Ld

)
MN

MDFB Orthogonal Elongated shape Perfect 1.33
(
22
3 + 14

3 Ld

)
MN

FMDFB Orthogonal Elongated shape Perfect
1 (Critically
sampled)

(
19
3 + 8

3 Ld

)
MN

be applied on contourlet coefficients. Even though better frequency resolution is achieved
at the cost of increased computational complexity, the denoising performance of MDFB
is similar to that of the contourlet transform.
FMDFB is better than multiscale transforms discussed in terms of overcompleteness

and computational complexity. It is an orthogonal scheme with elongated shaped support
and the reconstruction is perfect irrespective of the filters used. As evident from [8,53],
FMDFB outperforms conventional wavelet- and contourlet-based denoising, both visually
and in terms of PSNR. However, large number of FMDFB subbands at finer decomposition
scales would complicate the denoising process and FMDFB can be applied only for square
images of dyadic size (integer power of two).

5. Conclusion. Multiscale image representations such as Gabor wavelets, ridgelets, cur-
velets, steerable pyramids, shearlets, Contourlets and multiscale directional filter banks
are discussed in this paper with a focus on image denoising. Also, the features of these
transforms, such as orthogonality, basis function, reconstruction, overcompleteness and
computational complexity are analyzed. Each of the representations discussed possess
their own merits and demerits. The tradeoff between several features of these multiscale
representations can be considered before choosing a multiscale representation for a partic-
ular application. In image denoising point of view, the representations that can preserve
fine details such as edges would be preferred since the fine details describe the essential
features that are required for applications such as image analysis. In addition, the compu-
tational complexity can also be taken into account as it aids for real time implementations
of image processing and analysis algorithms.
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