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Abstract. This paper is devoted to adaptive tracking control for a class of uncertain
MIMO switched nonlinear systems. A novel systematic recursive algorithm is proposed
to design adaptive update laws and an adaptive controller by multiple Lyapunov functions
method combining with backstepping recursive technique. And then, by means of stability
theory about the switched systems and the average dwell time conception, two kinds of
switching signals are constructed to ensure that all the signals in the closed-loop systems
are bounded and the outputs of the switched systems converge to a small neighborhood of
the desired trajectories. The effectiveness is investigated by a simulation example.
Keywords: Switched nonlinear systems, MIMO, Adaptive tracking control, Backstep-
ping design, Average dwell time, Boundedness

1. Introduction. In the last decades, switched systems have attracted more and more
attention due to their significance in the modelling of many engineering applications, such
as chemical processes, robot manipulators and power systems. So far, many remarkable
achievements about the stability analysis and synthesis have been made in the field of
switched systems commonly by two kinds of methods: one is to find a common Lyapunov
function to ensure stability of the switched systems under arbitrary switching laws; the
other is to use a multiple Lyapunov functional technique to stabilize the switched systems
under some designed switching laws, see, e.g., [1-7] and the references therein.

In contrast to switched linear systems, the control problem of switched nonlinear sys-
tems presents a much more challenging task because of structural complexity. In recent
years, much interest in switched nonlinear systems is reflected by many works for the
systems in lower triangular forms via extending the backstepping recursive method for
non-switched nonlinear systems in lower triangular forms to the switched ones, see, e.g.,
[8, 9] and the references therein. On the other hand, there may often be uncertain pa-
rameters in practical systems. Some plants are even characterized by the unstructured
uncertainties in industrial control environment (e.g., [10]). Accordingly, robust and (or)
adaptive control design approaches have been addressed for switched systems in lower
triangular forms. [11] overcame the limitation in [9] and solved the case of robust stabi-
lization under arbitrary switching laws for switched lower triangular systems with uncer-
tainties. In [12], an adaptive backstepping technique was adopted for a class of switched
nonlinear systems with constant unknown parameters in lower triangular forms. How-
ever, no systematic recursive approach was given to obtain the common virtual adaptive
control law under arbitrary switching. By multiple Lyapunov function and average dwell
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time method, [13, 14] proposed an adaptive neural control scheme to deal with uncertain-
ties for a class of switched nonlinear systems in lower triangular forms, and reached the
Lyapunov stability.
Despite these efforts using backstepping recursive technique, it is worth mentioning

that most of the existing results about the switched lower triangular systems are lim-
ited to single-input/single-output (SISO) ones. However, due to the interconnections
between various states and inputs, the control design is difficult for multi-input/multi-
output (MIMO) non-switched nonlinear systems (e.g., [15, 16]), much less for the switched
ones. Hence, it is nontrivial to extend the results from SISO switched systems in lower
triangular forms to the MIMO ones. In comparison with the results for SISO switched
nonlinear systems, there are relatively fewer results available for MIMO switched non-
linear systems at present, only see [17, 18]. In addition, both of the papers stabilized
the considered switched systems under arbitrary switching signals by designing common
controller with high-gains, which is undesirable for practical systems.
Motivated by the aforementioned works in literature, this paper extends the adaptive

backstepping recursive technique to a class of MIMO switched nonlinear systems in lower
triangular forms with uncertainties. A novel systemic adaptive output feedback control
approach is developed to guarantee all the signals in the closed-loop switched system
to be globally uniformly ultimately bounded and the output of the controlled switched
system converges to a small neighborhood of the origin. The main advantages of the
proposed control scheme are as follows: 1) By virtue of multiple Lyapunov function
theory, respective controller and proper adaptive law for each switched subsystem are
designed under different coordinate transformation during the iterative process, which
overcomes the problem of high-gain of controller resulting from finding common coordinate
transformation; 2) Two kinds of different switching laws only depending on time are
developed by virtue of average dwell time conception, such that the control problem is
solved for certain class of MIMO switched nonlinear systems combining with the designed
adaptive controllers.
The outline of this paper is as follows. Preliminary knowledge and the problem for-

