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Abstract. In this paper, we propose a novel Two-stage Particle Swarm Optimization
(TSPSO) to solve the problem of virtual enterprise (VE) risk management. A two-level
risk management management model is considered. In the top level, the objective of the
owner is to maximum the benefit of risk management for the whole VE. In the base level,
the partners aim to maximum their benefit of risk management. The captured problem is
very challenging due to its hierarchical structure and its time complexity, so the TSPSO
is designed for the risk management problem. The TSPSO has two searching processes,
namely, “top-search”, the searching process for the top level, and “base-search”, the
searching process for the base level. The performance of TSPSO is then compared with
both the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), in terms
of efficient frontiers, fitness values, convergence rates, computational time consumption
and reliability. The experimental results show that TSPSO is more efficient and reliable
for the two-level risk management problem than the other tested methods. The TSPSO
is an improvement on the previous single searching process and single swarm optimizers,
which has great potential to be used to solve the optimization problems with hierarchical
structure and high time complexity.
Keywords: Virtual enterprise, Risk management, Genetic algorithm, Particle swarm
optimization, Two-level particle swarm optimization

1. Introduction. Global competition and the varieties of the customer requirements
are forcing major changes in the production styles and configuration of manufacturing
organizations. It requires these enterprises quick response, lower costs, and greater cus-
tomization. Virtual Enterprise (VE) is a joint venture designed to be a temporary alliance
of member companies. These enterprises combine to take advantage of the market op-
portunities to develop and produce products for fulfilling consumer requirements in the
rapidly changing environment of the global manufacturing area. However, in the par-
adigm of the VE, there are various sources of risks that may threaten the security of
the VE, such as market risk, credit risk, operational risk, liquidity risk and others [1, 2].
Risk measurement and management of a VE have received considerable interest among
researchers and managers of enterprises. Various models and algorithms are developed
to provide a more scientific and effective way for managing the risk of a VE. In the risk
management of VE, The risk control strategy selection is a combinatorial optimization
problem, which is usually a NP-hard problem while the size of problem increase. Some
optimization techniques are found to be useful in enhancing the profitability from trading
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these instruments. For example, some standard optimization techniques can be used to
maximum the benefit of risk management. Ip et al. (2003) [3] consider minimizing the
risk in selecting partners and ensuring the due date of a project in a VE. They propose
a risk-based partner selection model. By exploring the characteristics of the problem
considered and the knowledge of project scheduling, a Rule-based Genetic Algorithm (R-
GA) with embedded project scheduling is developed to solve the problem. Huang et
al. (2008) [4] focus on two main features of the VE, project mode and uncertain factors.
They establish the fuzzy synthetic evaluation embedded nonlinear integer programming
model of risk programming for the VE and present a tabu search (TS) algorithm with
an embedded fuzzy synthetic evaluation for the model. Tao et al. [5] introduces a novel
quantum multi-agent evolutionary algorithm (QMAEA) for addressing partner selection
problems in a virtual enterprise. In QMAEA, each agent represented by a quantum-bit is
defined as a candidate solution, and agents can reproduce, perish, compete for survival,
observe and communicate with the environment. Operators such as energy evaluation,
competition, crossover, mutation, and trimming are designed to specify the evolvement
of QMAEA. Three evolutionary strategies are designed to balance the exploration and
exploitation of QMAEA. The effectiveness and scalability of the proposed QMAEA in
addressing PSP is demonstrated with experimental results and comparisons. Huang et
al. [6] developed a Distributed Decision Making (DDM) model for risk management of the
VE. The model has two levels, namely, the top model and the base model, which describe
the decision processes of the owner and the partners of the VE respectively. A simple
information situation, symmetric information, between owner and partners is considered.
A Particle Swarm Optimization (PSO) algorithm is then designed to solve the resulting
optimization problem. The result shows that the proposed algorithm is effective and the
two-level model can help improve the description of the relationship between the owner
and the partners, which is helpful to reduce the risk of the VE. Shao et al. (2012) [7]
develops a novel multiswarm particle swarm optimizer called PS2O to solve the optimiza-
tion model for risk management in a virtual enterprise. The main idea of PS2O is to
extend the single population PSO to the interacting multiswarm model by constructing
hierarchical interaction topology and enhanced dynamical update equations. With five
mathematical benchmark functions, PS2O is proved to have considerable potential for
solving complex optimization problems. Huang et al. (2013) [8] considered the coordi-
nation under symmetric information between owner and partners in risk management of
VE. A centralized mechanism is given as the base case, and then a distributed decision-
making (DDM) mechanism with incentive scheme is introduced to establish a practicable
strategic partnership. A Particle Swarm Optimization (PSO) algorithm is then designed
to solve the resulting optimization problem. The study shows that the DDM mechanism
with incentive scheme can improve the overall benefit of risk management beyond the
centralized one.
In this paper, a two-level model with stochastic variables is introduced. And then a

