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Abstract. In this study, we use the phase oscillator model proposed by Kuramoto and
apply it to the production process for the first time. In our previous study, the production
process was itself described by the diffusion equation. In this study, a joint propagation
model, which represents the connections between different processes, is described by the
diffusion equation. We applied the joint model of an autonomous distributed system to
the production process under the diffusion equation for the propagation of production el-
ements and the same physical quantity of propagation. From the obtained data of the
production flow process, we propose the phase oscillator model for the analysis of pro-
duction process. We verify that the offset value identifies asynchronous or synchronous
production processes.
Keywords: Offset value, Autonomous distributed system, Throughput, Graph theory,
Diffusion process

1. Introduction. Several studies have addressed the problem of increasing the produc-
tivity of production processes used in the production industry [1, 2]. Moreover, in the
field of production, various theories have been applied to improve and reform production
processes and increase productivity.

In a previous study [3], we addressed the problem of reducing construction work and
inventory in the steel industry. Specifically, we investigated the relationship between
variations in the rate of construction and delivery rate. In this study, we perform analysis
using the queuing model and apply log-normal distribution to modeling the system in the
steel industry [3].

Moreover, several studies have reported approaches that lead to shorter lead times [4, 5].
From order products, lead time occurs on the work required preparation of the members
for production.

Many aspects can potentially affect lead time. For example, from order products, the
lead time from the start of development to the completion of a product is called the
time-to-finish time, such as the work required preparation of the members for production
equipments.

Moreover, several studies have focused on reducing customer lead times. In [6], the
author addresses the problem of reducing the production lead time.

In [7], the authors propose a method that increases both production efficiency and
production of a greater diversity of products for customer use. Their proposed approach
results in shortened lead times and reduces the uncertainty in demand. Their method
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captures the stochastic demand of customers and produces solutions by solving a nonlinear
stochastic programming problem.
In summary, several studies have considered uncertainty and proposed practical ap-

proaches to shorten the lead time. The demand is treated as a stochastic variable and
applied mathematical programming. To our knowledge, previous studies have not treated
lead time as a stochastic variable.
Because fluctuations in the supply chain and market demand and the changes in the

production volume of suppliers are propagated to other suppliers, their effects are ampli-
fied. Therefore, because the amounts of stock are large, an increase or decrease of the
suppliers’ stock is modeled using differential equation. This differential equation is said
as Billwhip model, which represents a stock congestion [8, 9].
The theory of constraints (TOC) describes the importance of avoiding bottlenecks in

production processes [10]. When using production equipment, delays in one production
step are propagated to the next. Hence, the use of production equipment may lead to
delays. In this study, we apply a physical approach and regard each step as a continuous
step. By applying this approach, we can mathematically analyze the delay of each step
and obtain methods to address it. To the best of our knowledge, previous studies have
not applied physical approaches to analyze delays.
In a previous study [11], we constructed a state in which the production density of each

process corresponds to the physical propagation of heat [26]. Using this approach, we
showed that a diffusion equation dominates the production process.
In other words, when minimizing the potential of the production field (stochastic field),

the equation, which is defined by the production density function Si(x, t) and the bound-
ary conditions, is described using the diffusion equation with advection to move in trans-
portation speed ρ. The boundary conditions means a closed system in the production
field. The adiabatic state in thermodynamics represents the same state [11].
To achieve the goal of a production system, we propose using a mathematical model

that focuses on the selection process and adaptation mechanism of the production lead
time. We model the throughput time of the production demand/production system in
the production stage using a stochastic differential equation of log-normal type, which
is derived from its dynamic behavior. Using this model and the risk-neutral integral,
we define and compute the evaluation equation for the compatibility condition of the
production lead time. Furthermore, we apply the synchronization process and show that
the throughput of the production process is reduced [12, 13].
In a company, it is important to determine a rational throughput rate for continuation

of production under an incomplete information state. In the previous research, aiming
at rationally performing start date management in the manufacturing industry, a mathe-
matical model of throughput is formulated based on data, and a mathematical structure
of start date management is made clear to some extent [15].
According to this result, it is shown that Kalman filter theory having been used in a

