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Abstract. The implementation of manipulated variables in model predictive control
(MPC) is generally considered as an ideal control, which means the outputs of MPC
are applied to real process completely. However, actually, due to actuator capacity of
the bottom PID control or other constraints hidden in process plant, the control actions
of manipulated variables actually applied may not be equal to the outputs of the MPC
controller, so if MPC ignores the difference between actual implementation and theoretical
calculation of manipulated variables, it will cause poor control performance. The problem
cannot be solved by the traditional output or state feedback method. In this paper, an input
feedback control algorithm is proposed for MPC. During the calculation of control law, the
previous actual implementation values of manipulated variables are used to replace the
previous theoretical calculation values through input feedback. The input feedback control
in MPC strategy is illustrated on two cases: nonideal bottom PID control and false loose
constraints. The simulation results demonstrate the effectiveness of the proposed input
feedback control strategy.
Keywords: Model predictive control, Input feedback, Nonideal control, False loose
constraints

1. Introduction. Model predictive control (MPC) has been widely adopted in the petro-
chemical industry for controlling large, multi-variable processes. MPC solves an online
optimization to determine inputs, which considers the current conditions of plant, any
disturbances affecting operation, and imposed safety and physical constraints. The suc-
cessful implementation [1-4] of MPC in industry is due to its distinct advantages.

In particular, MPC can achieve approximately optimal control performance even un-
der actual constraints. This compelling feature has attracted significant attention for the
analysis and synthesis of different forms of MPC. Recently, the application requirements
on considering actual constraints and the implementation environment have triggered
increasing attention of MPC towards new directions. Zhu et al. [5] presented stability
results for discrete-time MPC system subject to an input amplitude constraint. Lee and
Kouvaritakis [6] examined the stabilizable regions of receding horizon predictive control
(RHPC) with input constraints. Li et al. [7] transformed a robust MPC strategy under
chance constraints into a stochastic program under joint probabilistic constraints. Mayne
et al. [8] discussed the stability and optimality of constrained MPC systematically. Wan
and Kothare [9] developed an efficient robust constrained MPC algorithm with a time
varying terminal constraint set for systems with model uncertainty and input constraints.
Su et al. [10] proposed a constrained decoupling generalized predictive control algorithm
for MIMO system considering constraints of inputs and their increments. Mhaskar et
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al. [11] proposed a Lyapunov-based predictive control design to solve the problem of sta-
bilization of nonlinear systems subject to state and control constraints. Xia et al. [12]
proposed parameter-dependent Lyapunov functions to design a state feedback controller
for robust constrained MPC problem. Cannon et al. [13] provided a method of handling
probabilistic constraints of Robust MPC and ensuring closed loop stability through the
use of an extension of the concept of invariance. Adetola et al. [14] combined parameter
adjustment mechanism with robust MPC algorithms for the constrained nonlinear sys-
tem. Veselý et al. [15] designed a robust output/state MPC for linear polytopic systems
with input constraints using Lyapunov function approach. Xia et al. [16] considered the
problem of constrained infinite-horizon model predictive control for fuzzy-discrete sys-
tems. Pérez et al. [17] proposed an explicit solution to the MPC of linear systems subject
to non-convex polyhedral constraints. Rahideh and Shaheed [18] presented a constrained
output feedback MPC for nonlinear systems using unscented Kalman filter. Li and Shi
[19] studied the robust output feedback MPC problem for a constrained linear system
subject to periodical measurement losses and external disturbances. Zhang et al. [20] pre-
sented a distributed MPC algorithm for polytopic uncertain systems subject to actuator
saturation. Fagiano and Teel [21] investigated a terminal state equality constraint for
MPC, where the terminal state/input pair is not fixed a priori in the optimization. The
above MPC strategies are mainly output or state feedback control subject to the input,
output or state constraints.
In real industrial process, the outputs of MPC controller are always downloaded to the