two-stage particle swarm optimization (TSPSO) is designed to provide an effective way
to solve the problem. TSPSO has some characteristics of the particle swarm optimization
(PSO) algorithm, such as collectiveness and mutual learning among individuals. However,
unlike PSO, TSPSO is a global convergent algorithm and has stronger search ability than
PSO. The efficiency and effectiveness of TSPSO in the two-level optimization problem
solving, PSO and genetic algorithm (GA) are also tested for the purpose of performance
comparison.
The remainder of this paper is structured as follows. Section 2 presents the two-level

risk management model. In Section 3, the TSPSO is given. Numerical examples and
insights are depicted in Section 4. Concluding remarks are then given in Section 5.
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2. Two-Level Risk Management Model. The risk management problem can be de-
scribed as follows.

Assume an enterprise/owner find a business project consisting of several sub-projects.
The owner is not able to complete the whole project using its own capacity. Therefore,
it has to invite partners for the sub-projects. Of course, the risk management of the
sub-projects is also an important responsibility of partners. The owner determines the
upper bound of the budget for each sub-project first. The partners who accept the budget
condition will respond to the risk management of its sub-project and propose the benefit
of risk management they need to finish according to the resources they have. The benefit
of risk management of sub-project should beyond the target value which is required by
the owner. In this process, the owner manages the risk of the entire project to ensure the
success of VE, while maximize the benefit of risk management from the entire project.

For each partner, there are several risk factors which threaten its safety. Being dealt
with risk control strategies, the risk factor will be controlled by some way. There are
some strategies for each risk factor. The effects of strategies on the corresponding risk are
different. Thus, the description for each risk factor and the cost of the different control
strategies are different. The partner has to maximize its benefit of risk management
by optimally combining these strategies, under the budget allocated by the owner. The
benefit of risk management for each partner/subproject is a difference between the initial
risk loss of the subproject and the risk loss under risk management. In the decision process,
there are private information between the owner and partners, which is the major source
of uncertainty. For the owner, the accurate information of partners is difficult to acquire,
such as the probability of risk occurrences for each risk factor, the risk loss for each risk
factor, the strategies selected for risk factors.

2.1. Notations. The following notations and assumptions are used in two-level model.
Notations:

Linitial
0 initial state of risk loss for owner ($).

Linitial
i initial state of risk loss for partner i in the VE ($), i = 1, 2, . . . ,M .

M number of partners in the VE.
x0 budget for owner.

L0(x0) risk loss of owner under budget x0 ($).
xi budget for Partner i, i = 1, 2, . . . ,M .
x∗i the real budget for Partner i, i = 1, 2, . . . ,M .

ˆBenefiti(xi) anticipated benefit of partner i from risk management under budget xi ($).
Benefiti(xi) benefit of partner i from risk management.

Li(xi) risk loss of Partner i under budget xi.
Bmax upper bound of the total budget for risk management of the VE ($).
TBi target benefit of risk management from partner i, required by the owner ($).
Bi upper bound of the budget for partner i ($), i = 1, 2, . . . ,M .
ŷij anticipated risk control strategy selected for risk factor j of partner i.
yij risk control strategy selected for risk factor j of partner i.

lij(yij) risk loss from risk factor j of partner i under strategy yij .
p̂ij anticipated probability of risk occurrence for risk factor j of partner i.
pij probability of risk occurrence for risk factor j of partner i.
α confidence level of the chance constraint programming model.