state estimation problem in the control theory conventionally can be applied under an
incomplete information state. In addition, by applying a theory of ongoing assessment
in Real Option, a determination condition of a throughput rate is made clear and is
confirmed by numerical value calculation [15].
In this study, we apply the phase oscillator model proposed by Kuramoto [17]. To the

best of our knowledge, the application of the phase oscillator model to the production
process has not been previously proposed.
Kuramoto’s model has been widely used for analyses of systems involving elements

with autonomous dynamics such as electrical circuits, chemical reactions, heart muscle
cells, and nerve cells [17, 18]. We can introduce the phase response function devised by
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Winfree [18]. The phase is treated mathematically as the mapping of θ(X), which is
derived from the state vector of the oscillator X ∈ R to the real number θ ∈ [0, 2π]. The
phase θ(t) = θ(X(t)) increases from zero to 2π.

We propose an idea that is composed of the elements of product equipment, i.e., the
elements are production units such as parts that form the whole product, which is ordered
by the customer in the manufacturing industry. These production units are involved at
each stage of the production process and correspond to the propagation of a state, such
as heat in physics.

In this study, the joint propagation model, which represents the connections between
different processes (i.e., interprocess connections), referred to as “joints”, is described by
the diffusion equation. To apply the joint model of an autonomous distributed system, it
is necessary to satisfy the following two conditions:

1. Propagation between processes is represented by the diffusion equation (diffusion
interaction) [11].

2. The elements propagated are described by the same physical quantity (in this case,
represented by production units).

Here to analyze the production process, we introduce a potential function. The potential
function is described by an arithmetic sum of potentials, which include both the current
and joint stages of the production process. Therefore, we can define the gradient of the
potential function, and using this gradient, we can expand the theoretical analysis to
include revenues after the shipment of the final product equipment.

2. Distribution System and Diffusion Equation of the Production Process.
From Figure 1, we refer to the network capacity (i.e., a statically acceptable amount of
production) in an interprocess network (a production field) as R. An interprocess network
indicates a sequential flow from one process to the other after the completion of the current
process. Here assuming that the production density function for the i-th equipment is
Si(x, t), Si(x, t) is expressed by

[J(x, t)dt− J(x+ dx, t)dt]R = [Si(x, t+ dt)− Si(x, t)]Rdx (2.1)

where J is the production flow [11].
Next, we define the production flow as the displacement of a production density function

in the unit production direction. In other words, the production density function is
proportional to the cost necessary for production, and thus, it can be considered as the
production cost per unit production. Furthermore, because production leads to a return,
the production density function can be considered as a return density function

∂Si(x, t)

∂t
= D

∂2Si(x, t)

∂x2
(2.2)

where D is the diffusion coefficient, t is the time variable, and x is the spatial variable.
This equation is equivalent to the diffusion equation derived from the minimization

condition of free energy in a production field, indicating that the connections between
processes can be treated as a diffusive propagation of products (refer to Figure 1) [11].

A model of the production process, which is connected in one dimension, is described
as follows. The process of production is indicated by the movement of production units
from one process (node) to another. This production flow is equivalent to transmission
rate, which is defined as the rate of data flow between connected nodes in communication
engineering. Accordingly, we formulate the production model in a manner similar to heat
propagation in physics. Thus, the production process is modeled mathematically using
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a continuous diffusion type of partial differential equation consisting of time and spatial
variables [11].
Setting the network capacity (the available static production volume) to R in an inter-

process network (production field, equivalent to a stochastic field), we obtain the following:

[J(x)dt− J(X + dx)dt]R = [S(t+ dt)− S(t)]Rdx (2.3)

where J is the production flow and S is the production density.
In the present model, the production flow indicates the displacement of production

processes in the direction related to the production density. In other words, the production
cost per production is as follows:

Figure 1. Network inter-
process division of worker

Figure 2. Unit of production
by changing the excitation
force

Definition 2.1. Production cost per unit production

J = −D∂S

∂x
(2.4)

where D is a diffusion coefficient.

