International Journal of Innovative
Computing, Information and Control ICIC International (©)2014 ISSN 1349-4198
Volume 10, Number 4, August 2014 pp. 1519-1531

DISTANCE METRIC BASED DIVERGENT CHANGE BAD SMELL
DETECTION AND REFACTORING SCHEME ANALYSIS

DEXUN JIANG, PEIJUN MA, XIAOHONG SU AND TIANTIAN WANG

School of Computer Science and Technology
Harbin Institute of Technology
No. 92, West Dazhi Street, Harbin 150001, P. R. China
silverghost192@163.com

Received July 2013; revised January 2014

ABSTRACT. Bad smells are signs of potential problems in codes. Bad smells decrease the
design quality of software, so the codes are hard to analyze, understand, test or reuse.
Divergent Change is a common and classical bad smell in object oriented programs. The
detection of this bad smell is difficult, because the features of Divergent Change are not
obvious, and the detecting and refactoring of this bad smell are on the later steps of
software life cycle. In this paper, the detection method of Divergent Change bad smell
based on distance metric and K-nearest neighbor clustering technology is proposed. The
features of Divergent Change are analyzed and transformed to distances between enti-
ties. Divergent Change bad smells are detected with the results of K-nearest neighbor
clustering, and targeted refactoring schemes are provided. After comparisons with sim-
ilar researches, the experiments results on open source programs show that the proposed
method behaves well on refactoring evaluation with low time complexity.

Keywords: Entity distance, K-nearest neighbor clustering, Bad smell detection, Refac-
toring scheme

1. Introduction. The quality of software determines the difficulty level of maintenance
and reuse of software. High quality programs are easy to understand, analyze, modify,
test, maintain and reuse.

Bad smells [1] are signs of potential problems in codes. It leads to difficulty of un-
derstanding and modifying on programs. If too much bad smells exist in programs, the
quality of the software would be very low. Refactoring [2-5] is a programming technique
for optimizing the structure or pattern of an existing body of code by altering its internal
nonfunctional attributes without changing its external behavior. Refactoring is needed
towards the bad smells for quality improvement.

Divergent Change is a kind of classical bad smells. When the request of software
functions changes, the codes are modified in different classes, or part of one class responses
this kind of changing. Thus, the codes are pungent, and it is called Divergent Change.

Divergent Change bad smell causes programs modification and reuse more complex and
difficult. When current codes should be modified from changing requests, more than one
place should be modified to deal with single changing request.

In addition, Divergent Change bad smell causes developer hard to read and understand
the codes in the process of programs modification and reusage. Programs maintainers
usually have difficulty in understanding why codes are modified in different places from
just single changing request. Actually, it means there would be certain relationships
among these places. However, these relationships are hard to find with current static
analysis.

1519

1520 D. JIANG, P. MA, X. SU AND T. WANG

Furthermore, after the function requests are changed, the problems above just are
exposed. The bad smell is found in the maintain step of software life cycle, so the negative
impact of the bad smell is larger, and the cost for improvement is higher.

Therefore, Divergent Change bad smell should be found earlier. If Divergent Change
can be detected based on static analysis before using the codes and also can be removed
with reasonable refactoring, the negative impact of the smell and cost for improvement
would be decreased. The static analysis means analyzing the codes without compiling
and running.

In fact, there is much difficulty in Divergent Change static analysis and detection. First,
the expression of this bad smell is found with the change of request, but the changing
occurs sporadically. So the bad smell cannot be found directly by static analysis. Second,
Divergent Change is defined while using the software, and the judging of the smell needs
setting the threshold manually. So the detection is subjective. Finally, the corresponding
refactoring operations should be proposed after bad smell detection.

In object oriented programs, a class is composed of attributes and methods. These
attributes and methods are called entities [6]. A method can invoke attributes or methods
in location class or other classes, and this is called the dependency relationship between
entities.

In this paper, the characteristics of Divergent Change bad smell are analyzed, and bad
smell expression is transformed to dependency relationship between entities, and then the
relationships are measured by entities distance value. Finally, the bad smell detection
algorithm based on K-nearest neighbor clustering is executed to get the detecting results
and corresponding refactoring.