Cij(yij) cost of Partner i under the risk control action for the risk factor j ($).
Wij available strategy number for risk factor j of partner i.
Ni number of risk factor for partner i.

2.2. The two-level risk management model. In the process of risk management,
firstly the owner allocates budget among members of VE within the given total budget
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to maximize the benefit of risk management of VE. Then the partners select optimal risk
control strategies to maximize its benefit of risk management under the allocated budget.
Since the asymmetric information, if the owner wants to get a better benefit, the owner
has to anticipate the situation of the partners before making decision. The information
is asymmetry between owner and partners, the owner can not anticipate the accurate
situation of partners. The decision process of risk management is described by a two-level
model, which is demonstrated below.
The decision process of owner and partners are described by the top level and the base

level respectively. There are two models in the top level, top model and anticipated base
model.
The top level:
Top model:

max[Linitial
0 − L0(x0)− x0] +

M∑
i=1

ˆBenefiti(xi) (1)

s.t.
M∑
i=0

xi ≤ Bmax (2)

ˆBenefiti(xi) > TBi, i = 1, 2, . . . ,M. (3)

xi ∈ [0, Bi] i = 0, 1, · · · ,M. (4)

In top model, the decision maker is the owner who allocates the budget to each member
of the VE, including itself. The owner’s aim is to maximum the benefit of risk management
for the whole VE, the decision variables are therefore given by {x0, x1, . . . , xM}. In order
to get a better benefit, the benefit of risk management from partners should beyond a
given level (TBi) required by the owner, see Equation (3). Equation (2) and Equation
(4) present the constraint of investment budget and the interval of decision variables
respectively.
Anticipated base model i:

max ˆBenefiti(xi) = Benefiti (5)

s.t.

Pr

{
Linitial
i −

Ni∑
j=1

p̂ijlij(yij)− xi ≥ Benefiti

}
≥ α (6)

Ni∑
j=1

Cij(yij) ≤ xi (7)

yij ∈ {0, 1, . . . ,Wij} j = 1, · · · , Ni. (8)

The owner has to anticipates M partners’ decision process under the asymmetric infor-
mation. So there are M anticipated base models. For the anticipated base model i, it is
assumed that the probability of risk occurrence pij is an uncertainty factors for owner and
it is taken as random variables. In other words, the owner only knows the distribution
function of the probability Φ(p̂ij), but not the accuracy condition. The risk loss of partner
i is an expected value pijlij(yij), i = 1, 2, . . . ,M . The anticipated base model is a chance
constraint programming model, α is the confidence level, and α ∈ (0, 1). The cost of risk
management for partner i should no more than the allocated budget, see Equation (7).
Equation (8) present the set of the decision variables yij.
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The base level i:

maxBenefiti(x
∗
i ) = Linitial

i −
Ni∑
j=1

pijlij(yij)− x∗
i (9)

s.t.
Ni∑
j=1

Cij(yij) ≤ x∗
i (10)

yij ∈ {0, 1, . . . ,Wij} j = 1, · · · , Ni. (11)

In the base level, the decision makers are the partners. There are M base models
or partners in the base level. Take the ith base model as an example, i.e., the model
for Partner i. Partner i selects the optimal risk control strategies yij to maximize its
benefit of risk management Benefiti under the allocated budget x∗

i . The cost of the risk
management cannot exceed the allocated budget x∗

i , see Equation (10). Equation (11)
presents the set of decision variables yij.

3. The Two-Stage Particle Swarm Optimization. The two-level optimization prob-
lem presented in Section 2 is a nonlinear and integer programming problem with two-layer
structures for which efficient algorithms do not exist [6, 7, 8, 9, 10]. In addition, the huge
size of the problem will result in a high computational complexity when the number of
credit entities and the number of consulting firms increase. Thus, considering the hierar-
chical structure of the problem, TSPSO is proposed which combine the “top-search” and
“base-search” corresponding to the top model and base model of the problem receptively.