setpoints of bottom PID control, and the control action that actually applied to the process
is implemented by bottom PID control. Usually the implementation on manipulated
variables of model predictive control is generally considered as an ideal control. However,
due to dynamic characteristics of local bottom PID control loop, the control actions on
manipulated variables actually applied may not be equal to the outputs of the MPC
controller. If the MPC system is running under the situation for long time, it will cause
poor control performance.
The feedback method is always utilized to compensate the errors between prediction

model and actual process. The generally utilized feedback methods are output feedback
and state feedback. As said in the previous paragraph, there are errors between actual
implementation up and theoretical calculation u of manipulated variables, and they can
not be compensated by output feedback and state feedback methods. An input feedback
method is utilized to solve the problem in this paper. During the calculation of control
law ∆u(k), the previous actual implementation values up(k− 1) of manipulated variables
are used to replace the previous theoretical calculation values u(k − 1) through input
feedback, which guarantee well control performance when u 6= up. The input feedback
control in MPC strategy will be illustrated on two cases: nonideal bottom PID control
and false loose constraints.
The paper is organized as follows. Section 2 analyzes the implementation methods of

manipulated variables in MPC through bottom PID control. Section 3 gives the input
feedback control algorithm of MPC. Section 4 introduces the input feedback control algo-
rithm applied in nonideal bottom PID control. Section 5 gives the input feedback control
algorithm applied in false loose constraints problem. Finally, the major conclusions are
drawn in Section 6.

2. Implementation Methods Analysis of Manipulated Variables in MPC. The
control structure of MPC is seen in Figure 1. The output of the MPC controller u(k) is
given by adding the control law ∆u(k) with the previous control action u(k − 1). The
control action actually applied is up(k). Usually the implementation of model predictive
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control is considered as ideal control which accounts for u(k) = up(k). In some instances,
there may be problems of nonideal control or false loose constraints, which will cause
u(k) 6= up(k) and means the outputs of MPC cannot be downloaded to the process
completely.

2.1. Nonideal bottom PID control problem. In the industrial process, due to influ-
ences of the actuator capacity or the characteristics of bottom PID control loop, it will
cause u(k) 6= up(k) which means that up(k) = αu(k) (α ∈ (0, 1)) in Figure 1.

MPC
Ys

u(k) yup

u(k-1)

u(k) z
-1

Figure 1. MPC control structure
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Figure 2. Three kinds of MPC-PID cascade control structure. (a) The
common MPC structure, (b) the common MPC structure, (c) the common
MPC structure.
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Figure 3. Control realization characteristics for manipulated variables of
MPC-PID cascade control in two sample time

As seen in Figure 2(a), in the instance ‘transparent control’, the control action u(k) is
obtained by ∆u(k) + u(k − 1), ∆u(k) is the control law, u(k − 1) is the control action
of the previous step. For each step, u(k) is the setpoint of the bottom PID control loop,
the output of the bottom PID control loop is up(k). In the theoretical study of MPC, it
assumes that the bottom PID control is an ideal control which accounts for u(k) = up(k).
As said in Section 1, in industrial unit, due to the dynamic characteristic of the bottom
PID control loop, it may cause u(k) 6= up(k).
Let us consider a ‘temperature – flow rate’ control system with MPC-PID cascade

structure. Generally, the sample time of the outer MPC loop is about 1 minute, and the
complete response time of inner flow PID control loop is about 10 minutes. So in each
sample time of the outer loop, the output of MPC controller, that is the value of flow rate,
may not be realized completely by the inner PID control loop which accounts for u 6= up

in Figure 2(a). Figure 3 shows the output of MPC controller u(k) and the actual output
of the bottom PID control loop (up(k)) in the former two steps, obviously they are not
equal. In the first step, the output of MPC controller u(k) is the setpoint of the inner PID
control loop. It does not reach the steady state in one sampling period of the MPC loop.
In the second step, the PID control loop executs the output of MPC controller ignoring
whether the first output of the MPC controller is realized or not.