mulation are given in Section 2. Section 3 presents a direct adaptive tracking control
design by backstepping method and summarizes the eventual results. A numerical exam-
ple is treated to illustrate the effectiveness of the design approach in Section 4. Finally, a
conclusion is given in Section 5.
Notations: N is the set of positive integers. Rm ism-dimension real vector space. We use
N and M for the sets {1, · · · , n} and {1, · · · ,m}, respectively, | · | for the absolute value of
scalars, (̂·) for the estimate of unknown parameter vector (·), and (̃·) := (̂·)−(·) for the esti-
mate error, ?i = (?i1, · · · , ?im)T ∈ Rm. Define Tanh(zi) = diag{tanh( zi1

ε
), · · · , tanh( zim

ε
)},

ε > 0, ei = (1, 1, · · · , 1)T ∈ Rm for integer indices i ∈ N .

2. Problem Statement and Preliminaries. Consider a class of MIMO switched non-
linear systems in the following form: ẋi = Gi,σ(t)(x̄i)xi+1 + fi,σ(t)(x̄i), i = 1, 2, · · · , n− 1

ẋn = Gn,σ(t)(x̄n)u+ fn,σ(t)(x̄n)
y = x1

(1)

where xi, u, y ∈ Rm (m ∈ N, i ∈ N) are the state vector, control input vector and the
system output vector, respectively. x̄i = [xT

1 , x
T
2 , · · · , xT

i ]
T ∈ Rmi. The right-continuous

function σ(t) : [0,+∞) → S = {1, 2, · · · , s} is a piecewise constant switching signal. For
any switching time sequence 0 = t1 < · · · < tk < · · · , when t ∈ [tk, tk+1), σ(t) = σ(tk) =
ik ∈ S, which means the ikth subsystem is activated and the remaining subsystems are



ADAPTIVE CONTROL OF MIMO SWITCHED NONLINEAR SYSTEMS 1151

inactivated. For all i ∈ N and j ∈ S, bounded matrices Gi,j(·) ∈ Rm×m are known
invertible smooth control gains. fi,j(·) ∈ Rm are unknown smooth nonlinear function
vectors and satisfy the following assumption.
Assumption 1. For ∀i ∈ N , j ∈ S, the unknown function vectors fi,j(·) can be expressed
as

fi,j(x̄i) = Fi,j(x̄i)θi +∆Fi,j(x̄i)

where Fi,j(·) ∈ Rm×qi (qi ∈ N) are known smooth nonlinear function, θi ∈ Rqi are un-
known constant parameter vectors, ∆Fi,j(·) = [fi1,j(·), fi2,j(·), · · · , fim,j(·)]T are unknown
smooth functions satisfying

|fil,j(x̄i)| ≤ φil

where φil are unknown nonnegative constant parameters, j ∈ S, l ∈ M , i ∈ N . For
convenience, we let φi = (φi1, · · · , φim)

T ∈ Rm for any i ∈ N .
Assumption 2. The state vector x̄n is available for feedback. The desired signal yd is
continuously differentiable, and yd and its derivative ẏd are bounded.

Definition 2.1. [1] A switching signal σ(t) has average dwell-time τα if there exist num-
bers N0 ≥ 0, τα > 0 such that

∀T ≥ t ≥ t1 : Nσ(T, t) ≤ N0 +
T − t

τα

where N0 is the chatter bound, Nσ(T, t) is the number of switches occurring in the interval
[t, T ). As commonly used in the literature, we choose N0 = 0.

Lemma 2.1. [19] The following inequality holds for any ε > 0 and any η ∈ R

0 ≤ |η| − η tanh(η/ε) ≤ kpε

where kp is a constant that satisfies kp = e−(kp+1), i.e., kp = 0.2785.

3. Adaptive Controller Design and Stability Analysis. The purpose of this section
is to present a systematic design procedure for adaptive control of switched system (1) by
combining multiple Lyapunov functions and average dwell time. The bounded stability
of all signals in closed-loop system is achieved. As usual, the recursive procedure contains
n steps as follows.