The original PSO was proposed by Kennedy and Eberhart in 1995 [11, 12, 13]. The
PSO belongs to the category of swarm intelligence methods; it is also an evolutionary
computation method inspired by social behavior observable in nature, such as flocks of
birds and schools of fish. This study follows the “global best neighborhood topology”
described by Kennedy et al., according to which, each particle remembers its best previous
position and the best previous position visited by any particle in the whole swarm. In other
words, a particle moves towards its best previous position and towards the best particle.
Since PSO was first introduced to optimize various continuous nonlinear functions by
Kennedy and Eberhard, it has been successfully applied to a wide range of applications
including credit portfolio management. Recently, the PSO was improved to solve the
problem with multi-level structures [14, 15, 16].

Figure 1 is the schematic presentation of the TSPSO. In the TSPSO, there are NPT +1
populations, one top-population (top-pop) and NPB base-populations (base-pop). Here
NPT is the population size of top-search. The top-pop is used to find the best solution of
the whole problem. The NPB base-pops are assigned to find the best solutions of the base
model. Each base-pop corresponds to a specific particle of top-pop. The relationship
between particles in top-pop and base-pop is shown in Figure 1. For the TSPSO, the
search process starts from top-search. Each particle in the top-pop effects a base-pop by
its specific allocated budget. Base-pops receive information from the particles of top-pop,
their tasks are to find the best combination of risk control strategies. The particles in
different base-pops cooperate with each other through the top-pop. The particles in the
top-pop and base-pops can evolve by original PSO or its variants.

In the following subsections, the main steps of the TSPSO are described.
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Base-search

Top-search

Base-pop 1
Base-pop 3

Base-pop 2

Top-pop

Particle 1 Particle 2 Particle 3

Figure 1. The schematic presentation of TSPSO

3.1. Particle representation scheme. First, the particle representation scheme for the
TSPSO is presented. For the top-pop, the real number strings are selected as particles.
Let NPT denote the population size of the top-pop. For each k = 1, 2, . . . , NPT , define the
kth particle, xk = (xk0, . . . , xkM), where xki ∈ [0, 1]. A particle represents a combination
of allocated budget to the members of VE.
For the base-pops, the integer number strings are selected as particles. Let NPB de-

note the population size of each base-pop. Then, for each t = 1, 2, . . . , NPB, the rep-
resentation scheme of the tth particle in the base-pop is yt = (yt1, yt2, . . . , ytNi

), where
yti ∈ {1, 2, . . . ,Wi}. A particle represents a combination of risk control strategies for a
partner.

3.2. Initialization. The initial top-pop with NPT particles is generated first. Then, the
initial base-pops with NPB particles for each particle in the top-pop is generated. For the
top-pop, random real numbers xki in the range [0, Bi] are generated as the kth particle
xk, i = 0, . . . ,M . Random real numbers in the range [−Bi, Bi] are generate as the initial
velocity of the kth particle vki.
For each base-pop, random integer numbers yti in the set [1, . . . ,Wi] are generated as

the tth particle yt, i = 1, . . . , Ni. Random integer numbers in the set {−W, . . . ,W} are
generated as the initial velocity of the tth particle vti.

3.3. Fitness function. The fitness of the particles are calculated by the following fitness
function:
For the top model,

FT =
[
Linitial
0 − L0(xk0)− xk0

]
+

M∑
i=1

ˆBenefiti(xki)

− η

(
M∑
i=0

xki −Bmax

)+

− λ

M∑
i=0

(
TBi − ˆBenefiti(xki)

)+ (12)
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Here FT is the fitness of the particle Xk. η and λ are punishment coefficients. Here
notation (·)+ is defined as below,

(x)+ =

{
x if x > 0
0 if x ≤ 0

For the chance constraint programming models (anticipated base models), Monte Carlo
Simulation (MCS) is used to calculate the fitness under the chance constraint (2).