2.2. False loose constraints problem. In the problem of false loose constraints, at
the moment k, the previous step u∗(k − 1) that actually applied to the process can be
measured: if ∆u∗

i (k − 1) > 0 or ∆u∗
i (k − 1) < 0, and the measured actual control action

∆up,i(k− 1) < ∆u∗
i (k− 1) or ∆up,i(k− 1) > ∆u∗

i (k− 1), it represents that ∆u∗
i (k− 1) is

not be downloaded entirely and the nominal constraints become false loose constraints,
as seen in Figure 4.

2.3. Realization characteristics analysis for manipulated variables. In the above
two situations u 6= up, as seen in Figure 3 and Figure 4. In the calculation of the control
law, the MPC controller assumes that u = up, so there are errors between the ideal and
the actual situation, and the control performance may be affected by these errors.
As seen in Figure 2(b), a new control structure is utilized to solve this problem. The

control action up(k−1) that actually applied to the process is utilized to add with ∆u(k),
and the sum value is set as the setpoint of the inner PID control loop. However, the
method is of the following problem: in the calculation of the control law ∆u(k), the
previous historical control action is u(k − 1), it is inconsistency to use up(k − 1) adding
with ∆u(k) instead of u(k−1). As seen in Figure 5, the setpoint of the inner PID control
loop exceeds the desired MPC controller output. This method will be unstable in the
actual process.
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Figure 4. False and loose constraint. (a) ∆up,i(k − 1) < ∆u∗
i (k − 1), (b)

∆up,i(k − 1) > ∆u∗
i (k − 1).
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Figure 5. Realization characteristics for operating variables

To solve this problem, an input feedback control is proposed, and the control structure
is seen in Figure 2(c). In general, the control action u(k−1) of the previous step is used in
the calculation of the control law ∆u(k). In input feedback control structure, the control
action u(k− 1) is replaced by the control action up(k− 1) which is actually applied to the
process. The next section will give this modified method.

3. Model Predictive Control Algorithm with Input Feedback Structure. Let
us consider a process with r outputs and m inputs described by the following state space
model. {

x(k + 1|k) = Ax(k) + Bu(k)
y(k) = Cx(k)

(1)

where, x(k) ∈ Rn is the state vector at the moment k, x(k+ i |k ) ∈ Rn are the predictive
state vector at the moment (k+ i). The inputs u(k) ∈ Rm are the manipulated variables,
the outputs y(k) ∈ Rr are the controlled variables; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n are
the corresponding matrices of the system.

According to the state feedback MPC algorithm, P is the prediction horizons and M
is the control horizon, and M ≤ P , ∆u(k) = u(k) − u(k − 1) is the increment of input
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variable, if i ≥ M , ∆u(k + i) = 0, model (1) can be represented by the increment form.{
x(k + 1|k) = Ax(k) +B[u(k − 1) + ∆u(k)]
y(k) = Cx(k)

(2)

The matrix form expression for the prediction of the state is
x(k + 1|k)
x(k + 2|k)

...
x(k + P |k)

 =


A
A2

...
AP

x(k) +


B

AB +B
...

P−1∑
i=0

AiB

u(k − 1)

+



B
AB +B B

...
...

. . .
M−1∑
i=0

AiB
M−2∑
i=0

AiB · · · B

M∑
i=0

AiB
M−1∑
i=0

AiB · · · AB +B

...
...

...
P−1∑
i=0

AiB
P−2∑
i=0

AiB · · ·
P−M∑
i=0

AiB




∆u(k)

∆u(k + 1)
...

∆u(k +M − 1)


(3)

Therefore, the predictive output can be represented by the following equation.

Yc(k) = Sxx(k) + Suu(k − 1) + S∆U∆U(k) + E(k) = Y0(k) + S∆U∆U(k) (4)

where,

Yc(k) =


yc(k + 1)
yc(k + 2)

...
yc(k + p)

 , ∆U(k) =


∆u(k)

∆u(k + 1)
...