From Equation (2.3), we obtain

−∂J

∂x
=

∂S

∂t
(2.5)

From Equations (2.4) and (2.5), we obtain

∂S

∂t
= D

∂2S

∂x2
(2.6)

where t ∈ [0, T ], x ∈ [0, L] ≡ Ω, S(0, x) = S0(x), BxS(t, x)|x=∂Ω.
This equation is equivalent to the diffusion equation derived from the minimization

condition of free energy in a production field [11]. The connections between processes can
be treated as a diffusive propagation of products (refer to Figure 1).
As shown in Figure 2, X represents the production elements that constitute a unit

production and varies X → X
′
at [t+ dt]. In other words, the unit production varies by

exciting the external force and is the basis for revenue generation (an increase of potential
energy). Therefore, in the transition Si(t, x)→ Si(t, x

′
), the production cost, which is the

cumulated external force, increases. The connections between production processes are
referred to as “joints”.
In the general idea of production flow, we define the joint propagation model at multiple

stages in the production process and the potential energy in the production field.
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Thereafter, we can construct a control system, which increases the process throughput,
by calculating the gradient function in the autonomous distributed system. The gradient
function is described in the next section.

3. Propagation Model of “Joints” and the Potential Function. To analyze the
unit production process, we mathematically model both intraprocess and interprocess
networks. We apply the diffusion equation using the graph theory. We can design the
control system for production because each modeled production unit corresponds to the
diffusion reaction system in physics. The unit production process indicates one of the
production processes for the production equipment.

In Figure 3, the set V of the vertex (node) on the finite graph G = (V,E) is divided into
the set Ṽ of internal points and set ∂V of boundary points. A set of edges (Link) is divided
into the sets of internal edges Ẽ and boundary edges ∂E. The function {f(e) : V → R}
assigns a process amount u1, u2. C(V ) := {f |f : V → R} is the real function on X,
where f(e) is the rate of return and C(V ) is the production cost function.

Figure 3 shows the unit production model of joints between the processes, and each
process f(u1) and f(u2) is coupled spatially, as represented in the figure. In other words,
according to the process network that divides several processes, each process is coupled
by a diffusion interaction, i.e., in this case, using the same physical quantity (for instance,
production unit flow), the production process propagates as follows:

Figure 3. Single-stage pro-
duction of multi-stage model

Figure 4. Single-stage model

Definition 3.1. Production function in Figure 3.

S ∈ C(X), ∀S ∈ L2 (3.1)

The production function is a functional of cumulated production cost function.
The joints between processes are a finite graph coupled by the diffusion propagation of

physically equivalent quantities.
V is the set of the process of vertex r and represents the set of each process. C(V ) is

the real function on V , and C(E) is the space of the real function on edge E, i.e., the
edge E is the set of edges (set of diffusion interactions).

Definition 3.2. The gradient df of f defines dS ∈ C(E) from S ∈ C(V ).

df(e) ≡ f(t(e))− f(o(e)) (3.2)

where o(e) (the originating node) is the vertex that is the starting point of link e, and t(e)
(the terminating node) is the vertex that is the destination point of link e. d : C(V ) ←
C(E) is the exterior differential form, and df is the gradient of f .
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We represent the total process related to the unit production of the equipment in Figure
6, i.e., the process of each vertex can monitor only the state of neighboring subprocesses.
Here C ∈ C(V ), C(E) are defined in a Hilbert space, and they satisfy the following

condition. The inner product {S1, S2, · · · , Sn} ∈ C(V ) is as follows:

(Sn−1, Sn) =
n−1∑
k=1

SkSk+1

The norm is as follows:

||Sn−1|| =
√
(Sn−1Sn)

At this time, Sn satisfies the following condition:

L2(V ) = {||Sn|| <∞, n = 1, 2, · · · , n}

where we assume that S ∈ C(V ) is the time evaluation value currently.
The processes are connected by cascade coupling from process (1) through (n) and each

has independent throughput in Figure 7. Here the dynamic model of throughput for any
process is used by the oscillation model to work autonomously [21].

Figure 5. Joint of a finite
graph between processes

Figure 6. Interaction be-
tween process models

Figure 7. Connection of pro-
duction system cascaded by N
processes

Figure 8. Model of the pro-
cess cycle period and duration
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Figure 9. Transition of production stage

Figure 10. Production den-
sity function and progress of
production process

Figure 11. Relationship be-
tween angular frequency and
angular

Definition 3.3. The progress of time per unit time

Ti(t) =
1

Tρi(t)

(3.3)

where Tρi(t) is the total read time (process cycle number).

