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ABSTRACT. A genetic algorithm (GA) is a search algorithm based on the mechanism of
natural genetics. In various GAs, a real-coded GA (RCGA) employing individuals rep-
resented by real valued-genes has been proposed to solve the optimization problem in the
continuous searching space. However, the conventional RCGA yields ineffective searches
due to insufficient genetic diversity in the selection process. In this paper, we propose a
modified RCGA with variability operator maintaining the genetic diversity of the popula-
tion. In the proposed method, a variability term is newly added to the individuals selected
by the ordinary selection. The degree of the variability is decided considering the fitness
value of the individual. The searching performance of the proposed method is better than
the conventional methods. The effectiveness and the validity of the proposed method are
verified by applying it to optimization problems of continuous benchmark functions and
signal sources localization.

Keywords: Genetic algorithm, Real-coded genetic algorithm, Genetic diversity, Muta-
tion, Variability operator

1. Introduction. A genetic algorithm (GA) is a search algorithm based on the mecha-
nism of natural selection and natural genetics [1]. In general, the GA solves optimization
problems by using a set of individuals, which are represented by bit-strings. A real-coded
GA (RCGA) employing individuals represented by real valued-genes has been proposed
to solve function optimization problems [2, 3].

In the traditional GAs, the search is achieved by iteratively carrying out the selection,
crossover, mutation and so on. These methods generally employ copy-based selection
strategies, e.g., roulette wheel selection (RWS), tournament selection and ranking selec-
tion [2]. The conventional selection methods are simply realized by only the copy-based
procedure.

However, the conventional RCGAs cause a loss of the genetic diversity [4, 5] which
means the number of base points in the searching space, because the lack of the genetic
diversity corresponds to loss of the base points. As a result, a drop in the genetic diversity
leads to an ineffective search.

To ensure adequate genetic diversity, there are two kinds of approaches, a selection-
based method and a mutation-based method. The selection-based method performs the
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search by generating better offspring with keeping the genetic diversity. As the represen-
tative selection-based method, a self-organizing map (SOM [6])-based selection operator
was proposed [7, 8]. On the other hand, the mutation-based method realizes the effective
search by making variety offspring or changing mutation probability [9, 10, 11]. Especially,
an adaptive directed mutation (ADM) operator [11] is the state-of-the-art algorithm in
the mutation-based methods.

The SOM-based selection and the ADM operators can maintain the genetic diversity,
because these operators generate new varied individuals without copying. However, a
computational cost of the SOM-based selection is bigger than that of the copy-based con-
ventional selection operator, because the SOM-based selection requires some calculation
processes.

On the other hand, the ADM operator can keep the genetic diversity without time
consuming computational processes. The individual after applying the ADM is decided by
considering the variations of the individual and its fitness value. However, the convergence
property of the ADM is not good, because the ADM operator based on the elitism is not
applied to the individual with the highest fitness value.

In order to achieve the effective search with small computational costs, the simple
algorithm is desirable. Furthermore, the algorithm needs to find the good solution in
early generation and the fast convergence. The motivation of this study is to establish the
new operator which encourages the fast search and convergence with small computational
costs in the framework of RCGA.

In this paper, we propose a variability operator in RCGA. In the proposed operator,
to maintain the genetic diversity, the varied individuals are generated by adding the
variability term to each individual selected by the conventional copy-based selection. The
variability is given by random values. In this study, we consider two kinds of random
values generated from normal and uniform distributions. A degree of the variability is
based on fitness values of the individuals. When the fitness value of the individual is high,
a small variability is added. On the other hand, when the fitness value of the individual
is low, a large variability is added. In the proposed operator, the variation is controlled
by a searching range of each individual in accordance with its fitness value.

The feature of the proposed mutation is the simpleness of the algorithm. Furthermore,
the proposed mutation realizes the faster search with the better convergence property
compared with the conventional methods.

The effectiveness of the proposed method is verified by applying it to optimization
problems of continuous benchmark functions and signal source localization.

2. Conventional Selection and Mutation Operators in RCGA. In the ordinary
GA, a chromosome of the individual is represented by a bit-string. On the other hand,
in the RCGA [2], a chromosome is represented by a string of real values. In the RCGA,
the i-th individual is represented as an m-dimensional vector @; = (;1,- -, Tig, -+, Tim),
where each element x; is a real value.