∆u(k +M − 1)

 ,

Sx =


CA
CA2

...
CAP

 , Su =


CB

C(AB +B)
...

C
P−1∑
i=0

AiB

 ,

S∆U =



CB
C(AB +B) CB

...
...

. . .

C
M−1∑
i=0

AiB C
M−2∑
i=0

AiB · · · CB

C
M∑
i=0

AiB C
M−1∑
i=0

AiB · · · C(AB +B)

...
...

...

C
P−1∑
i=0

AiB C
P−2∑
i=0

AiB · · · C
P−M∑
i=0

AiB


,
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Y0(k) =


y0(k + 1)
y0(k + 2)

...
y0(k + P )

 = Sxx(k) + Suu(k − 1).

The general expression for such an objective function will be

V (k) = ‖Yc(k)− Ys(k)‖2Q + ‖∆U(k)‖2R (5)

where Ys(k) =


ys(k + 1)
ys(k + 1)

...
ys(k + P )

 is the reference trajectory.

The objective (5) can be represented as

V (k) = ‖Yc(k)− Ys(k)‖2Q + ‖∆U(k)‖2R = Const + ∆U(k)TH∆U(k) + 2FT∆U(k) (6)

where H = ST
∆UQS∆U +R, F = ST

∆UQYz(k), Yz(k) = Y0(k)−Ys(k). The term “Const” is
a constant value, it has no influence on objective function, so the objective function can
be described as

J(k) = ∆U(k)TH∆U(k) + 2FT∆U(k) (7)

The constraints of inputs and outputs variables in the system can be represented as:

umin ≤ u ≤ umax, ymin ≤ y ≤ ymax (8)

The matrix form of the constraints is

D1∆U(k) ≤ d1, D2∆U(k) ≤ d2 (9)

where

D1 =

[
Ψ
−Ψ

]
, D2 =

[
S∆U

−S∆U

]
,

d1 =

[
Umax − U(k − 1)
U(k − 1)− Umin

]
, d2 =

[
Ymax − Y0(k)
Y0(k)− Ymin

]
,

U(k − 1) =

 u(k − 1)
...

u(k − 1)

 , Umax =

 umax
...

umax

 , Umin =

 umin
...

umin

 ,

Ymax =

 ymax
...

ymax

 , Ymin =

 ymin
...

ymin

 ,

Y0(k) =

 y0(k + 1)
...

y0(k + P )

 , Ψ =


I
I I
...

...
. . .

I I · · · I

 .

The control law can be obtained by minimizing the quadratic functional J

min
∆U(k)

J(k) = 1
2
∆U(k)T2H∆U(k) + 2FT∆U(k)

s.t.

[
D1

D2

]
∆U(k) ≤

[
d1
d2

]
(10)

The solution minimizing (10) gives an optimal suggested control increment sequence
∆U∗(k). The first output of ∆U∗(k) is ∆u∗(k). In the next step, the control law is
calculated using the receding horizon concept. The outer loop manipulated variable is
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u(k) = u(k − 1) + ∆u∗(k). As seen in Figure 2(a), the output of MPC controller u(k) is
the setpoint of the inner PID control loop.
In the theory study of model predictive control, it is assumed that the implementation of

manipulated variables is an ideal control which accounts for the MPC output u that equals
the inner PID loop output up. In real industrial process, due to the dynamic characteristic
of the inner PID control loop, the MPC output u may not equal the inner PID control
loop output up. In this situation, there is a deviation for manipulated variables between
prediction model (2) and the actual system, the real system response may deviate from
the expected output.
In this paper, the input feedback method is used to solve this problem. The control

action up(k − 1) that applied to the process is taken into the calculation of the next step
control law ∆u(k) though input feedback. At the moment k, prediction model (2) is
modified by {

x̂(k + 1|k) = Ax̂(k) + B[up(k − 1) + ∆u(k)]
ŷ(k) = Cx̂(k)

(11)

According to the modified prediction model (11), u(k − 1) in the prediction of the state
vector (3) is replaced by up(k − 1).


x̂(k + 1|k)
x̂(k + 2|k)

...
x̂(k + P |k)

 =


A
A2

...
AP

 x̂(k) +


B

AB +B
...

