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Abstract. A new adaptive internal model control (IMC) scheme based on a novel adap-
tive model is proposed to account for the process uncertainties in MIMO system. A dy-
namic partial least squares (PLS) decoupling structure which integrated tradition PLS
model and auto-regressive exogenous (ARX) is introduced to model the dynamic process.
In the presence of uncertainties, adaptive mechanisms including recursive PLS (RPLS)
and recursive least squares (RLS) are used to update the model on-line. Accordingly, the
adaptive IMC is designed based on the updated model. To demonstrate the modeling ef-
fect of the dynamic PLS decoupling structure and the control performance of the adaptive
IMC scheme under uncertainties, a simulation example is presented.
Keywords: Partial least squares, Adaptive internal model control, Recursive partial
least squares

1. Introduction. Due to the uncertainties stemming from disturbance signals, noise in-
terference, unmodeled plant dynamics and plant-parameter variations, traditional control
strategies usually fail to achieve good performance or even fail to stabilize the system.
Under such circumstances, one may need to re-tune the controller parameters or even re-
design the control strategies. Two kinds of control schemes are available to avoid redoing
those work. One is robust control, the other is adaptive control. Both of them have been
greatly developed in the past years. The essential difference between them lies in whether
measurements are employed in the control scheme.

During robust control design, those uncertainties are unknown, but assuming bounded.
Robust control guarantees that if the changes are within given bounds, the control law
does not need to be changed. Usually, unsuitable bound would lead to pessimistic analysis
of the system behavior and therefore produce potentially conservative designs.

In contrast with robust control, the adaptive control policy is concerned with control law
changing. It does not need a priori information about the bounds of these uncertainties
or time-varying parameters. An adaptive controller can use the measurements to adapt a
controlled system with parameters which vary, or are initially uncertain. The foundation
of adaptive control is parameter estimation. Traditional method of parameter estimation
is recursive least squares (RLS) which is used to modify estimates in real time.

On the other hand, the internal model control (IMC) is a simple and popular control
strategy in practice industrial process. A lot of attention has been attracted to expand
IMC structure to adaptive control to handle uncertainties [1-6]. A complete theoretical
design and analysis for adaptive IMC was first proposed by Datta and Ochoa. They
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showed how one can adapt the internal model on-line and guarantee stability and asymp-
totic performance in the ideal case [4]. Rupp and Guzzella presented an adaptive internal
model controller for stable non-minimum phase SISO plant and applied to the air/fuel
ratio control system of a spark-ignited engine [2]. A new discrete-time adaptive IMC
which is robust for changes in modeling was proposed by Silva and Datta. In their pa-
per, two structures of the adaptive IMC system, H2 optimal control and pole-placement,
are presented and simulated using the uncertain model [3]. However, those contributions
only focus on SISO system. And there are no theoretical guarantees for extending SISO
adaptive IMC to MIMO system. In this paper, a novel adaptive IMC scheme is proposed
to handle uncertainties in MIMO system by introducing a partial least squares decoupling
structure.
Partial least squares (PLS) is a well-known multivariable chemometric tool and has

been successfully applied to process monitoring, fault detection, process modeling and
recently multivariable control system design. PLS is a robust alternative to the standard
least squares in the analysis of highly correlated data. Kaspar and Ray first proposed
the idea of moving the conventional control scheme into dynamic PLS framework [7,8].
An MIMO system can be decomposed into several SISO subsystems in this dynamic PLS
framework and loop pairing is automatically implemented at the same time. Based on
their work, Lakshminarayanan et al. extended the PLS to a dynamic one by constructing
an auto-regressive exogenous (ARX) inner model [9]. Hu et al. proposed a multi-loop
IMC scheme in conjunction with feed-forward strategy based on the dynamic linear PLS
framework [10] and proposed multi-loop nonlinear IMC design based on nonlinear dynamic
PLS framework using ARX neural network model [11]. There are also some discusses on
the adaptive control using PLS structure. Chen and Cheng designed multi-loop adaptive
PID controllers based on a PLS decoupling structure [12,13]. Based on those work, a new
adaptive IMC scheme is proposed in this paper. The model of the plant is constructed
using the PLS decoupling structure presented in [12,13]. The model updating includes two
parts, RLS and recursive partial least squares (RPLS) [14,15]. The inverse-model which
is used in controller is updated accordingly. Since the PLS decoupling structure has
decomposed the original MIMO system into several SISO subsystems, this adaptive IMC
scheme is actually implemented in several SISO loops. Hence, those conclusions drawn
from SISO adaptive IMC can be inherited, including stability, asymptotic performance
and parameter convergence [1,4,16].