Step 1: For the x1-equations of switched system (1), define error variable z1 = x1 − yd.
Then for the positive function

V1,σ(t) =
1

2
zT1 z1 (2)

the time derivative is

V̇1,j = zT1 G1,j(x1)x2 + zT1 [F1,j(x1)θ1 +∆F1,j(x1)− ẏd] (3)

where σ(t) = j ∈ S. Let z2 = x2−α1, with the assumption and lemma, the virtual control
law α1 chosen as

α1 = G−1
1,j

[
−K1,jz1 − F1,j θ̂1 + ẏd − Tanh(z1)φ̂1

]
(4)

makes Formula (3) satisfy

V̇1,j ≤ −zT1 K1,jz1 + zT1 G1,jz2 + zT1 F1,j θ̃1 + zT1 Tanh(z1)φ̃1 + kpεe
T
1 φ1 (5)

where K1,j = KT
1,j > 0 are known proper constant matrices.
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Step i (2 ≤ i ≤ n − 1): Define vectors Θi = (θT1 , θ
T
2 , · · · , θTi )T and Φi = (φT

1 , φ
T
2 , · · · ,

φT
i )

T . Noting that the error variable zi = xi − αi−1 and αi−1 is a function of x̄i−1, Θ̂i−1,

Φ̂i−1, y
(i−1)
d , then from xi-equations of system (1), the dynamic equation for zi is

żi = Gi,j(x̄i)xi+1 + Fi,j(x̄i)θi − α̇i−1 +∆Fi,j(x̄i)

= Gi,j(x̄i)xi+1 + ΣT
i,jΘi −

i−1∑
ς=1

∂αi−1

∂xT
ς

Gsxς+1 − ωi−1

− ∂αi−1

∂(y
(i−1)
d )T

y
(i)
d +∆Fi,j(x̄i)−

i−1∑
ς=1

∂αi−1

∂xT
ς

∆Fς,j(x̄ς)

(6)

where

ΣT
i,j =

[
−∂αi−1

∂xT
1

F1,j, · · · ,−
∂αi−1

∂xT
i−1

Fi−1,j,Fi,j

]
(7)

ωi−1 =
∂αi−1

∂Θ̂T
i−1

˙̂
Θi−1 +

∂αi−1

∂Φ̂T
i−1

˙̂
Φi−1 (8)

Let zi+1 = xi+1 − αi. Then the time derivative of the positive function

Vi,j =
1

2
zTi zi (9)

along dynamic Equation (6) gives that

V̇i,j ≤ zTi Gi,jzi+1 + zTi

[
Gi,jαi + ΣT

i,jΘi −
i−1∑
ς=1

∂αi−1

∂xT
ς

Gςxς+1 − ωi−1

]

−zTi
∂αi−1

∂(y
(i−1)
d )T

y
(i)
d + |zTi ∆Fi,j(x̄i)|+

∣∣∣∣∣zTi
i−1∑
ς=1

∂αi−1

∂xT
ς

∆Fς,j(x̄ς)

∣∣∣∣∣
(10)

In addition, with assumption and lemma, we know that

|zTi ∆Fi,j(x̄i)|+

∣∣∣∣∣zTi
i−1∑
ς=1

∂αi−1

∂xT
ς

∆Fς,j(x̄ς)

∣∣∣∣∣ ≤ zTi Π
T
i,jΦi +

5

4
kpεE

T
i Φi (11)

where

ET
i =

[
meT1 , · · · ,meTi−1,

4

5
eTi

]
(12)

ΠT
i,j = [Ti−1,1, · · · , Ti−1,i−1,Tanh(zi)]m×mi (13)

and for any ς = 1, · · · , i− 1,

Ti−1,ς = (ar,h)m×m, r, h ∈ M

ar,h =
1

4

(
∂αi−1,r

∂xς,h

)2

tanh

(
zi,r
ε

(
∂αi−1,r

∂xς,h

)2
)