P−1∑
i=0

AiB

up(k − 1)

+



B
AB +B B

...
...

. . .
M−1∑
i=0

AiB
M−2∑
i=0

AiB · · · B

M∑
i=0

AiB
M−1∑
i=0

AiB · · · AB +B

...
...

...
P−1∑
i=0

AiB
P−2∑
i=0

AiB · · ·
P−M∑
i=0

AiB




∆u(k)

∆u(k + 1)
...

∆u(k +M − 1)



(12)

The prediction of the output Yc in Equation (4) is replaced by Ŷc.

Ŷc(k) = Ŷ0(k) + S∆U∆U(k) (13)

where Ŷ0(k) = Sxx̂(k) + Suup(k − 1).

The objective function (7) of control performance J is replaced by Ĵ .

Ĵ(k) = ∆U(k)TH∆U(k) + 2F̂T∆U(k) (14)

where F̂ = ST
∆UQŶz(k), Ŷz(k) = Ŷ0(k)− Ys(k).

The constraints of inputs and outputs in Equation (9) are replaced by

D1∆U(k) ≤ d̂1, D2∆U(k) ≤ d̂2 (15)
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where

d̂1 =

[
Umax − Up(k − 1)
Up(k − 1)− Umin

]
, d̂2 =

[
Ymax − Ŷ0(k)

Ŷ0(k)− Ymin

]
, Up(k − 1) =

 up(k − 1)
...

up(k − 1)

 .

The control law can be obtained by solving the quadratic programming problem

min
∆U(k)

Ĵ(k) = 1
2
∆U(k)T2H∆U(k) + 2F̂T∆U(k)

s.t.

[
D1

D2

]
∆U(k) ≤

[
d̂1
d̂2

] (16)

Equations (3), (4), (7), (9), (10) are replaced by Equations (12)-(16). The control action
u(k − 1) in model predictive control algorithm is replaced by up(k − 1).

The control law is obtained by minimizing the quadratic programming problem (16).
As seen in Figure 2(c), the control action actually applied to process up(k − 1) is taken
into the control law calculation of the next step through input feedback.

4. Application in the Nonideal PID Control Problem.

4.1. The introduction of the nonideal PID control problem. The output of MPC
controller u is applied to the process via the inner PID control loop. In the theory study
of MPC, it assumes that the inner PID control loop is an ideal control which accounts for
u = up. However, as seen in Figure 3, the complete response time of inner PID control
loop is always longer than the sample time of the outer MPC loop, the output of MPC
controller cannot be applied to the process completely, and it will cause nonideal control.
In the actual processes, the output of MPC controller u is not be implemented by the
inner PID control loop while the output up of the inner PID control loop is the actually
implementation control action applied to the process, as seen in Figure 6. MPC does not
measure the information of inner PID control loop in actual process. The control law is
calculated in each step according to the ideal PID control. In the nonideal PID control
situation, there is a deviation of manipulated variables between prediction model (2) and
the actual system, the response of actual system may deviate from the expected output.
The problem can be solved by using the predictive control method with input feedback
structure proposed in the previous section.

t

u

up

u

Figure 6. The output difference between MPC and actuator in nonideal control



972 X. LUO, M. WEI, F. XU, X. ZHOU AND S. WANG

4.2. The simulation for the nonideal PID control problem. In order to demon-
strate the effectiveness of the proposed input feedback MPC in the nonideal PID control
problem, the top product quality control of atmospheric tower is used as a simulation
case. The linear discrete state space model of the controlled process is (see [22])