2. Partial Least Squares Decoupling Structure.

2.1. Partial least squares. PLS is a well-known dimensionality reduction technique.
The traditional PLS model consists of an inner model in which the algebraic relationship
between latent variables is obtained and an outer model which extracts the principal
components [17]. Consider two blocks of scaled dataset X = (xij)n×r and Y = (yij)n×v,
where n, r and v denote the number of observation, independent variables and dependent
variables respectively. The outer model can be expressed as follows:

X − E∗ =
A∑

a=1

tap
T
a = TP T (1)

Y − F ∗ =
A∑

a=1

uaq
T
a = UQT (2)

where A denotes the number of latent variables, which is determined based on the per-
centage of variance or by a statistical method such as cross validation. T and U denote
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the score matrices; P and Q are the loading matrices of T and U respectively. ta and ua
are the ath orthogonal vectors of T and U, pa, qa are the ath loading vectors of P and Q.
E* and F* are residual matrices of X and Y, respectively.

In the inner model, an algebraic relationship between the input and output latent
variable is obtained by least squares (LS) method,

ua = bata ⇒ ba = uT
a ta/t

T
a ta (3)

Finally, the PLS model can be expressed as,

Y − F ∗ =
A∑

a=1

bataq
T
a = TBQT (4)

where B = diag(b1, b2, . . . , bA) is a diagonal matrix containing the inner model regression
coefficients. Actually, PLS decouples the multivariate regression problem into a series of
univariate regression problems. The PLS modeling is generally implemented by means of
numerical approach, called NIPALS (non-linear iterative partial least squares) algorithm
which is proposed by Höskuldsson [18]. However, with the algebraic structure, the tradi-
tional PLS model can only deal with the static relationship. Therefore, it is necessary to
incorporate dynamics into the PLS model.

2.2. Dynamic partial least squares. In recent years, dynamic PLS modeling that de-
veloped to obtain a better representation of dynamic process is presented in literature
[7-9,12,13,19-21]. Among them, modifying traditional PLS by incorporating the previ-
ous data into each observation vector [19,21] is an intuitive method. However, these
approaches require a substantial increase in the dimension of the X matrix. Kaspar and
Ray proposed another method by including filters before applying the standard PLS al-
gorithm [7,8]. However, the dynamic filter is designed either based on a-prior knowledge
or by minimizing the sum of squares of the output residuals. Lakshminarayanan et al.
proposed a dynamic extension of the PLS algorithm that incorporating the dynamic re-
gression relationship, like ARX, into the PLS inner model [9]. This method modified the
standard PLS algorithm. Chen et al. proposed a dynamic PLS method by combining the
standard PLS model and ARX model [12,13]. The standard PLS model can decouple the
MIMO system into several SISO subsystems and pair the loops automatically. While the
dynamic characteristics of the system can be inferred from the analysis of an ARX model
fitted to the observations of the system [13]. The model structure is shown in Figure 1.
The input x(t) is scaled and centered by matrix Wx to be the input vector of standard
PLS. Using PLS model, one can obtain the output vector of PLS, yPLS(t). Gp represents
the process plant. The output y(t) is scaled and centered by matrix Wy, then passes the
delay operators, q−1, q−2, . . . , q−Na, to be the input vector of ARX part. The prediction
output ŷ(t+1) is expressed as a weighted sum of the past outputs plus the outputs from
the PLS model.