+ tanh
(zi,r

ε

)
Combining with (10) and (11), the virtual control law chosen as

αi = G−1
i,j

[
−Ki,jzi −GT

i−1,jzi−1 − ΣT
i,jΘ̂i +

i−1∑
ς=1

∂αi−1

∂xT
ς

Gςxς+1

+
∂αi−1

∂(y
(i−1)
d )T

y
(i)
d − ΠT

i,jΦ̂i + ti−1

] (14)
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leads to
V̇i,j ≤ zTi Gi,jzi+1 − zTi Ki,jzi − zTi Gi−1,jzi−1 + zTi Σ

T
i,jΘ̃i

+zTi Π
T
i,jΦ̃i + zTi (ti−1 − ωi−1) +

5

4
kpεE

T
i Φi

(15)

where Ki,j = KT
i,j > 0, and ti−1 is the adjustment function to be determined later.

Step n: Noting that the error variables zn = xn − αn−1 and αn−1 is a function of x̄n−1,

Θ̂n−1, Φ̂n−1, y
(n−1)
d , then from xn-equations of system (1), the dynamic equation for zn is

żn = Gn,j(x̄n)u+ ΣT
n,jΘn −

n−1∑
ς=1

∂αn−1

∂xT
ς

Gςxς+1 − ωn−1

− ∂αn−1

∂(y
(n−1)
d )T

y
(n)
d +∆Fn,j(x̄n)−

n−1∑
ς=1

∂αn−1

∂xT
ς

∆Fς,j(x̄ς)

(16)

where Σn,j, ωn−1 are defined in (7), (8) with i = n, respectively. The actual control input
chosen as

u = G−1
n,j

[
−Kn,jzn −GT

n−1,jzn−1 − ΣT
n,jΘ̂n +

n−1∑
ς=1

∂αn−1

∂xT
ς

Gςxς+1

+
∂αn−1

∂(y
(n−1)
d )T

y
(n)
d − ΠT

n,jΦ̂n + tn−1

] (17)

makes the time derivative of the positive function

Vn,j =
1

2
zTn zn (18)

along dynamic Equation (16) satisfy

V̇n,j ≤ −zTnKn,jzn − zTnG
T
n−1,jzn−1 + zTnΣ

T
n,jΘ̃n

+zTnΠ
T
n,jΦ̃n + zTn (tn−1 − ωn−1) +

5

4
kpεE

T
nΦn

(19)

where Kn,j = KT
n,j > 0 are known proper constant matrices. ET

n , Π
T
n,j are defined in (12)

and (13) with i = n, respectively. tn−1 is the adjustment function to be determined later.
The control performance and the trajectories of all signals in the closed-loop switched

system will be summarized in the following theorem.

Theorem 3.1. Consider the switched MIMO nonlinear system (1) with Assumptions 1
and 2. If there exist continuously differentiable positive definite functions Vj(t) : [0,∞) →
[0,∞) and a constant µj > 0, j ∈ S such that at any switching time tk (k ∈ N),

Vik(tk) ≤ µkVik−1
(t−k ) (20)

and the switching signals possess the average dwell time

τα ≤ ln q

λ
(21)

where q = max
k∈N

{µk, 1}, and λ is a known positive constant. Then under the control input

(17) and the appropriate adaptive laws given later, all the closed-loop signals zi, θ̂i, φ̂i,
i ∈ N are uniformly ultimately bounded for any initial conditions.