X (k + 1) =


0.8547 0.012 0 0.0752
0.242 0.6962 −0.0284 0.0673
0.1076 −0.0361 0.8863 0
0.217 0.0081 −0.042 0.7703

X (k) +


−0.0949
−0.0671
−0.0401

0

u (k)

y (k) =
[
0 0 0 1

]
X (k)

(17)

where, X (k) =
[
x1 (k) x2 (k) x3 (k) x4 (k)

]T
, x1 (k), x2 (k) and x3 (k) represent the

11st, 13th, 15th tower plates temperature. y (k) = x4 (k) represents the product density.
u (k) represents the cold reflux. Linear model is obtained at the steady-state point (the
11, 13, 15 tower plates temperature are 131◦C, 154◦C and 190◦C), and the product density
is 0.776× 1000kg ·m−3, the cold reflux is 127.5m3 · h−1, the sample time is Ts = 60s.
The initial state x (0) = [0.01, 0.03, 0.05, 0.05]T, u (0) = 0. The aim of the control

system is to control the product density y at the setpoint 0.3 by the manipulated variable
u. The constraint of the manipulated variable is u ∈ [−3, 3], and the constraint of the
output variable is y ∈ [−0.05, 0.35]. The manipulated variable of outer MPC loop is the
setpoint of cold reflux. The inner PID control loop is flow control system. The matlab
platform is used for simulation, the MPC controller is written with S-function, the sample
time of the outer loop is 60s, and the inner loop is 0.5s. The simulation results are seen
in Figure 7.
From Figure 7, we can see that, under the condition of nonideal PID control, the MPC

without input feedback is of the slow dynamic response and the steady-state error, but
the MPC with input feedback has the better control effect and no steady-state error.
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Figure 7. The control effect curve
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5. Application in the False Loose Constraints Problem.

5.1. The introduction of the false loose constraints problem. Assuming the pre-
diction model is accurate, nominal constraints of input and output variables are umin ≤
u ≤ umax and ymin ≤ y ≤ ymax. At the moment k−2 (k ≥ 2), the control law is ∆u∗(k−2),
and the control action u∗(k− 2) = u(k− 3)+∆u∗(k− 2) is downloaded to the inner PID
control loop as setpoint. At the moment (k − 1), if the previous MPC output control ac-
tion u∗(k−2) equals the control action actually applied to the unit u∗

p(k−2), the nominal
constraints are correct. In the next moment k, the information of the implementation of
the previous control law ∆u∗(k− 1) is measured. If ∆u∗(k− 1) > 0, the measured actual
control action increment ∆up(k − 1) < ∆u∗(k − 1), or if ∆u∗(k − 1) < 0, the measured
actual control action increment ∆up(k − 1) > ∆u∗(k − 1), the nominal constraints are
false loose constraints. Input feedback method is used to solve this problem. When the
false loose constraints problem happen, up(k − 1) instead of u(k − 1) in MPC algorithm
is used as introduced in Section 3, and constraints are adjusted as follows:

Constraints of input variables umin ≤ u ≤ umax

umin ≤ u ≤ up,max or up,min ≤ u ≤ umax (18)

Constraints of upper limit and lower limit uL ≤ u ≤ uH

up,L ≤ u ≤ up,H (19)

On the basis of constraints (15) d̂1, coefficient matrix of the input variables d1 is modified
as

d̂p1 =

[
Up,max − Up(k − 1)
Up(k − 1)− Up,min

]
(20)

When ∆u∗(k−1) > 0, if ∆up(k−1) < ∆u∗(k−1), upper limit of nominal constraints umax

is too upper, and it is modified to up,max. When ∆u∗(k−1) < 0, if ∆up(k−1) > ∆u∗(k−1),
lower limit of nominal constraints umin is too lower, and it is modified to up,min. So
the calculation of control law is according to the modified constraints. According to
the algorithm for feasibility analysis and constraints adjustment of constrained optimal
control [23], when the false loose constraints problem happens, the feasibility analysis for
the model predictive control is according to the modified constraints of upper limit and
lower limit up,L ≤ u ≤ up,H , and the weight of u is adjusted to maximum.