Step 1: Set Q
′
as integer part of αQ, Q is a integer number.

Step 2: Generate samples p1ij, p
2
ij, . . . , p

Q
ij of the random variable p̂ij according to its

distribution function Φ(p̂ij), i = 1, j = 1, 2, . . . , N .
Step 3: Using the samples to calculate the fitness by fitness function below,

FAB = Linitial
i −

Ni∑
j=1

p̂ijlij(ytj)− xki − γ

(
N∑
l=1

Cij(ytj)− xki

)+

(13)

For the Q samples, there are Q anticipated fitness, F 1
AB, F

2
AB, . . . , F

Q
AB.

Step 4: Based on the law of large numbers, the value of Benefiti can be taken as the
Q

′
th largest element in {F 1

AB, F
2
AB, . . . , F

Q
AB}.

For the base models,

FB = Linitial
i −

Ni∑
j=1

pijlij(ytj)− x∗
ki − γ

(
N∑
l=1

Cij(ytj)− x∗
ki

)+

(14)

Here FB is the fitness of particle yt; γ is a punishment coefficient.

3.4. Updating of particles. In this subsection, the formulas for updating the particles
in top-pop and base-pop are presented respectively.

For the particles in top-pop,

vki = rvki + c1r1(pki − xki) + c2r2(pgi − xki) (15)

xki = xki + vki (16)

Here, vki is the velocity of the kth particle on the ith bit, vki ∈ [−xi, xi]; xki represents
the position of the kth particle on the ith bit; pki is the best position of the kth particle
on the ith bit; pgi is the best position of the population on the ith bit so far; r is the
inertia factor, r ∈ [0, 1]. r1 and r2 are random numbers, r1, r2 ∈ [0, 1]; c1 and c2 represent
learning factors, where c1, c2 ≥ 0; k = 1, 2, . . . , NPT and i = 1, 2, . . . ,M .

For the particles in base-pops, the velocity and position are updated by (17) and (18)
respectively,

vtj = rvtj + c1r1(ptj − ytj) + c2r2(pgj − ytj) (17)

ytj =

 1 if vtj + ytj ≤ 1
vtj + ytj if 1 < vtj + ytj ≤ W
W otherwise.

(18)

Here, vtj represents the velocity of the tth particle on the jth bit; ytj is the position of the
tth particle on the jth bit; ptj is the best position of the tth particle on the jth bit; pgj is
the best position of the population on the jth bit so far; r, r1 and r2 ∈ {0, 1}; c1 and c2
are the factors of learning, where c1, c2 ≥ 0; t = 1, 2, . . . , NPB, i = 1, 2, . . . ,M .

3.5. Termination rule. The maximum number of iteration is used as the termination
rule. They are NIT and NIB for the top-search and the base-search, respectively.
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3.6. The procedures of TSPSO.
Step 1: Specify the parameters: the population size NPT and NPB, the maximum

numbers of iteration NIT and NIB.
Step 2: Generate an initial top-pop with NPT particles {x1, . . . ,xNPT

}.
Step 3: For particle xk (k = 1, . . . , NPT ).
Substep 3.1: Generate an initial base-pop with NPB particles {y1, . . . ,yNPB

}.
Substep 3.2: For the anticipated base model, use the MCS process to calculate the

fitness of each particle in base-pop, F t
AB (t = 1, . . . , NPB).

Substep 3.3: Check the termination rule of the base-search. If it is satisfied, go to
Step 4; otherwise go to Substep 3.4.

Substep 3.4: Update particles {y1, . . . ,yNPB
}, go to Substep 3.2.

Step 4: Use function (12) to calculate the fitness of the top model for each particle, F k
T

(k = 1, . . . , NPT ).
Step 5: Check the termination rule of the top-search. If satisfied, go to Step 7; otherwise

go to Step 6.
Step 6: Update particles yt (t = 1, . . . , NPB), go to Step 3.