Proof: Supposing that t ∈ [tk, tk+1) (k ∈ N), then the ikth subsystem is activated.
Choose the augmented Lyapunov function candidate for switched system (1)

Vik = V1,ik + · · ·+ Vn,ik +
1

2
Θ̃T

nΛ
−1
n,ik

Θ̃n +
1

2
Φ̃T

nΓ
−1
n,ik

Φ̃n (22)
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where Vi,ik (i ∈ N, ik ∈ S) are defined in (2), (9) and (18). Λn,ik = diag{λ1,ik , · · · , λn,ik},
Γn,ik = diag{γ1,ik , · · · , γn,ik} and λi,ik = λT

i,ik
, γi,ik = γT

i,ik
(i ∈ N) are known positive

matrices. Invoking (5), (15) and (19), the time derivative of Vik along switched system
(1) satisfies

V̇ik ≤ −
n∑

i=1

zTi Ki,ikzi + z̄TnΞn,ikΘ̃n + z̄TnΥn,ikΦ̃n +
n−1∑
ς=1

zTς+1(tς − ως)

+kpεE
TΦn − Θ̃T

nΛ
−1
n,ik

˙̂
Θn − Φ̃T

nΓ
−1
n,ik

˙̂
Φn

(23)

where

Ξn,ik =


F1,ik 0 · · · 0

− ∂α1

∂xT
1
F1,ik F2,ik · · · 0

...
...

. . . 0

−∂αn−1
∂xT

1
F1,ik −∂αn−1

∂xT
2
F2,ik · · · Fn,ik



Υn,ik =


Tanh(z1) 0 · · · 0 0

T1,1 Tanh(z2) · · · 0 0
...

...
. . .

...
...

Tn−2,1 Tn−2,2 · · · Tanh(zn−1) 0

Tn−1,1 Tn−1,2 · · · Tn−1,n−1 Tanh(zn)


ET =

[(
1 +

5

4
(n− 1)m

)
eT1 ,

(
1 +

5

4
(n− 2)m

)
eT2 , · · · ,

(
1 +

5

4
m

)
eTn−1, e

T
n

]
Consider the adaptive laws for Θ̂n, Φ̂n as

˙̂
Θn = Λn,ik(Ξ

T
n,ik

z̄n − βΘ̂n) (24)

˙̂
Φn = Γn,ik(Υ

T
n,ik

z̄n − ρΦ̂n) (25)

and the adjustment function tς (ς = 1, · · · , n− 1) as

tς =
∂ας

∂Θ̂T
ς

Λς,ik(Ξ
T
ς z̄ς − βΘ̂ς −∆ςzς+1)−

∂ας

∂x̄T
ς−1

F̄ς−1Λς−1,ikPς−1ξς

+
∂ας

∂Φ̂T
ς

Γς,ik(Υ
T
ς z̄ς − ρΦ̂ς −Ψςzς+1)−

∂ας

∂x̄T
ς−1

T̄ς−1Γς−1,ikQς−1ξς
(26)

where

∆ς =

(
∂ας

∂xT
1

F1,j,
∂ας

∂xT
2

F2,j, · · · ,
∂ας

∂xT
ς

Fς,j

)T

F̄ς−1 =
(
F T
1,j, F

T
2,j, · · · , F T

ς,j

)T

Pς−1 =



∂α1

∂θ̂T1

∂α2

∂θ̂T1
· · · ∂ας−1

∂θ̂T1

0 ∂α2

∂θ̂T2
· · · ∂ας−1

∂θ̂T2

...
...

. . .
...

0 0 · · · ∂ας−1

∂θ̂Tς−1

 , Qς−1 =



∂α1

∂φ̂T
1

∂α2

∂φ̂T
1

· · · ∂ας−1

∂φ̂T
1

0 ∂α2

∂φ̂T
2

· · · ∂ας−1

∂φ̂T
2

...
...

. . .
...

0 0 · · · ∂ας−1

∂φ̂T
ς−1


Ψς = (Tς,1, · · · , Tς,ς)

T

T̄ς−1 = (Tanh(z1),Tanh(z2), · · · ,Tanh(zς−1))
T

ξς = (zT2 , z
T
3 , · · · , zTς )T
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and β > 0, ρ > 0 are known constants. Substituting (24)-(26) into (23), we have

V̇ik ≤ −
n∑

i=1

zTi Ki,ikzi + βΘ̃T
n Θ̂n + ρΦ̃T

n Φ̂n + kpεE
TΦn

≤ −λVik + c
(27)

where λ = min
i∈N,ik∈S

{
2λmin(Ki,ik),

β

λmax(Λ
−1
n,ik

)
, ρ

λmax(Γ
−1
n,ik

)

}
, c = β

2
ΘT

nΘn+
ρ
2
ΦT

nΦn+kpεE
TΦn.