The rest of the paper is organized as follows. Section 2 presents a short overview of
related work. In Section 3, Divergent Change bad smell is analyzed and the smell ap-
pearance is transformed to dependency relationships between entities. Entities distance
value is defined and computed to refer to the relationships in Section 4. K-nearest neigh-
bor clustering is applied to the judgment about Divergent Change detection and how to
refactoring in Section 5. And Section 6 shows the experiment results. The conclusion is
provided in Section 7.

2. Related Work.

2.1. Definition and analysis of divergent change bad smell. M. Fowler et al. [1] are
the first to describe the Divergent Change bad smell, but they do not give strict definition.
M. Fowler et al. pointed out Divergent Change was “one class is commonly changed in
different ways for different reasons”. However, the programs with correct design were that
“Any change to handle a variation should change a single class, and all the typing in the
new class should express the variation”. With this the Divergent Change is presented.
Then M. Fowler et al. suggested refactoring operation Extract Class to improve this
bad smell. However, M. Fowler et al. did not give the specific characteristics, detecting
methods and refactoring procedure, so Divergent Change is just a concept.

M. Méntylé [7] classified Divergent Change as concealed smells, for the smell cannot
be detected by simple glance to the code. Nor can they be well detected by tools. Mika
mean detecting these two smells requires good understanding of the program and even
experience in implementing these kinds of changes to the programs source code. Mean-
while, Walter and Pietrzak [8] located Divergent Change as a kind of maintenance smells.
The changes cannot be detected with analysis of a single piece of code, so the detection
needed the comparison of subsequent code versions.

DIVERGENT CHANGE BAD SMELL DETECTION 1521

2.2. Metrics based divergent change bad smell detection. Reddy and Rao [9,10]
detected Divergent Change with dependency oriented complexity metrics. The average
coupling metric value between one class and the other classes is computed to detect
Divergent Change bad smell. This method had lower computation complexity.

Sant et al. [11] extracted some relationships based metrics for bad smell detection such
as Divergent Change. The problems about design were explored through abstracting the
mapping between design and codes. With this method, the existence of bad smells can
be found, but the smells cannot be located.

De Lucia et al. [12] proposed a novel approach to guide the Extract Class refactoring,
taking into account structural and semantic cohesion metrics. The method is based on
the name text of classes and entities. However, the detecting features and methods of
Divergent Change are not mentioned in this research. Furthermore, the metric is just
from text, and gets less information from codes, so miss detection is higher.

2.3. Clustering based bad smell detection. Lung and Zaman [13] divided lower co-
hesion function into several higher cohesion functions. With this, the cohesion degree of
functions would be increased. The relationship degrees between statements were com-
puted for clustering. The clustering results are less accurate, so Lung et al. got the
improvement in paper [14]. The basic process is: the source codes are analyzed to extract
variables information; new relation degree computing method is proposed to build the
variables matrix; clustering algorithm is executed for bad smells detection. However, in
this method the control statements scope is not considered, and there is no corresponding
response for nested control statements.

Alkhalid et al. [15] proposed an adaptive K-nearest neighbor clustering algorithm to
apply in the refactoring process of Java code. Actually, the disadvantage of this method
is also the lack of response for control dependency, including the scope and nested re-
lationships of control statements. The clustering results do not reflect the dependency
relationships in programs, so the detection is not accurate. And the specific refactoring
schemas are not provided.

The researches above about bad smells detection with clustering technology all need
manual threshold. Manual thresholds come from empirical data, and are subjective.

Srinivas [16] achieved the refactoring in object oriented programs package level with K-
nearest neighbor clustering technology. Srinivas pointed out that the classes have higher
cohesion in a package and lower coupling across the packages. In this research K-nearest
neighbor clustering algorithm is compared with other related clustering such as SLINK,
CLINK and WPGM, and the advantages of K algorithm are analyzed.

Ratzinger et al. [17] proposed a bad smell prediction technology based on programs
development history records. The programs scale, developer, modification time, frequency,
programming habits and other information are collected from version control system as
the data sources for clustering. Decision trees, logistic model trees, propositional rule
learners, and nearest neighbor technology can be used for prediction. However, authors
do not realize these clustering algorithms, so there is no way for comparison.