Figure 10(A) indicates the conceptual diagram related to the dynamic production func-
tion. Ri (i = 0, 1, · · · , L) defines the size of the production factor on xi (i = 0, 1, · · · , L).

In Figure 10(B), ωi (i = 0, 1, · · · , L) is the progress rate of process according to each
production element and is indicative of the throughput. Here to define the throughput
according to the process size in each process, we use the unit Ri, which corresponds to
the progress rate of the process according to the definition of angular velocity in electrical
engineering. When the process makes the progress Ri, the process is considered as having
made one unit of progress, and the process is referred as a “unit process”.

We introduce the phase concept proposed by Winfree [18]. When progressing by one
unit, we define the throughput ωi(t) after passing time Ti(t) as follows:

Definition 3.4. Angular frequency ωi

ωi =
1

Ti(t)
× (2π) = (2π)× fρi(t) (3.4)

Moreover, the cycle length and angular frequency are as follows:

TR =
2π

ωi

, θi ∈ [0, 2π] (3.5)

In Figure 11, Di1 and Di2, which are the angles between each region, are derived as
follows:

|Di1| : |Di2| = σi : (1− σi) (3.6)

where σi is the free time between each process and corresponds to the split time to be
used in a traffic signal control.
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4. Applying Offset in a Traffic Control System. We represent the offset time be-
tween processes i and j as well as the traffic signal control as follows. From Figure 10,

dθi
dt

= ωi (4.1)

From Equation (4.1),

d

dt
(θi − θj) = ωi − ωj (4.2)

If ωi = ωj, d/dt(θi − θj) = 0. Here the relationship between the offset Tij and phase
difference (θi − θj) is

Tij =
θi − θj
ωi

(4.3)

Definition 4.1. Offset Tij

Tij =
ϕ(i, j)

ωd

(4.4)

where ϕ(i, j) is the phase difference and ωd is the target throughput (read time).

For these considerations, Yuasa and Ito have proposed the structural theory. We have
attempted to apply our proposed method to a production system in line with this theory
[21, 22]. We briefly summarize the structural theory of an autonomous distributed system
proposed by Yuasa and Ito.
The system model for the process i is

dθi
dt

= fi(θi1, θi2, θi3, · · · , θim) (4.5)

where θi1, θi2, · · · , θim is the phase of process coupling with θi.
The matrix A between the state of the phase difference φ ≡ (φ1, φ2, · · · , φN) and the

state θ ≡ {θ1, θ2, · · · , θn} is assumed as follows:

Assumption 1.

φ = Atθ (4.6)

where ∀t indicates the matrix transposed, and A is referred to as the “incident matrix”
in graph theory.
From Equations (4.5) and (4.6),

dφ

dt
= Atf (4.7)

We obtain the dynamic model of the state difference φ.
For this discussion, φ is autonomous, i.e., the necessary and sufficient condition under

which Atf satisfies only the function of φ are as follows [20, 21, 22].

Lemma 4.1. Any i, j
n∑

k=1

∂φi

∂θk
=

n∑
k=1

∂φj

∂θk
(4.8)

To prove this lemma, θ is defined in n-dimensional space. However, φ in (n − 1)-
dimensional space is defined as follows:

ϕ =
n∑

i=1

θi (4.9)
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ϕ, which is orthogonal to space φ, does not become an element of Atf , i.e., Atf does not
become a function of ϕ.

Definition 4.2. Variable of state difference between ik

φik = θik − θi (4.10)

At this time, the necessary and sufficient condition which φ satisfies the gradient system,
are as follows:

dφi

dt
= fi(φi)

φi =

mi∑
k=1

(θik − θi) (4.11)

The potential function to be formed in space φ is as follows:

V (φ) =
n∑

i=1

∫
fi(φi)dφi (4.12)

The potential structure is derived from the sum of the local potential. Therefore, in the
production of equipment, such as in a flow production system, each process (subsystem)
has a unique potential structure and each process model becomes a nonlinear structure
through interaction between processes. The total potential is the sum of the local poten-
tials of each process, and the structure of the autonomous distributed system can only be
unique when the total potential is the sum of the local potentials [21, 22].