This dynamic PLS structure can be formulated as two parts,

yPLS(t) = PLS(x(t)) (5)

ŷ(t+ 1) =
Na∑
j=1

Ajy(t+ 1− j) + yPLS(t− d) (6)

where Na is the number of lagged, Aj is the ARX model parameters and d is the pure
delay.

The procedure of the dynamic PLS modeling is presented as follows.
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Figure 1. The dynamic PLS decoupling structure

(1) Set the initial guess value of Na and d, as well as corresponding searching band, then
initialize Aj.

(2) Using the given ARX model and the output y(t), one can obtain the yPLS(t) based
on Equation (6).

yPLS(t) = y(t+ 1 + d)−
Na∑
j=1

Ajy(t+ 1 + d− j)

Combine yPLS(t) with scaled x(t) to construct the PLS model and obtain the PLS
output ŷPLS(t).

(3) Using ŷPLS(t) and ŷ(t), one can calculate model prediction output ŷ(t + 1) using
Equation (6). And the ARX model parameters Aj can be updated using ŷPLS(t) and
y(t) again.

(4) Repeat steps (2) and (3) until the model converges.
(5) If the model prediction output ŷ(t + 1) is not approaching the real output y(t + 1),

modify Na and d then go to step (2).

Since adaptive IMC will be designed based on this framework, recursive updating the
model is needed. In the ARX part, model parameter can be updated online via recursive
least squares (RLS). While the PLS part is updated using the recursive partial least
squares (RPLS).

2.3. Recursive partial least squares. RPLS is firstly proposed by Helland et al. [14].
And some issues which were not clearly considered in Helland’s work was supplemented
by Qin [15]. There is a minor modification of standard PLS in their method. The score
matrix T is normalized by transferring the lengths of T to the loading matrices P and Q
via matrix L. The new representations are shown below.

L = {lij}; lii =
√
tTi ti; lij = 0, i 6= j (7)

S = TL−1; STS = I (8)

R = PL (9)

H = QBL (10)

X = TP T + E∗ = TL−1LP T + E∗ = SRT + E∗ (11)
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Y = TBQT + F ∗ = TL−1LBQT + F ∗ = SHT + F ∗ (12)

In order to accord with Equations (1)-(3), here T, P, Q, and U are still used to describe
PLS model. However, T is normalized as T TT = I. This modification makes it easy to
derive the RPLS regression algorithm.

Like in least squares, minimizing the square residuals, ||Y −XC||2, it can obtain,

(XTX)C = XTY (13)

The PLS regression coefficient matrix can be denoted as

CPLS = (XTX)+XTY (14)

where (·)+ denotes the ‘PLS generalized inverse’. When a new dataset (X1, Y1) is available,
the whole dataset used to modeling is augmented as

Xnew =

[
X
X1

]
, Ynew =

[
Y
Y1

]
Now the PLS regression coefficient matrix is

CPLS
new =

([
X
X1

]T [
X
X1

])+ [
X
X1

]T [
Y
Y1

]
(15)

Since T is mutually orthonormal,

XTX = PT TTP T = PP T

XTY = PT TTBQT = PBQT (16)

So, Equation (15) can be rewritten as

CPLS
new =

([
P T

X1

]T [
P T

X1

])+ [
P T

X1

]T [
BQT

Y1

]
(17)

Above is the basic concept of RPLS. RPLS updates the model using the old model and
the new data. The procedures of RPLS modeling is summarized as follows.

(1) Scale the dataset (X, Y ) to zero mean and unit variance.
(2) Use the scaled dataset to derive a PLS model (T, P,B,Q). It is to be noted that

enough principal components are needed to make the residual matrices E* satisfy
||E*|| ≤ ε (ε > 0 is the error tolerance).