2.4. Deficiency of existing studies. The definition and description of Divergent Chan-
ge bad smell in almost all of research papers are from paper [1]. Usually the expression
and features of Divergent Change are from developers experiments, and there is no strict
definition. So this bad smell detection is reliant on manual reorganization of developers.
It is the difficulty of Divergent Change bad smell detection automatically.

In the smell detection studies with metrics, the chosen metrics cannot fully reflect all
the useful characteristics about this bad smell. Some are just from code text; some are

1522 D. JIANG, P. MA, X. SU AND T. WANG

collected from single class, and the relationships between classes are not considered; some
do not consider the attributes and methods in classes.

In the smell detection studies based on clustering technology, the threshold is necessary
for smells detection. Manual thresholds will decrease the objectivity of bad smell detection
results. The K-nearest neighbor technology does not need thresholds, but the value of K
is preset. K can be generated dynamically. In paper [18] the value of K is from fixed area.
And in paper [19] K value choosing method is proposed to deal with imbalance of sample
number. In this paper, the K-nearest neighbor clustering algorithm based on dynamical
K generation is proposed to detect Divergent Change bad smell, which addresses these
limitations above.

3. Description and Analysis of Divergent Change Bad Smell. Divergent Change
is introduced first by M. Fowler et al. in their book [1]. M. Fowler et al. believed that the
out expressions of Divergent Change are: the request variation changes part of a class;
different request variations change different places of the class; both of the above. M.
Fowler et al. insisted that in common programs with well design, any change to handle a
variation should change a single class, and all the typing in the new class should express
the variation. The Divergent Change is just the opposite. The attributes and methods
are collectively called entities. They are the components of a class.

From the description of Divergent Change, the smell is found after coding is finished
and the software is put into use. Just when the request of software varies and the codes
need to be modified, the pungencies will be found.

So the expressions of “part of a class change” or “different places of a class change”
should be analyzed to get the internal regulations. The results of request changes are
parts of a class change. If parts of the entities in a class always change together, or some
entities always change together with entities in other classes, then there should be certain
relationships between these “change together” entities.

For example, there are two attributes expiration and remaining life for one product.
When the quality of the product increases (request change), the expiration will be ex-
tended, and the same as remaining life. After analysis, the remaining life is computed
with production year, current year and expiration. So the remaining life depends on
expiration. In programs implement, remaining life is computed through the invoking of
expiration values.

Thus, the substance of “change together” is the dependency relationships between
entities. If the dependency relationship occurs, the request variation may change the
entities together. And if there is no dependency relationship between them, the request
variation is not bound to change the entities together.

Return to the example. The unit of remaining life is year. If the quality of product
increases less, the increment of expiration is just several months, and the remaining life
does not change. Meanwhile, another attribute weight of the product does not change by
the variation of quality, for there is no dependency relationship between them.

The sample codes about entities dependency relationships are shown in Figure 1. De-
pendency relationships are the invoking between entities, including methods invoke at-
tributes and methods invoke methods. The entities invoking can be implemented in two
ways: 1) instantiate a class, and invoke its attributes or methods, as shown in Figure 1(a);
2) the class is used as method parameter, and its attributes or methods can be invoked
directly in the method, as shown in Figure 1(b). The relationships between entities are
composed of direct dependency and indirect dependency. If entity A invokes entity B, it
is direct dependency between A and B. And if entity A and C both invoke B, it is indirect
dependency relationship between A and C. It is shown in Figure 1.

DIVERGENT CHANGE BAD SMELL DETECTION 1523

cla lass A la class C
{
pubklic atic void mAl () tatic int acl;
{ public static void mA&l(class B Db)
clasz B b=new cla B() { B
b aB'_:C; a aBl=
} B
public static vold mAZ (class _C c¢) publi tat vold mA3 ()
({
c.aCl= thisz.m&Z ()
B
a b

FiGurE 1. Sample codes of entities dependency relationships

Therefore, the relationships inner and intra classes can be measured by dependency
statistics between entities. If dependencies are more, the relationships between entities
are closer, and the probability of changing together is larger.