We now describe the basic production model such as the production flow process shown
in Figure 12. If this phase difference is measurable in Figure 11, the offset between
processes can be defined as in Equation (4.4).

On the basis of the above gradient theory, the production process is constructed as
follows.

Assumption 2.

dθi
dt

= −δW p
i (θi)

δθi
+ ωd (4.13)

where W p
i is as follows:

W p
i (θi) = −

[
β
(qf(i) + qj

qi

)]
cos{ϕ(i, j)−D(i, j)} (4.14)

where qf(i) indicates the production volume of the forward process and qj indicates the
production volume of next process after process i.

ϕ(i, j) = θi − θj (4.15)

Therefore, we can construct the gradient system as follows:

dθi
dt

= ωd − 2

[
β
(qf(i) + qj

qi

)]
sin{ϕ(i, j)−D(i, j)} (4.16)

where, whenever ϕ(i, j) = D(i, j), W p
i obtains its minimum value, and we obtain

dθi
dt

= ωd (4.17)
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Definition 4.3. D(i, j)

D(i, j) =
qj

qf(i) + qi
· ωd ·

|L(i, j)|
ρ

(4.18)

where qf(i) represents the throughput per unit process of process f(i), qi represents the
throughput per unit process of process i, qj represents the throughput per unit process,
and ρ represents the standard working time of each process.

Definition 4.4. Average offset time value

Average D(i, j) =

{
max(L(i, j)) + min(L(i, j))

2

}
(4.19)

D(i, j) =

{
0 (qi = qj = 0)

qj
qf(i)+qi

D(i, j) (Other) (4.20)

We consider the one-way propagation.

D(i, j) = D(j, i) (4.21)

At this time,

σi =
|D1|

|D1|+ |D2|
(4.22)

and

ϕ(i, j) =
[{

θi − ξ(i, (i, j))
}
−
{
θj − ξ(i, (j, i))

}]
(4.23)

where if we assume that the production flow and production volume have no sudden
fluctuations, the throughput converges to the local minimum point of the potential.
In other words, the phase difference ϕ(i, j) converges to D(i, j). Therefore, if we set

the value of D(i, j), we can estimate the degree of process synchronization.

5. Production Flow Process. Figure 12 depicts a manufacturing process that is termed
as a production flow process. This manufacturing process is employed in the production
of control equipment. In this example, the production flow process consists of six stages.
In each step S1−S6 of the manufacturing process, materials are being produced.
The direction of the arrows represents the direction of the production flow. In this pro-

cess, production materials are supplied through the inlet and the end-product is shipped
from the outlet.

5.1. Synchronous model.

Definition 5.1. The role of the synchronization model is to reduce the process throughput,
i.e.,

dS(t, x) = rS(t, x)dt+ σS(t, x)dW (t) (5.1)

where S(t, x) represents the production density function as a function of the synchronous
status.

Synchronization minimizes the risk in the production process. To realize synchroniza-
tion, we set the throughput of each stage to the same value. Because we set the working
time for the workers in each work stage, there is no volatility in the working time between
processes.
Here, S(t, x) represents the production density function as a function of the synchronous

status when the equipment is manufactured. t represents the manufacturing time. x
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Figure 12. Production flow process

represents the production process term when products are manufactured continuously. σ
represents the volatility at each stage, and W (t) represents the Wiener process.

5.2. Asynchronous model.

Definition 5.2. When we use the asynchronous model to represent a dynamical system,
the throughput is not reduced.

dS̃(t, x) = C̄(t, x)S̃(t, x)dt+ σ̃S̃(t, x)dW (t) (5.2)

where C̄(t, x) represents the average working time of the total processes when the equip-
ment is manufactured using an asynchronous process.