The popular RCGA as well as the ordinary bit-string GA employs selection, crossover
and mutation operators. The crossover and mutation methods of the RCGA are different
from those of the bit-string GA. In the RCGA, the one-point crossover, BLX-« crossover
and unimodal normal distribution crossover (UNDX) [12] methods are used generally.

As the selection operator, the roulette wheel, tournament and ranking selections are
employed in both the RCGA and the bit-string GA. These selections can be regarded as
the copy-based methods. For example, in the roulette wheel selection (RWS), the survival



A MODIFIED GA CONSIDERING WITH FITNESS-BASED VARIABILITY 1511

X, X,
A A

FIGURE 1. A loss of genetic diversity and preferable location after genetic
operation. Each axis and dashed circles represent the element of chromo-
somes and contours of fitness value, respectively. Area in the circle with
smaller radius means that fitness value is higher. (a) Location of individuals
before selection. (b) Location of individuals after copy-based selection. (c)
Preferable location of individuals after genetic operations.

probability pg, of the i-th individual to the next generation is calculated by:

Pai(t) = _J@lt) (1)

SN i)

where t and N represent a present generation and a population size, respectively. f(x;(t))
stands for the fitness value of the individual x;(¢). In the copy-based selection, the
individual with low fitness value is hardly copied to the next generation. Contrastively,
the individual with high fitness value is easily copied to the next generation. However,
the copy-based selection operator causes a loss of the genetic diversity and an ineffective
search.

Figures 1(a) and 1(b) show locations of individuals before and after applying the selec-
tion operator, respectively. It seems that the genetic diversity of the population decreases
in Figure 1(b). It appears that a population size has got smaller because this phenomenon
results from the fact that some individuals take on identical string, although the popu-
lation size is exactly the same from beginning to end of iteration. The individuals are
the searching points in the present generation, and they are also base points of crossover
in the next generation. Thus, the decrease of genetic diversity leads to ineffectiveness
of the search. To encourage an effective search, a genetic operation generating various
individuals shown in Figure 1(c) is needed.

To keep the genetic diversity in the selection process in the RCGA, a self-organizing map
(SOM)-based selection was proposed [7, 8]. In the ordinary SOM, reference vectors are
used for vector quantization, data clustering, 2-dimensional approximation of distribution
of high-dimensional data and so on [13]. In the SOM-based selection method, the reference
vectors of SOM after learning are employed as a set of new individuals of next generation.
Furthermore, the modified SOM, which employs new coefficients with respect to the
fitness values, is utilized to approximate the distribution of the individuals with only
high fitness value. Thus, the individuals of next generation are newly generated based
on the learning of the modified SOM. The SOM-based selection method can realize a
search with maintaining the genetic diversity. However, the search becomes ineffective
in a high-dimensional space, because the approximation performance in the SOM-based
selection method decreases with increasing the dimension of searching space. In addition,
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TABLE 1. Mutation strategies in ADM

Condition (1): Af(t—1)-Af(t) >0 Mutation strategy

Azt — 1) - Axy(t) > 0 Directional small scale
Axip(t — 1) - Awy(t) <0 Random small scale
Azip(t — 1) - Azy(t) =0 Random medium scale
Condition (2): Af(t—1)-Af(t) <0 Mutation strategy
ft) > f(t) Directional small scale
f(t) < f(t) and Axy(t — 1) - Azy(t) < 0 Random small scale
Azip(t — 1) - Azy(t) =0 Random medium scale

Condition (3): Af(t—1)-Af(t)=0 Mutation strategy

0 Directional small scale
0 Random small scale

0 Random large scale

a computational cost of the SOM-based selection is higher than those of the copy-based
selections.

On the other hand, in order to ensure adequate genetic diversity in the RCGA, various
mutation methods have been proposed [9, 10, 11]. In those methods, an adaptive directed
mutation (ADM) operator [11] is the state-of-the-art mutation operator. The ADM op-
erator considers the variation of fitness value and individual in order to make many kinds
of individuals. The ¢-th element x;,(t 4+ 1) of the i-th individual after applying the ADM
operator is shown as follows:

Tio(t +1) = 20(t) + g(Af (25(2)), A f (@it — 1)), Azy(t),
Axip(t — 1),xig(t),x?3,xf3) - pm(t),