4. Entities Dependency Relationships Description Based on Distance Theory.
In this paper, the dependency relationships between entities of object oriented programs
are described by distance theory.

4.1. Definition of similarity and distance. The work with distance [20] is strongly
connected with the theory of similarity/dissimilarity: one characteristic of a grouping
might be that all things within one group are similar and all pairs of elements in different
groups are dissimilar. The basic principle of object oriented programs is “put data and
its options together”, so the similar attributes and methods should be encapsulated as a
class. In more detail knowing that two given things are similar is not enough. We should
know the “degrees of similarity”. The same holds for dissimilarity.

What makes two things degree similar or dissimilar? To work on this problem it is
helpful to loot at Bung’s ontology [21]. All things have properties, even if we are ignorant
of this fact. The attribution of a property to a thing is a cognitive act, so it is possible
that things have properties which are not considered as a property of a thing. Bunge’s
consideration indicates that the similarity between two things is the collection of their
shared properties. When examining two things on their similarity without a special
respect which leads direct to the conclusion, that all things are similar in some respect.
So one quantitative concept of degree of similarity for a special set of aspects can be
defined:

Definition 4.1. (Degree of Similarity [21]): the degree of similarity between two things
x, y relative to a finite subset B of all properties P; is

_|p(x) Np(y) N B
S = @ Uply) N B @

Suppose, p(x) be the properties set which have relationship with x, and |p(z)| be the
element number of p(z).

Definition 4.2. (Distance): the distance between two things x, y is defined as:

The value scope of distance is [0, 1]. The distance between one object and itself is 0. And
if two objects have no same attributes, their distance is 1.

1524 D. JIANG, P. MA, X. SU AND T. WANG

4.2. Quantitative expression of entities dependency relationships. The distance
definition is used in the expression of entities dependency relationships to compute the
distance between two entities in object oriented programs, as discussed in [6]. Entity a
is one of the entities in class A, including the attributes and methods. The dependency
properties set P(a) of entity a is:

P(a) = {a, entities invoke a, entities a invoke}

When a is an attribute, a cannot invoke others, but a can be invoked by other methods.

If there is direct dependency between a and b, b € P(a) or a € P(b). If indirect
dependency, there is at least one entity ¢ that ¢ € P(a) and b € P(b). ¢ can be in the
same class with a or b, or ¢ can be in other class. There can be both direct and indirect
dependency relationships between two entities.

With the relationships above, distance between entities can be computed by Equations
(1) and (2). The distance value between entities quantificationally represents the situation
of dependency relationships, also the probability degree of entities changing together.

5. Divergent Change Bad Smell Detection Based on K-nearest Neighbor Clus-
tering. If the distance of two entities is smaller, the dependency relationship between
them is closer. If requests change the probability of changing together is higher, and vice
versa.

When the number of entities in a class is large, the bad smell detection process is
difficult and complex. In this paper K-nearest neighbor clustering technology is used for
Divergent Change bad smell detection. Furthermore, refactoring schemes can be provided
from the detecting results.

The Nearest Neighbor algorithm is a common classification algorithm based on sample
learning. K-nearest neighbor rule is an extension of the nearest neighbor rule. This rule
is that the note z is classified as the category with the most appearance in K nearest
neighbor points. The algorithm is executed from point x, and the scope is extended until
containing all the points in the same sample. Thus the sort of point x is the sort of points
with the highest frequency in this extension. The probability of choosing sort w,, is

K

Y ()Pwil2) L = Plwle)]* (3)

i=(K+1)/2

Normally if K is larger, the probability of choosing sort wy, is higher.

5.1. Algorithm flow. In this paper, the relationships between entities are represented by
their distance value. So K-nearest neighbor clustering technology is targeted for detecting
Divergent Change bad smell, and the results show directly that whether it is pungent or
not. Similarly, the refactoring scheme about how to improve the smells is provided from
the clustering results.

The clustering results of K-nearest neighbor algorithm are analyzed as follows:

1) The result is 1, and the entities in the class are classified as a whole group. It means
that the relationships between these entities are close enough, and there is no Divergent
Change bad smell.