Step 7: Record the anticipated optimal solution x̂∗ = {x̂∗
0, . . . , x̂

∗
M} and {ŷ∗

1, . . . , ŷ
∗
M}.

Here ŷ∗
i denotes the anticipated optimal base level solution under the anticipated top level

optimal solution x̂∗
i .

Step 8: For particle x̂∗.
Substep 8.1: Generate an initial base-pop with NPB particles {y1, . . . ,yNPB

}.
Substep 8.2: For the base model, use function (14) to calculate the fitness of each

particle, F t
B (t = 1, . . . , NPB).

Substep 8.3: Check the termination rule of the base-search. If it is satisfied, go to
Step 9; otherwise go to Substep 8.4.

Substep 8.4: Update particles {y1, . . . ,yNPB
}, go to Substep 8.2.

Step 9: Use function (12) to calculate the fitness of the top model, FT .
Step 10: Output the optimal solution {x∗

0, . . . , x
∗
M} and {y∗

1, . . . ,y
∗
M}.

4. Numerical Experiments. In this section, two numerical examples are provided to
illustrate the practical implementation of the model and the effectiveness and the relia-
bility of TSPSO. The TSPSO approach of this study has been compared with two other
approaches, GA and PSO.

4.1. Example I.

4.1.1. The example. In this example, the case when there are one owner and one partner
is considered, so the number of member in the VE is 2, (M + 1 = 2). The owner has to
allocate the budget to the partner and itself, and the upper band of total budget is $400
(Bmax = 400). The risk loss of the owner is up to its budget and is given by a convex
decreasing function

L0(x0) = 2000 exp(−0.05x0). (19)

For owner, some information of partner is uncertain, such as the probability of risk oc-
currence pij. In this perspective, it can be taken as a random variable. In order to improve
its information condition, the owner has to anticipate the probability of risk occurrence.
However, it is difficult to know the real value, the owner can only know the distribution
function of the anticipated probability of risk occurrence. It is assumed that p̂ij follows
a normal distribution function N(pij, σ

2). pij is the expected value. In this example, pij
is also the real probability of risk occurrence for the partner. The probability of risk oc-
currence for each risk factor is pij = {0.97, 0.90, 0.77, 0.70, 0.57, 0.47, 0.30, 0.22, 0.20, 0.07},
i = 1, j = 1, 2, . . . , N . σ is the variance, σ = 0.1. The target benefit for partner is $1, 300,
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TBi = 1300, i = 1, which means that the risk management benefit of the partner must
beyond $1, 300.

For the partner, there are 10 (N = 10) risk factors which have potential to threaten
its safety, and 4 (W = 4) risk control strategies are provided for each risk factor. In this
example, only one of the strategies will be selected for each risk factor or do nothing with
it. The strategies are sequenced from low to high according to their effect. Generally, a
stronger effect corresponds to a bigger index of strategy. The risk loss function is a convex
decreasing function,

lij(yij) = 200 exp(−χijyij) (20)

The parameters χij (i = 1, j = 1, 2, . . . , N) are used to describe the effect of various
risk factors on risk loss, the value of the parameters are χij = {0.94, 0.87, 0.83, 0.73, 0.63,
0.50, 0.37, 0.33, 0.23, 0.1}, i = 1, j = 1, 2, . . . , N . According to the specific form of risk
loss function and the probability of risk occurrence, the initial risk loss for owner and the
partner are both $2, 000, Linitial

i = 2, 000, i = 0, 1. So the total initial risk loss of VE is
$4, 000.

The partner has to pay for the cost of risk control strategies under its budgets. The
cost of the strategy is assumed to be a concave increasing function of the corresponding
strategy, which is approximated by:

Cij(yij) = 50 [1− exp (−εijyij)] , i = 1. (21)

Here the parameters εij are set according to the risk factors, εij = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1}, j = 1, 2, . . . , N . Generally, a stronger effect strategy corresponds to a
higher cost and a lower risk loss. From the form of the risk loss functions and the cost
functions, it can be seen that an additional cost of selecting a stronger effect action yields
a small decrease in the risk loss.