C̄(t, x) = E[C(t, x)] = E

[
sup

t∈[0,T ]

||C(t, x)||p
]
<∞, p > 2 (5.3)

where C(t, x) exists uniquely. Therefore, it is clear that Equation (5.3) is established.
C(t, x) is the arbitrage-free term under the equivalent martingale measure. Therefore,
each stage of the production flow process can be represented by the Wiener process.
Because, the working time in each stage fluctuates stochastically. Then, the relative
production density S̃(t, x) is expressed as follows [27]:

S̃(t, x) = S̃(0, x)−
∫ t

0

S̃(u, x)σ∗
u1T−udŴ (t) (5.4)

That is, the volatility σ∗
u exists. Then S̃(t, x) is

S̃(t, x) =
S(t, x)

S(t, 0)
exp

{∫ t

0

rudu−
∫ t

0

C(t, u)du

}
(5.5)

Definition 5.3. According to the asynchronous model, the average time of working is as
follows:

rcu ≡ ru − E[C(t, x)] (5.6)

From Equation (5.6), we obtain

S̃(t, x) =
S(t, x)

S(t, 0)
exp

{∫ t

0

rcudu

}
(5.7)

where S̃(t, x) represents the production density of the asynchronous model. In the asyn-
chronous model, the production workers at each stage do not complete the assigned work
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within the allocated time period. Therefore, at each stage, there is a volatility in the
working time.
The solution of Equation (5.1) is

S(t, x) = S(0, x) exp

{(
r − 1

2
σ2

)
t+ σW (t)

}
(5.8)

where r indicates the total average working time when manufacturing using a synchronous
process.
According to Equation (5.8), the production density S̃(t, x) of the asynchronous model

is as follows:

S̃(t, x) = S̃(0, x) exp

{(
rcu −

1

2
σ2
c

)
t+ σcŴ (t)

}
(5.9)

where from Girsanov theorem, Ŵ (t) is

Ŵ (t) = W (t) +

∫ t

0

λ(u)du (5.10)

Therefore, according to Equations (5.3) and (5.4), the solution of S̃(t, x) is as follows
(Asynchronous model):

S̃(t, x) = S̃(t, 0) exp

{(
rc −

1

2
σ2
c

)
t+ σcW (t)

}
(5.11)

dS̃(t, x) = rcS̃(t, x)dt+ σcS̃(t, x)dŴ (t) (5.12)

S̃(t, x) is a martingale with respect to Ft [27].
Therefore, S̃(t, x) satisfies Equation (5.2) (Asynchronous model).

6. Results of Test−Run.

6.1. Result of Test−run1. Test−run1 is asynchronous process. Therefore, the through-
put at each step of Test−run1 is different, and the throughput of the entire stage becomes
stochastic. Moreover, the stochastic throughput, which is a function of the current time
and time remaining until the end of the stage, affects the performance of the entire system.
In Tables 2 and 3, we present data that validates our findings presented above.
Therefore, the ratio of the measured throughput to the target throughput is consid-

ered as the drift term rcu in Equation (5.12). The fluidity of the system is affected by
the throughput at each stage. In other words, because the manufacturing progress is
affected by bottlenecks, the drift term rcu can be defined using the stochastic throughput
(Equations (5.7)-(5.9)).
Here the drift term rcu is

rcu =
4.4

6
(0.73) (6.1)

rcu =
5.5

6
(0.92) (6.2)

The required theoretical throughput for six pieces of equipment/day is computed in Equa-
tion (6.1). However, the actual throughput corresponds to 4.4 pieces of equipment/day.
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Furthermore, we can use the same approach to compute the volatility of the throughput
at each stage. This average of volatility is given as follows:

σs ≈ 0.29

(
=

1

N

N∑
i=1

σi(x)

)
(6.3)

Therefore,

Definition 6.1. The system throughput in this model (Production evaluation model)

dS̃(t, x) = 0.73S̃(t, x)dt+ 0.29S̃(t, x)dŴ (t) (6.4)

6.2. Result of Test−run2. Next, we consider the case of Test−run2.
Test−run2 is synchronous process. In this case, the process is set in such a way that

each stage has the same throughput. Therefore, no risks are introduced as the process
progresses. Hence, in principle, the throughput at each stage satisfies the condition.
Moreover, because the manufacturing processes require synchronization, we can easily
define the “synchronization throughput”.

This system has essentially no risk. However, in Tables 4 and 5 we do not observe any
values of volatility equal to zero. Therefore, in Equation (5.1), the term σ is equal to the
average volatility.

Here, r, σ in Equation (5.1) are

r1 =
5.5

6
= 0.92

r2 = 1− 0.06 = 0.94

r1 and r2 are not much different. The volatility is

σ = 0.06

Therefore, the throughput model of this system is defined as follows.