Integrating both sides of (27) leads to

Vik(t) ≤ Vik(tk)e
−λ(t−tk) − c

λ
e−λ(t−tk) +

c

λ

With the conditions (20) and (21), it further follows

Vik(t) ≤µVik−1
(t−k )e

−λ(t−tk) − c

λ
e−λ(t−tk) +

c

λ

≤µVik−1
(tk−1)e

−λ(t−tk−1) − µ
c

λ

[
e−λ(t−tk−1) − e−λ(t−tk)

]
− c

λ

[
e−λ(t−tk) − 1

]
≤ · · · ≤ µkVi0(t0)e

−λ(t−t0) − c

λ

k−1∑
ι=0

µk−ι
[
e−λ(t−tι) − e−λ(t−tι+1)

]
− c

λ

[
e−λ(t−tk) − 1

]
≤ ek ln qe−kλταVi0(t0) +

c

λ

k∑
ι=0

qk−ι ≤ Vi0(t0) + C

(28)

where Vi0(t0) =
1
2

∑n
i=1

[
zTi (0)zi(0) + Θ̃T

i (0)Λ
−1
i,i0

Θ̃i(0) + Φ̃T
i (0)Γ

−1
i,i0

Φ̃i(0)
]
, and C = c

λ

∑k
ι=0

qk−ι. It can be seen from (22) and (28) that all signals of the closed-loop switched system
(1) are uniformly ultimately bounded. This completes the proof.

Remark 3.1. According to the stability theory of switched systems, a switched system
might become unstable even if all the individual subsystems are stable. Thus, it is an
important issue to restrict the admissible switching signals to achieve stability for the
switched systems. In Theorem 3.1, condition (20) holding for µk > 1 (k ∈ N) means
that at each switching time tk, the energy function Vik of the activated subsystem exists
unstable switching. Thus, the operation interval of the activated subsystem affects the
stability of the whole switched system. In addition, if 0 < µk ≤ 1 in condition (20), the
energy function Vik of the activated subsystem processes stable switching. In this case,
the activated interval may be arbitrary under the assumption that the activated subsystem
is stabilizable. So according to the essence of average dwell time, it is possible to switch
fastly and then compensate for it by switching slowly according to the value of µk. What
is more, if the switching law is determined only by the stable switching time of the energy
function Vik , i.e., condition (20) holds with maxk∈N{µk} ≤ 1 for each tk (k ∈ N), there
is no limitation on the dwell time of the activated subsystem, which may be described by
the following proposition.

Corollary 3.1. Consider the switched MIMO nonlinear system (1) with Assumptions 1
and 2. If there exist continuously differentiable positive definite functions Vj(t) : [0,∞) →
[0,∞), j ∈ S such that at any switching time tk (k ∈ N),

Vik(tk) ≤ Vik−1
(t−k ) (29)
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ik, ik−1 ∈ S and ik 6= ik−1. Then under the control input (17), the adaptive laws (24),

(25) and the adjustment function (26), all the closed-loop signals zi, θ̂i, φ̂i, i ∈ N are
uniformly ultimately bounded for any initial conditions.

4. Numerical Example. To demonstrate the effectiveness of the proposed adaptive con-
trol algorithms, a numerical example with two MIMO switched subsystems is considered
in this section: 

ẋ1 = G1,σ(t)(x1)x2 + F1,σ(t)(x1)θ1 +∆F1,σ(t)(x1),

ẋ2 = G2,σ(t)(x̄2)u+ F2,σ(t)(x̄2)θ2 +∆F2,σ(t)(x̄2),

y = x1

(30)

where x1 = (x11, x12)
T ∈ R2, x2 = (x21, x22)