4.1.2. Experimental results. Firstly, the owner makes decision under its anticipation, the
experimental results for Example I is listed in Table 1. After the owner, the partner
makes the real decision, the experimental results for Example I is listed in Table 2. The
maximize fitness value is used as the best experimental result in Tables 1 and 2. The owner
anticipates the decision of the partner by its known information. The owner allocates the
total budget $394.15 to partner ($256.52) and itself ($137.63). It is anticipated that the
partner will select the risk control strategies {4222100000}, and generates a benefit of risk
management $1328.20 which is beyond the target benefit $1, 300. The anticipated benefit
of the whole VE is $3152.43. After the anticipation, the owner sends the budget $256.52
to the partner. The partner selects the optimal risk control strategies {3322100000}, and
the benefit of partner is $1318.37, which is lower than the anticipated result ($1328.20).
The real benefit of the whole VE is $3142.60, which is also lower than the anticipated
result ($3152.43). The experimental results show that, the owner didn’t know the real
situation of partner, so the real decision result is not good enough like what the owner
anticipated.

In the example, the coefficient η and λ in fitness function (12) are set η = 10 and
λ = 10 respectively. The coefficient γ in fitness function (13) and (14) is set γ = 100
respectively. The learning factors c1 and c2 in Equations (15) and (17) are set c1 = 2.05,
c2 = 2.05 and c1 = 2, c2 = 2 respectively [12, 13, 14]. The parameters setting of TSPSO is
presented in Table 3. They are top-pop size NPT , base-pop size NPB, number of iterations
for top-search NIT and number of iterations for base-search NIB.

The influence of the parameters on the fitness of best solutions are shown in Figures 2
and 3 respectively. They are top-pop size NPT , base-pop size NPB, number of iterations
for base-search NIB. While the influence of one parameter is shown, other parameters
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Table 1. Anticipated decision results of Example I

Anticipated Decision Results Value
Benefit of VE ($) 3152.43
Benefit of partner ($) 1328.20
Budget for members ($) 137.63 256.52
Total budget ($) 394.15
cost of partner ($) 248.47
strategy selected by partner 4 2 2 2 1 0 0 0 0 0

Table 2. Real decision results of Example I

Real Decision Results Value
Benefit of VE ($) 3142.60
Benefit of partner ($) 1318.37
Budget for members ($) 137.63 256.52
Total budget ($) 394.15
Cost of partner ($) 249.57
Strategies selected by partner 3 3 2 2 1 0 0 0 0 0

Table 3. Parameters setting of TSPSO for Example I

Parameters NPT NPB NIT NIB

Values 200 80 80 40
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Figure 2. The influence of NPT on the fitness

are fixed as in Table 3. Figures 2 and 3 illustrate the convergence characteristics of
the proposed TSPSO with different population size respectively. When the top-pop size
increases, the TSPSO can find better solutions and provide an indication for its robustness.
By comparing Figures 2 and 3, a finding is that the top-pop size makes a stronger influence
on the fitness than base-pop size. In other words, the top-search is more important for the
convergence of TSPSO with respect to the cooperative function of top-search. Figure 4
presents the convergence process of the three heuristic methods. The average fitness value
of 10 runs of each algorithm is used. Among the three heuristic methods, TSPSO can
search out the optimal solution and generate the optimal efficient frontier more frequently
than other two optimizers. In early stage of the running, PSO converged most rapidly,
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Figure 4. The convergence process of the three heuristic methods

Table 4. The Min, Max, Avg and Std of the three heuristic methods for
Example I

GA PSO TSPSO
Min 3129.21 2934.63 3141.84
Max 3152.43 3139.12 3152.43
Avg 3142.83 3076.51 3147.3
Std 9.0131 18.0121 4.0069

but may encounter premature convergence. GA convergence slowly than the other two
optimizers in the early stage but GA find its best solution which is mostly as good as
TSPSO, at the end of the search.