(2)

where
Af(t) = f(zi(t)) — f(zi(t — 1)), (3)
Af(t—=1) = flmi(t — 1)) = f=i(t = 2)), (4)
Axy(t) = xip(t) — zi0(t — 1), (5)
and
Azt —1) = z4(t — 1) — z5(t — 2). (6)

In Equation (2), ¥ and xL® are the upper and lower bounds of the z,, respectively.
pm(t) is an adaptive probability of the mutation, and it is calculated as follows:

Pm(t) = 0'5'%’ if f(ai(t)) > f(2),
" 0.5, otherwise,

(7)
where foax(t) and f(t) are the highest and average fitness values in the population of the
t-th generation, respectively. ¢(-) is the function in order to choose the mutation strategy
from four strategies, “directional small-scale mutation”, “random small-scale mutation”,
“random medium-scale mutation” and “random large-scale mutation”. In the function
g(+), the mutation strategy is selected based on nine patterns of evolutionary trends in
the three consecutive generations (t — 2,¢ — 1, and t) shown in Table 1.
In Table 1, “Directional small-scale mutation” is performed by:

io(t +1) = wie(t) + sign(Af (1)) - Azie(t) - pm (1), (8)
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where sign(z) is 1, if z > 0; sign(z) is —1, if z < 0; and sign(z) is 0, if z = 0. “Random
small-scale mutation” is defined as:

Tip(t + 1) = xip(t) + [Azip(t)| - s - Pm(2), (9)

where |Ax;(t)| is an absolute value of the individual. r, is uniform distributed random
number in [—1,1]. “Random medium-scale mutation” is defined as:

Tip(t + 1) = x0(t) + 240(t) - 75 - P(2). (10)
“Random large-scale mutation” is defined as:
o ] () + (@Y (t) — mi(t) s - pm(t), if r < 0.5, (1)
WD T 2gp(t) + (zag(t) — 2FB () - 7g - pm(t), if 7> 0.5,

where 7 is a uniform distributed random number in [0, 1].

The ADM operator can keep the genetic diversity without time consuming compu-
tational processes. However, the convergence property of the ADM may not be good,
because the ADM does not operate to the elite individual, i.e., fmax(t) — f(2;(t)) = 0
in Equation (7). Furthermore, the processes of the ADM operator are too complicated,
because the ADM uses the information on the individuals and their fitness values of three
consecutive generations.

3. Proposed Variability Operator. In this paper, we propose a new variability oper-
ator which achieves an effective search with maintaining the genetic diversity by simple
procedures. In the proposed operator, a variability vector is introduced in order to ensure
adequate genetic diversity. Specifically, the new individuals for the next generation are
generated by adding a variability vector to the individual selected by the copy-based con-
ventional selection method. The variability vector is generated by random values. In the
proposed operator, the dimension of the variability vector v; = (vi1,- -+, Vi, - -+ , Vi) for
the i-th individual is the same size as that of the individuals. Each element v;, is given
by the random values.

In this paper, we consider two kinds of random values generated by the following
distributions: N(0,0%) or U[—4,d]. N(0,0%) and U[—4,d] mean the normal and the
uniform distributions, respectively. The parameters “0” and o2 of N(0,0?%) stand for
a mean value and a variance of the normal distribution. The conceptual sketch of the
proposed method based on the normal distribution is shown in Figure 2(a). In Figure 2(b),
the parameter “0” means a range to generate the random values based on the uniform

X, X, X (t+1)
v, (t) //
Vi(t) 5 |
X 0 o
X (t+1) R

(a) (b)

FIGURE 2. A conceptual sketch of the proposed operator. (a) Variability
vector generated from normal distribution. (b) Variability vector generated
from uniform distribution.
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distribution. As shown in Figure 2, the proposed operator is regarded as a kind of local
mutation with adaptive range.

In the RCGA with the proposed operator, all individuals are first initialized by random
values. Then, the new individuals are generated by the crossover and mutation operators.
Furthermore, an individual is selected by the copy-based selection operator. Here, the
selected individual is represented as «*(¢). In the proposed operator, the element x;,(t+1)
of new individual x;(¢ + 1) for the next generation is calculated by the selected individual
#(t) and the variability vector v;(t):

IL’M(t + 1) = l‘:e(t) + Uig(t), (12)

where each element vy () is generated by random values based on N(0,0?) or U[—4;, &;].
o? and d; are defined by:

2 _ . 1

7= T @) )
1

" T ) "

o? and §; are varied in accordance with the fitness value of x}(¢). In Equations (13)

and (14), a is determined 0.1 empirically. These operations are repeated until the given
conditions are satisfied.