2) The result is 2 or more, and there are two or more groups being classified. The
relationships between entities inner the groups are close, and those cross the groups are
loose. In other words, the groups being classified have higher cohesion and lower coupling
than before. Actually, these entities are in single original class, so Divergent Change oc-
curs. Furthermore, the classification results are just the refactoring scheme. It means the

DIVERGENT CHANGE BAD SMELL DETECTION 1525

original class should be divided into several smaller classes with Extract Class refactoring
method, just as the clustering results.

The flow of Divergent Change bad smell detection is shown in Figure 2.

The most influence in K-nearest neighbor clustering algorithm is the input data of enti-
ties distance value. The distance value represented the dependency relationships between
entities, as the dotted box shown in Figure 3. If the dependency relationships between
these entities are closer, it is more probable to classify these entities into the same group.
Otherwise, they should be separate.

Also the clustering results are influenced by K value and clustering iterations, as the
shadow dotted box in Figure 3. The number of objects being clustered is N. From
Equation (3), if K is larger, the number of groups after clustering is smaller. However,
the time complexity of the clustering algorithm is O(N e K), so larger K will increase

| - ——— —— -
a rDependeucv | 7 : r / ll
= LT | XK value | Iteration
a | relationships)
-———- —-——r-- -——T--
4 } !
s ettt r=—-
| . . . | Clustermg Divergent Change
» K-nearest neighbor clustering T .
> ! t neighbor clustering ults letection
v Getting | " results detection
o entities | 4 - 4 - I v A 2
% . ; namicall- - -)
i distance | Dynamical ﬁecrease | Results analvsis Providing refactoring
| K ¥ . | Y scheme
I mteration |
.____Jl________‘_l____.
A
z v
g Source codes

F1GURE 2. Algorithm flow diagrams

Algorithm : bad smell detection based on K-nearest neighbor clustering
Input : entity E;, the kind C; of E;, the distance Dist[][] of E;
Output : new kind C_new; of E;
Begin
while (number of C_new; still decrease)
foreach (E;in targeted class)
select K entities (Ey,...,Ex) whose distances are smallest to E;
if (C,.....Cx are not same to each other) then
C;1s set as Cy, and Dist[1][x] 1s the smallestin E;,... .Ex
else
C;1s set as Cy, and Cy with largest number in E;, ..., Ex
//if more than one entity is at the smallest/largest, choosing either is ok.
endif
endfor
endwhile
End

FiGURE 3. Divergent change bad smell detection algorithm based on K-
nearest neighbor clustering

1526 D. JIANG, P. MA, X. SU AND T. WANG

the complexity of clustering algorithm. In this paper dynamic K value is proposed to
increase the accuracy and decrease time consumption.
The value of K is got as shown:

K = [log, N] + 1 (4)

If N is larger, the iterations should be larger to get stable convergence results. That
will increase the calculation time. So in this paper the iteration is decreased dynamically
based on the scale of targeted class.

5.2. Algorithm process. The algorithm is executed after computing the distances be-
tween entities of the targeted class, as shown in Figure 3. Before the clustering, all the
entities are consumed to be in different clusters. It is the basis of clustering algorithm.

Before this algorithm, the sample program should be preprocessed to collect useful
information. In the input data, F; is an array containing all the entities in the program,
and C; is the kinds of E;. In addition, the distance values of each two entities have been
computed and stored in the array Dist[][] to present the invoking relationships. The
invoking relationships are used in Divergent Change bad smell detection.

6. Evaluations. In this paper the sample programs are HSQLDB and Tyrant. HSQLDB
is a Java database open source, and the download link is hsqldb.org. Tyrant is a game,
and the download link is sourceforge.net/projects/tyrant.

6.1. Comparison results of different K value. From the different K value, the clus-
tering results are different, so the results of Divergent Change bad smell detection are
changed. In HSQLDB version 2.2.6 program, the clustering results comparison with dif-
ferent K are shown in Figure 4.