Since GA, PSO and TSPSO are stochastic optimization methods, a statistical eval-
uation of their performance is necessary. Here the experiments are repeated 10 times
with different random seeds. The minimum (Min), maximize (Max), average (Avg) and
standard deviation (Std) of fitness value from the best solutions obtained are reported in
Table 4. GA and TLPSO find the best solution, PSO makes the worst performance on
the maximum fitness. TSPSO has the best searching ability and reliability with respect
to the Avg and Std.
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4.2. Larger numerical example: Example II. To demonstrate the effectiveness of
the proposed algorithm, a larger size problems are provided.

4.2.1. The example. For example II, there are also one owner and one partner. The
deference comes from the partner, more risk factors are considered. It is supposed that
there are 30 (N = 30) risk factors which have potential to threaten its safety, while risk
control strategies for each risk factor are still 4 (W = 4). The owner has to allocate the
budget to the partner and itself, and the upper band of total budget is $800. The risk
loss of the owner is up to its budget and is given by a convex decreasing function, see
the risk loss function of the owner in Example I. The target benefit for the partner is
$3, 900, TBi = 3900, i = 1. The risk loss functions for the partner is a convex decreasing
functions, which is the same as in Example I. The initial risk loss for owner is $2, 000,
Linitial
i = 2, 000, i = 0. The initial risk loss for partner is $6, 000, Linitial

i = 6, 000, i = 1.
So the total initial risk loss of VE is $8, 000 for Example II. The partner has to pay for the
cost of risk control strategies under its budgets. The cost function of the corresponding
strategies, see the cost function in Example I.

4.2.2. Experimental results. The parameters setting of TSPSO for Example II are pre-
sented in Table 5. The top level optimization problem is a continuous one, while the base
level optimization problem is a discrete one. So the sizes of the base level optimization
problem without respect to the constraints for Example I and II are 1.05 + E06 and
1.15 + E18 respectively. For Example II, the experiment is also repeated 10 times with
different random seeds, the Min, Max, Avg and Std of fitness value from the best solutions
of the three heuristic methods are recorded in Table 6. Comparing Table 6 with Table
4, GA find a better solution than PSO’s, and make a better reliability than PSO’s for
the two examples. while the size of the problem increase, it can be seen that the TSPSO
keeps its best performance, the best solution, and the Std of the fitness, especially for the
larger size examples.

Table 5. Parameters setting of TSPSO for Example II

Parameters NPT NPB NIT NIB

II 240 100 80 40

Table 6. The Min, Max, Avg and Std of the three heuristic methods for
Example II

GA PSO TSPSO
Min 5621.39 5546.14 5766.33
Max 5798.22 5739.69 5926.12
Avg 5747.64 5656.87 5862.03
Std 17.3002 28.0043 11.7403

On the other hand, the computational time of each algorithm on the two examples
are compared. Figure 5 shows the computational time of the three heuristic methods on
Example I and II respectively. GA and PSO are shown to be the least time consuming
method, Although the TSPSO algorithm always seems to be more time consuming than
the others. However, in Table 7, TSPSO can find out the better solution with less times of
increment on computational time than the other two optimizers due to its fast convergence
speed. From Example I to II, the times of increment on computational time of GA, PSO
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Figure 5. The computational time of the three heuristic methods for Ex-
ample I and II

Table 7. The times of increment on computational time from Example I to II

GA PSO TSPSO
The times of increment 5.90 5.89 3.79

and TLPSO are 5.90, 5.89 and 3.79 respectively, which is under the same increment of
the problem sizes.

5. Conclusions. In this paper, a TSPSO is proposed for risk management of VE. The
risk management is formulated as a two-level optimization problem with hierarchical
structure. Taking the characteristics of the optimization problem into account, TSPSO
is proposed, which has two level searching process and multiple swarms, and which is
an improvement on the previous single searching process and single swarm optimizers.
Numerical example is given, GA and PSO are also designed for comparing with TSPSO.
The simulation results show that, TSPSO can search out the best solutions rapidly, but
GA and PSO cannot. Therefore, TSPSO is a very efficient and reliable method to solve
this kind of optimizing problem with hierarchical structure and high time complexity.
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