(3) When a new dataset (X1, Y1) is available, scale it in the same way as step (1). For-
mulate

X =

[
P T

X1

]
, Y =

[
BQT

Y1

]
and go to step (2).

Remark 2.1. RPLS updates the model without increasing the size of data matrices.

Remark 2.2. When the new datasets are available as time goes on, the mean and variance
of the whole dataset may change. Step (3) may not scale the new dataset to zero mean
and unit variance. In this case, a modified RPLS is needed. It is beyond the scope of
this paper. One can see [15] for more detail. In the simulation of our paper, the mean
and variance are assumed not to change, since it is not very long running time considered
in our example. So this assumption is reasonable. Because that not many datasets are
accumulated, the changes of mean and variance are very limited.
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RPLS is used to update only the PLS part in the dynamic PLS decoupling structure,
the ARX part is also needed to be updated when the new dataset available. Traditional
RLS can be applied to update ARX model. Due to RLS is well-known and widely used,
no description will be presented here again. It is notable that, the model is updated only
when the mismatch between model and plant exceeds a threshold.

3. Adaptive Internal Model Control Scheme. The conventional SISO IMC consists
of a forward model of the plant, its inverse-model and a low-pass filter is presented in
Figure 2. The controller is designed using the inverse-model. And the low-pass filter is
used to make the system robust.

Figure 2. The basic structure of IMC scheme

To make the conventional IMC adaptive, both the adaptive forward model and inverse-
model are required. The forward model is PLS model connected in series with ARX
model in this paper. The model parameters can be updated online using RPLS and RLS.
The inverse-model is the inverse of the forward model’s minimum phase part, so it can
be updated accordingly. Since the forward model is a part of IMC and the controller
is the inverse-model, the whole IMC is updated as well. The adaptive IMC scheme is
illustrated in Figure 3. The PLS-ARX is the forward model. RPLS+RLS are the adaptive
mechanisms and used to update the forward model and controller simultaneously.

Figure 3. Adaptive IMC based on dynamic PLS decoupling structure

The design of IMC mainly includes two parts: the low-pass filter and the inverse-model.
The low-pass filter can be selected as

F (q−1) =

(
1− λ

1− λq−1

)N

(18)

where the positive integer N is chosen to make the IMC controller semi-proper or proper.
The low-pass filter parameter λ is chosen to make a balance between the robustness and
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sensitivity. As for the inverse-model, the controller output is calculated as follows.

e(t) = yset(t)− y(t) + ym(t) (19)

x(t) = ginv(F (q−1)e(t)) = ginv(ef(t)) (20)

ginv() is the inverse of the PLS-ARX model. So it also includes two parts. According to
Equation (5), Equation (6) and Figure 3, the inverse-model can be formulated as,

ePLS(t) = ef(t)−
Na∑
j=1

Ajy(t− j) (21)

x(t) = invPLS(ePLS(t)) (22)

Equation (21) is used to calculate the expected PLS output vector, ePLS(t). Equation
(22) is the inverse process of standard PLS, i.e., using the output vector to calculate the
input vector. By now, the controller input, x(t) is obtained.

4. Example. To demonstrate the modeling effect of the dynamic PLS decoupling struc-
ture and the control performance of the adaptive IMC scheme under uncertainties, a 2×2
process [22] is considered as follows.

G(s) =


3(s+ 3)(s+ 5)

(s+ 1)(s+ 2)(s+ 4)

6(s+ 1)

(s+ 2)(s+ 4)
2

(s+ 3)(s+ 5)

1

s+ 1

 (23)

In the nominal case, the process is excited by two pseudorandom signals to produce
modeling datasets. Using those datasets, the model parameters of dynamic PLS decou-
pling structure are got as follows.