Figure 5 shows the clustering results of first 110 classes Divergent Change bad smell
detection of version 2.2.6 with different K value. When K increases, the number of
clustering is decreased. If K is more than 9, the results are stable and with no change,
but the time complexity will be extremely large. So K value is dynamic based on Equation
(4). When K is set dynamically, the clustering result of the 55th class is 2 (results of
all the other classes are 1). The clustering result of the 55th class with dynamical K is
shown in Table 1.

The 55th class is the place of Divergent Change bad smell, and Table 4 gives the
refactoring scheme. From Section 6.1, the 55th class is QuerySpecification, and it is
divided into new classes QuerySpecification and DataQueryChange. From more versions

Clustering results comparison with different K value

Clustering results

3 ‘ — =3
ZANAA\MVAMN AANY AN LAk

= Dynamical K

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 B8 91 86 101 106

ID number of Classes

FI1GURE 4. Clustering results comparison with different K value

DIVERGENT CHANGE BAD SMELL DETECTION 1527

TABLE 1. Clustering result of the 55th class with dynamical K in HSQLDB 2.2.6

Entity ID Number of entities Type
03149-03209 61 1
03210-03224 15 2
12766-12790 25 1
12791-12800 10 2

1400

1200

E

g 1000

E soo —4—-K=3
E 600 K5
E 400 —H=K=9

e=f=K is dynamic

0 100 200 300 400

Entities number in classes

FI1GURE 5. Time consuming comparison in different K value

1.2

1)
£
£ 08
>
§ 06 ——K=3
= ==K=5
2 04
- ==K=9
0.2 =K is dynamic
0 —m—ﬂ ¥

0 100 200 300 400

Entities number in classes

FIGURE 6. Clustering results accuracy comparison in different K value

comparison, the refactoring scheme provided by K-nearest neighbor clustering algorithm
is correct.

The comparison and analysis of time consuming and accuracy about clustering results
with different K value are shown in Figure 5 and Figure 6.

From Figure 5 and Figure 6, when K is smaller, the time consuming is lower, but
detection accuracy is also lower; when K is larger, the accuracy is higher, but the time
consuming is then higher. Just when K is set dynamically, the time consuming is low
and accuracy is high. So finally the approach in this paper uses dynamic K.

6.2. Comparison results of different approaches. While the process of open source
software version upgrades, new functions are added, and refactorings also occur. It means
the bad smells in older version are removed in later versions. The multiple version compar-
ison and analysis demonstrate the detection results and corresponding refactoring scheme

1528 D. JIANG, P. MA, X. SU AND T. WANG

in this paper. Bad smells are detected in older versions and the advices of corresponding
refactoring operations are given about what operations should be executed to remove the
bad smells. And after comparison and analysis about later programs, if the modifications
about removing bad smells are same with the advices, it means the Divergent Change
bad smell detection and refactoring schemes are correct. Therefore, the results of multiple
versions comparison are the actual results of refactoring schemes.

In this section the cases from business open source programs are detected for Divergent
Change bad smell. The detection approach in this paper is measuring the distance values
of entities and executing the K-nearest neighbor clustering. The value of K is dynamic.
This approach is named DK approach for short. Another Divergent Change bad smell
detection approach in recent researches is in [10], and it is called RR approach for short.

From the above, the detecting results of DK and RR approaches are compared with
the actual results. And more similar means more accurate. In this paper the measures
of precision and recall [22] are used for accuracy. Precision assesses the number of true
smells identified among the detected smells, while recall assesses the number of detected
smells among the existing smells.

(1) HSQLDB

The detection results in several versions of HSQLDB are shown in Tables 2 and 3.

TABLE 2. HSQLDB bad smell detection results comparison

Versions Number of classes Number of Divergent Change bad smell classes after detection
DK approach RR approach Actual results
2.0.0 471 0 0 0
2.2.0 503 12 9 12
2.2.8 512 3 3 3

TABLE 3. HSQLDB bad smell detection results analysis

Versions Precision/Recall (%)
DK approach RR approach
2.0.0 —/- —/-
2.2.0 100/100 100/75
2.2.8 100/100 33.3/33.3

The versions selected are from 2.0.0 to 2.2.8. In these versions, the number of classes
increased from 471 to 503. From the version update log, one function package is added
in version 2.2.0 for functional request. And from 2.2.0 to 2.2.8, the functions of sources
code are essentially unchanged.