In the proposed operator, the individual with low fitness value moves away by adding
the large variability vector. On the other hand, the individual with high fitness value
moves nearby adding the small variability vector. The proposed operator adaptively
encourages the local and the global searches of each individual by considering its fitness
value. Therefore, the proposed operator can maintain the genetic diversity with low
computational cost by employing simple procedures, and realizes the effective search.

4. Experiments.

4.1. Continuous benchmark functions optimization. To evaluate the effectiveness
and convergence property of the proposed operator, it is first applied to optimization
problems of continuous benchmark functions (Fi(x): Sphere, Fy(x): Rosenbrock, F3(x):
Rastrigin, Fy(x): Griewank), which are defined as:

=Y "al (~64 <z <64), (15)
M
Z {100(2es1 — 27)” + (we — 1)}, (—2.048 <z < 2.048), (16)
/=1
M
Fy(x) = Z {z] — 10cos(2mz,) + 10}, (=5.12 <z < 5.12), (17)
/=1

4000 Zx,_, Hcos ( ) +1, (=512 < x4 < 512). (18)

The dimension M of each funct1on is set to 2 and 5. In this experiment, to convert these
functions from the minimization problems into the maximization problems, we use the
following conversion function:

1

fk(ivz) = HTk(mi)’

(19)
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where fi(x;) is the fitness value of k-th optimization problem.

The searching performance of the proposed operator is compared with the conventional
copy-based selection and the ADM operator. As the copy-based selection, the RWS
is employed. Table 2 shows details of the proposed and the conventional methods in
this experiment. In the experiment, to evaluate the fundamental performance of the
proposed operator, we use simple crossover method. Thus, the crossover operator in
all cases employs one-point crossover. As the mutation operator, a uniform mutation is
used. Then, their crossover and mutation probabilities are 0.3 and 0.05, respectively. The
population size is 100 for each method.

These parameters are often used in various practical situations. In addition, for the
practical use of the proposed method, the parameter o has to be provided depending on
the size of the searching space appropriately. In this experiment, « is set to 0.1 empirically.

TABLE 2. Proposed method and conventional methods in the experiment

Methods Selection | Crossover | Mutation Variability
Conv. (RWS) RWS | One point | Uniform -
Conv. (ADM) RWS | One point | ADM -
Prop. (Norm.) || RWS | One point | Uniform | Normal distribution
Prop. (Unif.) RWS | One point | Uniform | Uniform distribution

TABLE 3. Mean best fitness values (100 trials) in case with o = 0.1

fi | D | # of Gen. | Conv. (RWS) | Conv. (ADM) [ Prop. (Norm.) | Prop. (Unif.)

100 0.946 0.912 1.000 1.000

2 500 0.996 0.912 1.000 1.000
1000 0.999 0.912 1.000 1.000

h 100 0.656 0.985 0.999 0.995
3 500 0.983 0.986 1.000 1.000
1000 0.996 0.986 1.000 1.000

100 0.924 0.986 1.000 1.000

2 500 0.951 0.986 1.000 1.000
1000 0.963 0.986 1.000 1.000

f2 100 0.429 0.510 0.545 0.794
3 500 0.473 0.775 0.720 0.958
1000 0.486 0.844 0.842 0.974

100 0.939 0.960 1.000 1.000

2 500 0.996 0.960 1.000 1.000
1000 0.999 0.960 1.000 1.000

fs 100 0.622 0.376 0.916 0.596
5 500 0.975 0.438 0.967 0.980
1000 0.994 0.465 0.981 0.998

100 0.917 0.990 0.949 0.957

2 500 0.980 0.992 0.993 0.989
1000 0.990 0.993 0.997 0.995

J1 100 0.674 0.893 0.901 0.805
3 500 0.928 0.920 0.968 0.960
1000 0.963 0.924 0.977 0.974
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The searching performance of each method is evaluated by the mean best fitness (MBF)
value after 100, 500 and 1,000 generations. To suppress the stochastic effects by the
initialization, the number of trials is 100.

Table 3 shows the MBF values of each method. As shown in Table 3, the ADM operator
works better than the conventional RWS in the 2-dimensional searching space. However,
it is observed that the searching performance of the ADM operator becomes worse, as
the searching space is large, e.g., Fy(x) and F3(x). Furthermore, it is also seen that the
convergence property of the ADM is not good.