T ∈ R2, σ(t) = 1, 2 and

F1,1(x1) =

[
x2
11 x11x12

x12 x3
12

]
, F1,2(x1) =

[
x3
11 x12

x11 x11x12

]
,

F2,1(x̄2) =

[
x11x21 x12x22

x12 sin(x22) ex22

]
, F2,2(x̄2) =

[
2x11x21 + x22 x11 + x22

x12 cos(x11) x11x
2
21

]
,

G1,1(x1) =

[
1.5 + sin(x11) 0

0 2 + cos(x12)

]
, G1,2(x1) =

[
2− cos(x11) 0

0 3 + sin(x12)

]
,

G2,1(x̄2) =

[
2.2 + sin(x22) 0

0 1.7− sin(x21) cos(x12)

]
,

G2,2(x̄2) =

[
2.4− cos(x11) cos(x22) 0

0 2 + sin(x12x21)

]
In addition, θi are unknown parameter vectors, and ∆Fi,σ(t)(·) are unknown smooth
functions satisfying Assumption 1, i = 1, 2. For simulation purpose, we assume θ1 =
(0.1,−0.2)T , θ2 = (−0.3, 0.1)T , φ1 = (0.2, 0.21)T , φ2 = (0.15, 0.2)T . Following the
proposed design procedure, the control objective is to design an adaptive controller u
given by (17) and the parameter update laws for θ̂i, φ̂i (i = 1, 2) given by (24) and
(25), such that the system output y = x1 tracks the desired signal yd = [yd1, yd2]

T ,
where yd1 = 0.1 sin(t) + 0.3 sin(0.3t) and yd2 = 0.2 cos(t) + 0.2 cos(0.1t). The cor-
responding parameters are adopted in the simulation: K1,1 = K1,2 = diag{17, 22},
K2,1 = K2,2 = diag{19, 15}, λ1,1 = λ1,2 = diag{0.5, 0.5}, λ2,1 = λ2,2 = diag{0.3, 0.1},
γ1,1 = γ1,2 = diag{0.4, 0.6}, γ2,1 = γ2,2 = diag{0.3, 0.2}, β1 = 0.5, β2 = 0.3, ρ1 = 0.5,
ρ2 = 0.6, ε1 = 0.1, ε2 = 0.2. The initial values are chosen as x(0) = (0.1, 0.25,−0.45, 0.2)T ,

θ̂1 = (0.3,−0.4)T , θ̂2 = (0.5,−0.1)T , φ̂1 = (0.2, 0.2)T , φ̂2 = (0.1, 0.2)T .
The simulation results are given with two different switching laws. Case 1: according

to Theorem 3.1, the average dwell time τα satisfies τα ≤ 0.667. A uniform switching with
dwell time τα = 0.6 is considered in the simulation, see Figures 1-4. Case 2: according
to Corollary 3.1, the switching law satisfies (29), i.e., a slow switching is chosen here,
see Figures 5-8. From these simulation results, it can be seen that even though there are
some unavailable factors on the nonlinear functions in the considered system, the proposed
adaptive output feedback controller guarantees the desired performance for both states
and tracking errors of the closed-loop switched system (30).
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Figure 1. Switching signal with average dwell time τα = 0.6
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Figure 3. Tracking performance of output y2 = x12
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Figure 4. Control signal u = (u1, u2)
T for case 1

5. Conclusion. An adaptive backstepping tracking control problem has been investi-
gated for a class of uncertain MIMO switched nonlinear systems in lower triangular forms.
Combing the adaptive control theory, multiple Lyapunov synthesis and average dwell time
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Figure 5. Switching signal for case 2
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Figure 7. Tracking performance of output y2 = x12

0 50 100 150

−1

0

1

2

3

4

t/s

co
nt

ro
l i

np
ut

 u

 

 
u

1

u
2

Figure 8. Control signal u = (u1, u2)
T for case 2

conception, an adaptive output feedback controller is constructed recursively under dif-
ferent coordinate transformation to guarantee all the signals of the resulting closed-loop
switched system are bounded and the tracking error converges to a small neighborhood of
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the origin. Finally, simulation studies have been presented to illustrate the effectiveness
of the proposed control method.
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