After multiple version comparison, the actual results of Divergent Change bad smell
are collected. In version 2.0.0, there is no bad smells being detected, so the precision and
recall cannot be computed. In version 2.2.0, the number of actual Divergent Change is 12.
DK approach detected 12, and RR approach detected 9. Then the recall of RR approach
is less than 100%. In version 2.2.8, the number of actual Divergent Change is 3. Both
DK and RR approach detected 3, but RR approach did not find all the actual bad smell
classes. So both precision and recall of RR approach are less than 100%.

(2) Tyrant

The Divergent Change bad smell detection results of Tyrant are shown in Tables 4 and
5.

DIVERGENT CHANGE BAD SMELL DETECTION 1529

TABLE 4. Tyrant bad smell detection results comparison

Versions Number of classes Number of Divergent Change bad smell classes after detection
DK approach RR approach Actual results
0.312 117 14 10 14
0.316 135 7 7 7
0.319 150 12 9 12
0.324 165 10 9 10

TABLE 5. Tyrant bad smell detection results analysis

_ Precision/Recall (%)
Versions DK approach RR approach
0.312 100/100 100/71.4
0.316 100/100 100/100
0.319 100/100 100/75
0.324 100/100 100/90

6.3. Analysis. (1) From the comparison results of different K value, it is found that
the approach of dynamic K has higher accuracy and lower time consuming. For the
approach of fixed K value, higher accuracy needs higher K value, and this leads to higher
computation complexity, so the computation time would be larger. Higher K value is
not necessary for short and simple classes, since the increasing time consuming makes
no sense. The approach of dynamic K value uses lower K value to decrease the time
consuming on the basis of accuracy. Therefore, the dynamic K value balances both the
advantages of accuracy and time consuming.

(2) From the comparison results of different approaches, DK approach is more accu-
rate than RR approach in Divergent Change bad smell detection. This indicated the
advantages of DK approach proposed in this paper. The reasons of these advantages are
analyzed as follows.

First, DK approach gets actual dependency relationships. In DK approach the de-
pendency relationships collection contains not only in classes but also across the classes.
Furthermore, both direct and indirect dependency relationships are collected in distance
computation. So the DK approach gets more comprehensive dependency relationships of
programs.

On the other hand, the distance metric in DK approach completely expresses the sit-
uation about Divergent Change bad smell. The Divergent Change may be in different
places of same class because of different variation, but this situation cannot be measured
by average coupling metric of RR approach.

(3) The number of Divergent Change bad smells detected in Tyrant is more that of
HSQLDB. The results indicate that the program quality of HSQLDB is better than
Tyrant. Actually HSQLDB is a business program and Tyrant is just a little computer
game.

7. Conclusions. The Divergent Change bad smell is analyzed to get the internal logic
and cause factor, and related the smell expression to the dependencies of entities. Then
the dependency relationships are transformed to distance value between entities. Finally,
K-nearest neighbor clustering is executed and the results are used for Divergent Change
bad smell detection and corresponding refactoring schemes. The clustering results are
not only the basis about whether there are bad smells, but also the basis about how to

1530 D. JIANG, P. MA, X. SU AND T. WANG

improve existing bad smells. From the clustering results, bad smells can be detected, and
corresponding refactoring schemes can be analyzed.

The contributions of this paper are as follows. First, the out expression of Divergent
Change is linked to the distances between entities. Then the dependency relationships
of the programs can be measured by distance value. Moreover, the dependency infor-
mation between entities from different classes is added in distance computing. So the
distance value reflects the dependency situation more accurate, so the detection results
and refactoring schemes are more effective. Second, K-nearest neighbor clustering algo-
rithm is used for Divergent Change detection. The clustering results are not only the basis
about whether there are bad smells, but also the basis about how to improve existing bad
smells. The detection does not need any thresholds. The K value is set dynamically, so
this method increases the accuracy and decreases the time consuming.

Acknowledgement. This research is supported by the National Natural Science Founda-
tion of China under Grant No. 61173021 and the Research Fund for the Doctoral Program
of Higher Education of China (Grant No. 20112302120052 and 20092302110040).