On the other hand, it is observed that the proposed method realizes the better search
than the conventional RWS and the ADM. Thus, it can be said that the proposed method
can realize the effective search even if the dimension of the searching space becomes
high. Furthermore, it is seen that the convergence property of the proposed method is
better than that of the ADM. From these results, the proposed method can achieve more
effective search than the conventional methods. In addition, the uniform distribution
seems good on average for generating the variability vectors in the proposed method for
various benchmark functions.

4.2. Signal source localization. In recent years, many researches that brain activities
(signal sources) are estimated from potentials (signals) recorded with an electroencephalo-
graph have been reported [14]. The localization of spikes (transient signals) caused by the
abnormal neural firing is an important problem. Therefore, to perform brain surgeries
such as intractable epilepsy safely, the localization of signal sources with high accuracy is
required.

In order to evaluate the performance of the proposed method in the practical use, we
used a single-layered sphere whose electric-conduction rate is 0.33 [S/m] as a head model
shown in Figure 3. Potentials generated by current sources were recorded with 20 elec-
trodes arranged on the surface of the sphere. The potentials were computed in accordance
with the method in [15]. The problem to be solved was to search the position of the cur-
rent source p = (z,y, z)T from the recorded potential v = (vy, -+, v9)T. To simplify the
problem, the moment (direction) of the current source was set to z = (0.63,0.0,0.63)7.
In this problem, solution spaces should be 3 dimensional spaces for single current source.

Electrode

= g 5 x[em]
sleml 5510

FI1GURE 3. A simple head model and positions of inductive electrodes. Each
electrode is represented by a dot on the sphere.
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FIGURE 4. Signal source localization results

In the localization simulation, the solution (the position of the current source) was
defined at first. We call them correct solutions p' = (2,0,1.5,8.6)”. The potentials of
electrodes for the correct solution were calculated and were called observed potentials

v° = (v0,---,v3)". The individuals of the RCGAs are candidates for the solution,
that is, the position of the current source. Therefore, the individual for single sources is
p = (2,9,2)". The potential v¢ = (v¢,--+ ,v5,)" for each individuals is calculated and

the evaluation value of the individuals E is given by:
—e
E = — 20
ew (). (20)

[v° — vef]”
loell*

where, o is a parameter and is set to 0.1 in this simulation. This evaluation (fitness)
function gives a high value when the potential calculated for the individuals is similar to
the observed potential. It means that the individuals p is similar to the correct solution
p'. The maximum value of E is 1.0.

In common with the continuous benchmark functions optimization, the searching per-
formance of the proposed operator is also compared with the conventional RWS and the
ADM operator. The crossover operator in this experiment employs BLX-« crossover [2].
As the mutation operator, a uniform mutation is used. Then, their crossover and mutation
probabilities are 0.3 and 0.05, respectively. The population size is 100 for each method.
In the proposed method, the variability operator by employing uniform distribution is
used. The parameter a of the proposed method is also set to 0.1 empirically.

The searching performance of each method is evaluated by the mean best fitness (MBF)
value until 1,000 generations. To suppress the stochastic effects by the initialization, the
number of trials is 100.

Figure 4 shows the experimental results. As shown in Figure 4, the ADM operator
performs slightly better search than the conventional RWS. However, it is observed that
the RCGA with the ADM operator cannot find the optimum solution until 1,000-th
generation.

On the other hand, it is observed that the proposed method realizes better search than
the conventional RWS and the ADM. The RCGA with the proposed method can find the
optimum solution in about 800-th generation.

With these results, the advantages of the proposed method are to be able to find the
optimum solution faster than the conventional methods. Furthermore, the convergence
property of the proposed method is better than the conventional methods.

(21)
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5. Conclusions. In this paper, we proposed a modified RCGA with the variability oper-
ator. The proposed method maintains genetic diversity by adding variability term to the
individuals. Experiments confirmed that the proposed method ensures effective search.
In the high-dimensional searching space, the proposed method can find the optimum so-
lution faster than the conventional methods. Furthermore, the convergence property of
the proposed method is good. The effectiveness of the proposed method was also verified
by applying it to the signal source localization problem.

As future work, the establishment of the automatic decision method of the parameter
a still remains.
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