Definition 6.2.

dS(t, x) = 0.92S(t, x)dt+ 0.06S(t, x)dW (t) (6.5)

If the system approaches the synchronization, σ → 1. If σ → small data (σ = 0.01),
this system becomes stationary.

For the case of a fully synchronized system, see Figure 13. In Figure 14, the integrated

Figure 13. Perfect
synchronization sys-
tem Figure 14. Perfect synchro-

nization system
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finite number of processing stages progress depending on the synchronization throughput
of each stage (stationary system).
Specifically, the synchronous production system is the principle, and the processing

stages progress in a cycle, i.e., we set the throughput at T1, T2, and T3 in Figure 15, and
synchronize the stages in a cycle.
If Equation (6.6) is satisfied,

1

N

N∑
i=1

rci ≤ sup rci : (i = 1, 2, · · · , N) (6.6)

A risk reduction system was constructed, where N = kM (k = 1, 2, · · · , N) (k is a positive
integer). Because we set the working time for the workers in each work stage, there is no
volatility in the working time between processes. Next, we applied the throughput model
and used the results of the test runs to perform numerical calculations. Our model shows
that the throughput for each process at each stage is satisfied. If Equation (6.7) is satisfied,
rci (i = 1, 2, · · · , N) is a real number. This process is a type of bottleneck synchronization.
The bottleneck synchronization means a recommendation from the famous “The theory
of constraints (TOC)” [10].

1. If rci ̸= rcj , i ̸= j, synchronization of every stage.
2.

1

N

c∑
i=1

rci ≤ sup rci , i = 1, 2, · · · , N (6.7)

if Equation (6.7) is satisfied, the process is a type of bottleneck synchronization.
3. rci = rcj , i = j < N , the synchronization of some stages.

Here Figure 15 can be considered for item 3.

Definition 6.3. Evaluation of the relative production density function S̃T (x) at t = T .

dS̃(T, x) = rct S̃(T, x)dt+ σ∗
s S̃(T, x)dŴt (6.8)

In this case, the reduction of σ∗
s is a key point of building the system. Therefore, we

named to “Synchronization with preprocess” method as to reduce this σ∗
s .

Figure 15. Cyclic synchronization

Figure 16. Concept of num-
ber of M cycle
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7. Analysis of the Test−Run Results.

• (Test−run1): Because the throughput of each process (S1−S6) is asynchronous, the
overall process throughput is asynchronous. In Table 2, we list the manufacturing
time (min) of each process. In Table 3, we list the volatility in each process performed
by the workers. Finally, Table 2 lists the target times. The theoretical throughput
is obtained as 3 × 199 + 2 × 15 = 627 (min). In addition, the total working time
in stage S3 is 199 (min), which causes a bottleneck. In Figure 17, we plot the
measurement data listed in Table 2, which represents the total working time of
each worker (K1−K9). In Figure 18, we plot the data contained in Table 2, which
represents the volatility of the working times.
• (Test−run2): Set to synchronously process the throughput. The target time listed in
Table 4 is 500 (min), and the theoretical throughput (not including the synchroniza-
tion idle time) is 400 (min). Table 5 presents the volatility of each working process
(S1−S6) for each worker (K1−K9).

Table 1. Correspondence between the table labels and the Test−run number

Table Number Production process Working time volatility
Test−run1 Table 2 Asynchronous process 627 (min) 0.29
Test−run2 Table 4 Synchronous process 500 (min) 0.06

Figure 17. Total production
time at each stage for each
worker Figure 18. Volatility data at

each stage for each worker

In Table 1, Test−run2 is a good method in throughput clearly than Test−run1, and
also that the volatility in the work (Test−run2) is less than the volatility (Test−run1).

8. Numerical Results of the Production Flow System. In this section, we examine
the volatility of throughput in asynchronous and synchronous processes using the offset
value and average offset value based on Equations (4.18) and (4.19) [13].

8.1. Offset value of Test−run1. Table 6 indicates the subtotal working time for work-
ing processes S1−S2−S3 in Table 2. The calculation based on this data is as follows:

ωd =
x0

20× 9
=

145

180
≃ 0.8
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where “20” is the maximum read-time, and “9” is the number of workers.