REFERENCES

[1] M. Fowler et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley Professional,
1999.

[2] N.-L. Hsueh and P.-H. Chu, A pattern-based refactoring approach for multi-core system design,
IJACT, vol.3, no.9, pp.196-209, 2011.

[3] S. M. Ibrahim et al., Identification of nominated classes for software refactoring using object-oriented
cohesion metrics, International Journal of Computer Science Issues, vol.9, no.2, pp.68-76, 2012.

[4] A. A. Rao, Identifying clusters of concepts in a low cohesive class for extract class refactoring using
metrics supplemented agglomerative clustering technique, International Journal of Computer Science
Issues, vol.8, no.5, 2011.

[5] M. Arora, Refactoring-way for software maintenance, International Journal of Computer Science
Issues, vol.8, no.2, pp.565-570, 2011.

[6] D. Jiang and P. Ma, Detecting bad smells with weight based distance metrics theory, Proc. of the
2nd International Conference on Instrumentation, Measurement, Computer, Communication and
Control, pp.299-304, 2012.

[7] M. Méntyla, Experiences on applying refactoring, Software Engineering Seminar, pp.1-32, 2002.

[8] B. Walter and B. Pietrzak, Multi-criteria detection of bad smells in code with UTA method, Eztreme
Programming and Agile Processes in Software Engineering, pp.1159-1161, 2005.

[9] K. N. Reddy and A. A. Rao, Dependency oriented complexity metrics to detect rippling related
design defects, Software Engineering Notes, vol.34, no.4, pp.1-7, 2009.

[10] K. N. Reddy and A. A. Rao, A quantitative evaluation of software quality enhancement by refactor-
ing using dependency oriented complexity metrics, The 2nd International Conference on Emerging
Trends in Engineering and Technology, pp.1011-1018, 2009.

[11] C. N. Sant, A. F. Garcia and C. J. P. De Lucena, Evaluating the efficacy of concern-driven metrics:
A comparative study, Proc. of the 2nd Workshop on Assessment of Contemporary Modularization
Techniques, pp.25-30, 2008.

[12] A. De Lucia, R. Oliveto and L. Vorraro, Using structural and semantic metrics to improve class
cohesion, IEEE International Conference on Software Maintenance, pp.27-36, 2008.

[13] C.-H. Lung and M. Zaman, Using clustering technique to restructure programs, Proc. of the Inter-
national Conference on Software Engineering Research and Practice, pp.853-858, 2004.

[14] C. H. Lung, X. Xu, M. Zaman and A. Srinivasan, Program restructuring using clustering techniques,
The Journal of Systems and Software, vol.79, no.9, pp.1261-1279, 2006.

[15] A. Alkhalid, M. Alshayeb and S. Mahmoud, Software refactoring at the function level using new
adaptive K-nearest neighbor algorithm, Advances in Engineering Software, vol.41, no.10-11, pp.1160-
1178, 2010.

[16] S. S. Srinivas, Package level software refactoring using A-KNN clustering technique, International
Conference on Computing and Control Engineering, 2012.

DIVERGENT CHANGE BAD SMELL DETECTION 1531

[17] J. Ratzinger, T. Sigmund, P. Vorburger and H. Gall, Mining software evolution to predict refactoring,
Empirical Software Engineering and Measurement, pp.354-363, 2007.

[18] A. K. Ghosh, P. Chaudhuri and C. A. Murthy, On visualization and aggregation of nearest neighbor
classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, no.10, pp.1592-
1602, 2005.

[19] D. J. Hand and V. Vinciotti, Choosing K for two-class nearest neighbor classifiers with unbalanced
classes, Pattern Recognition Letters, vol.24, pp.1555-1562, 2003.

[20] F. Simon, S. Loffler and C. Lewerentz, Distance based cohesion measuring, Proc. of the 2nd European
Software Measurement Conference, Technolo-gisch Institute, Amsterdam, 1999,

[21] M. Bunge, Treatise on Basic Philosophy, Reidel Publishing Company, Dordrecht-Holland, 1977.

[22] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, 1999.