P =

[
0.455715
0.890126

0.864725
−0.50225

]
Q =

[
0.519524
0.854456

0.883665
−0.46812

]
B =

[
1.02692 0.780334

]
The whole model is

y1(t) = [y1(t− 1) y1(t− 2) y1(t− 3)] ∗ [0.9642 − 0.2507 0.0084]T + yPLS
1 (t)

y2(t) = [y2(t− 1) y2(t− 2) y2(t− 3)] ∗ [0.8360 − 0.1592 − 0.0037]T + yPLS
2 (t)

If there is a large change in the process, the control strategy without an adaptive law
may not make the system stable. Two types of changes in the model structure will be
used to simulate the uncertainties in the process.

4.1. Steady state gain changes. Assuming the steady state gain in the diagonal of
Equation (23) is enlarged to double. Activity variation of catalyst in the reaction process
belongs to this kind of steady state gain change. The model identified in nominal case
cannot describe the process or predict the output exactly. With adaptive law, RPLS and
RLS, the model can be modified on-line. As seen in Figure 4, the model prediction output
is close to the actual output with small error. Figure 5 shows the changes of parameters
in ARX part of the model. The ARX model parameters are convergent. It means that a
new model is established to adapt the process change. Hence, the RLS and RPLS used in
dynamic PLS decoupling structure can adjust the model effectively in the case of process
gain changes.

Accordingly, adaptive IMC scheme is used to track the setpoint in the case of stedy
state gain changes. The control response is presented in Figure 6. As can be seen, the
adaptive IMC tracks the setpoint well with the adaptive mechanism, RPLS and PLS.
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As comparison, IMC without adaptive mechanism is also carried out in this case. As
seen in Figure 7, IMC can track the setpoint with a long time. And a very intense
oscillation response is presented which is undesired in the process. Intense oscillation
means frequent control action which may shorten the life of actuators. Therefore, adaptive
IMC outperforms IMC in the control performance.

Figure 4. The prediction output in the case of process gain change

Figure 5. The change of ARX parameter in the case of process gain change
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Figure 6. Control response of adaptive IMC in the case of process gain change

Figure 7. Control response of IMC in the case of process gain change

4.2. Process model pole changes. Another common change in the process behavior
is the pole changes in the transfer function. Parameters of equipment changing with
temperature which are very common in the continuous process belong to this kind of
uncertainty. Here, assuming that the transfer function in Equation (23) is varied as

G(s) =


3(s+ 3)(s+ 5)

(s+ 4)(s+ 2)(s+ 4)

6(s+ 1)

(s+ 2)(s+ 4)
2

(s+ 3)(s+ 5)

1

s+ 3


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Figure 8. The prediction output in the case of pole change

Figure 9. The change of ARX parameter in the case of pole change

The pole changes make the original model no longer matching the process. With the
model adaptation, the output prediction and actual output are compared in Figure 8.
Good prediction performance is presented with small error. The parameters of ARX part
are also shown in Figure 9 to validate the effectiveness of RLS in the adaptive approach.
Thus, this adaptive PLS decoupling structure can update the model effectively in the case
of pole changes.
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Figure 10. Control response of adaptive IMC in the case of pole change

Consistently, adaptive IMC scheme is used to track the setpoint under the condition
of process pole changes. Comparison with IMC is also carried out. Figure 10 shows the
control performance obtained by them. Although both IMC and adaptive IMC can track
the setpoint, adaptive IMC has a good control performance than IMC in term of response
time.

5. Conclusions. In this paper, a new adaptive IMC scheme is proposed with a novel
model adaptive method to deal with the process uncertainties in MIMO system. A PLS
structure which combines the traditional PLS and ARX is used to describe the dynamic
process and decouple the MIMO system into several SISO subsystems. The adaptive
mechanism includes two parts, RPLS is used to update the PLS and RLS is used to update
the ARX. The proposed adaptive IMC scheme can guarantee good control performance
in the presence of uncertainties. The proposed modeling method and control scheme are
demonstrated to be effectiveness in the simulation example.
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