D(i, j) =
0.73

0.84 + 0.79
× 0.8× 199− 184

20
≃ 0.27

where ρ = 20 and AV E ∆S = 199− 184.
Table 7 indicates the subtotal working time for working processes S3−S4−S5 in Table

2. The calculation based on this data is as follows:

D(i, j) =
0.83

0.84+0.79
1.57

× 0.8× 199− 175

20
≃ 0.51

where ρ = 20 and AV E ∆S = 199− 175.

D(i, j) =
0.83

0.84+0.79
1.57

× 0.8× 175− 174

20
≃ 0.02

The average offset value is as follows:

Average D(i, j) = (0.51 + 0.02)/2 ≃ 0.27 (8.1)

Table 2. Total production
time at each stage for each
worker (Asynchronous)
WS S1 S2 S3 S4 S5 S6

K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 3. Volatility of Table 2
K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Table 4. Total production
time at each stage for each
worker (Synchronous)

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 5. Volatility of Table 4
K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0
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Table 6. Example of
Test−run1 (S1−S2−S3)-
Asynchronous-
x0 x1(S1) x2(S2) x3(S3)
145 172 184 199
x0/xi 0.84 0.79 0.73

Table 7. Example of
Test−run1 (S3−S4−S5)-
Asynchronous-
x0 x1(S1) x2(S2) x3(S3)
145 199 175 174
x0/xi 0.73 0.84 0.83

Table 8. Example of
Test−run2 (S1−S2−S3)-
Synchronous-
x0 x1(S1) x2(S2) x3(S3)
180 192 196 182
x0/xi 0.94 0.92 0.99

Table 9. Example of
Test−run2 (S3−S4−S5)-
Synchronous-
x0 x3(S3) x4(S4) x5(S5)
180 182 183 182
x0/xi 0.99 0.99 0.99

8.2. Offset value of Test−run2. Table 8 indicates the subtotal working time for work-
ing processes S1−S2−S3 in Table 4. The calculation based on this data is as follows. We
calculate the maximum and minimum values of the offset value between S1−S2.

The working time difference is

|L(i, j)| = |S2− S1| = |196− 192| = 4

ωd =
x0

20× 9
=

180

180
= 1.0

where “20” is the standard number of working hours and “9” is the number of workers.
Offset value is

Minimum D(i, j) =
0.99

0.92 + 0.94
× 1.0× 4

20
≃ 0.11

From the standard number of working hours (time), the working time differences at work-
ing stage “2” and “3” are as follows:

|L(i, j)| = |S3− S2| = |182− 196| = 14

ωd =
x0

20× 9
=

180

180
= 1.0

where “20” is the standard working times, and “9” is the number of workers.
The offset value is

D(i, j) =
0.99

0.92 + 0.94
× 1.0× 14

20
≃ 0.11

Table 9 indicates the subtotal working time for working processes S3−S4−S5 in Table 4.
The calculation based on this data is as follows:

D(i, j) =
0.99

0.99 + 0.99
× 0.99× |182− 183|

20
≃ 0.03

where ρ = 20 and AV E∆S = |182− 183|. Therefore, the average offset value is

Average D(i, j) = (0.11 + 0.03)/2 = 0.07 (8.2)

According to comparison between the Test−run1, 2 and the Offset Value, the Test−run1
corresponds to the Offset Value in Equation (8.2), and Test−run2 corresponds to the
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Offset Value in Equation (8.1). These calculation results are consistent with the volatility
in Table 1 [13].
Here the determination of ωd is as follows:

ωd =
x0

180
where x0 sets the target total read time. The important thing is a method of determining
ωd.

9. Conclusions. We applied a structure theory of autonomous distributed system. We
introduced the offset of the traffic signals control for a phase difference between processes.
We made clear that the offset value corresponds to the results of Test−run. Using a phase
difference in the unit elements of the process, we utilized the phase difference for process
throughput analysis.
A joint model of an autonomous distributed system was applied to a production pro-

cess. As a prerequisite, each process was described by the diffusion equation and the
propagation of production elements was described by the same physical quantity (pro-
duction unit). We verified the joint model on the basis of the results of Test−run in the
production flow process.
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