In summary, when the false loose constraints problem happens, in order to guarantee
the performance of the control system, three aspects as follows need to be adjusted.

1) The information of the previous control action u(k − 1) is modified to the control
action up(k − 1) that actually applied to the process.

2) Constraints of input variables umin ≤ u ≤ umax is modified to the actual hard
constraints of umin ≤ u ≤ up,max or up,min ≤ u ≤ umax.

3) The upper limit and lower limit uH , uL are modified to up,H , up,L, and the weight of
u is adjusted to maximum.

5.2. The simulation for the false loose constraints problem. In order to justify the
proposed MPC algorithm for the false loose constraints problem, we consider the isother-
mal continuous stirred-tank reactor (CSTR) undergoing reaction A→B. The reactor has
constant volume and its dynamics are described by (see [24])

ẋ1 = −k1x1 − k3x
2
1 − x1u

ẋ2 = k1x1 − k2x2 − x2u
(21)

which models the Van de Vusse series of reactions. There are one manipulated variable,
two state variables and two output variables in the process model: the output variables
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Figure 8. MPC based on zone control

are concentration of A, y1(x1), concentration of B, y2(x2), the manipulated variable are
the dilution (feed) rate u. We linearize (21) around this desired steady-state point and
discretize the result with a sampling time of 0.002min.

x(k + 1) =

[
0.95123 0
0.08833 0.81873

]
x(k) +

[
−0.0048771
−0.0020429

]
u(k)

y(k) =

[
1 0
0 1

]
x(k)

(22)

A simulation is performed that is started from x(0) = [0.5, 0.1]T. The zone-control
algorithm is used here, and optimization variables α, β is given here. As seen in Figure 8,
in the zone-control algorithm, output variables y is not a setpoint but in the zone [ymin,
ymax]. And the more desirable zone is [εmin, εmax].
The cost function (5) is replaced by (see [25,26])

V (k) = ‖Yc(k)− α(k)‖2Q1
+ ‖Yc(k)− β(k)‖2Q2

+ ‖∆U(k)‖2R (23)

The aim of the control system is the output variables that are controlled in the zone y1 ∈
[0, 0.5], y2 ∈ [0, 0.12] by the manipulated variable u. The constraint of the manipulated
variable is [0, 6.5], and the constraints of the output variables are [−1, 1]. Assume that
the hard constraints of the manipulated variable in the inner loop is not 0 but 2. For
the false loose constraints problem, we used Matlab software for the study, the simulation
curves are seen in Figure 9.
The MPC without input feedback is shown in Figure 9(a). If the MPC output is less

than hard constraint 2, the control action applied to the process does not equal the MPC
output, the control action applied is actually the hard constraint 2. It will lead to the
difference between the actual outputs and the predicted outputs and then the actual
outputs may exceed the constraints.
The MPC with input feedback is shown in Figure 9(b). When the false loose constraints

happen, u is replaced by up in the modified prediction model. The hard constraint of the
manipulated variable u is modified to 2, and the weight of u is adjusted to maximum.
Based on the revised information, a feasibility analysis is carried out by MPC, and the
unfeasible constraints of outputs will be relaxed, then the optimal control law is solved
based on the modified constraints. Thus the constraints of inputs and outputs can be
guaranteed.

6. Conclusions. This paper gives the implementation analysis of manipulated variables
in model predictive control. Then to solve two problems in model predictive control:
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(a)

(b)

Figure 9. Simulation results. (a) The common MPC algorithm, (b) the
modified MPC algorithm.
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nonideal bottom PID control and false loose constraints. A modified MPC algorithm
with input feedback structure has been proposed. During the calculation of control law,
the previous actual implementation values of manipulated variables are used to replace
the previous theoretical calculation values through input feedback. The simulation results
demonstrate the effectiveness of the proposed input feedback control strategy.
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