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ABSTRACT. A morphological associative memory (MAM) has been proposed by Ritter as
an associative memory model. This model has the advantages of a large memory capac-
ity and high perfect recall rates, in comparison with other associative memory models.
However, the MAM cannot handle a pattern that is completely included with other stored
patterns. To overcome this problem, we proposed an MAM employing a reverse recall.
However, the extra recall time of the model increases as the number of included patterns
increases. Therefore, we developed an MAM employing a simplified reverse recall to re-
duce the extra recall time. This model is suitable for hardware implementation because
the model uses simple operations and has a parallel architecture. Thus, we propose a
high-speed compact hardware model of the MAM employing the simplified reverse recall
in parallel architecture to accelerate the operation and for real world applications. In this
paper, we introduce the MAM hardware we have developed. We confirm the performance
of the MAM hardware model by comparing its operation speed with that of a software
model. We expect that the MAM hardware model will be applied to pattern recognition,
filters and pattern retrievals, etc.

Keywords: Morphological associative memory, Reverse recall, Pattern with inclusive
relation, Hardware model

1. Introduction. Associative memory is an important brain function and has attracted
great attention. In associative memory models, the Hopfield network [1] is recognized as
the most popular model. However, it has drawbacks such as a low memory capacity in
relation to the number of memory units, and low convergence caused by a local minimum.
As one of several associative memory models, Ritter et al. proposed morphological asso-
ciative memory (MAM) [2], based on morphological neural networks [3]. In comparison
with other associative memory models such as the Hopfield network, the MAM’s advan-
tages are: large memory capacity and a high perfect recall rate. In general, the model
also has a drawback in that the design of the kernel image for association becomes harder
as the total number of stored patterns increases. To overcome this problem, several effec-
tive methods to design the kernel image have been proposed [4-6]. Unfortunately, these
methods have a problem, that is, a perfect recall cannot be achieved for an input pattern
with a corrupted kernel image and stored patterns with redundancy bits are necessary
for the kernel images. Therefore, we proposed an MAM using a stored pattern indepen-
dent kernel image [7]. Our kernel design method offers these advantages: a simple kernel
design, and good recall performance for a corrupted kernel image. However, like conven-
tional MAMs, our model cannot recall the correct pattern for a pattern that is completely
included with other stored patterns (e.g., “C and G”, “E and F”). The existence of such
inclusion patterns becomes problematic when the number of stored patterns increases.

1643



1644 H. HARADA AND T. MIKI

As a solution, we proposed an MAM employing reverse recall [8]. In this model, we in-
troduced the reverse recall method into the MAM using a stored pattern independent
kernel image. Although the model can recall the plausible pattern for inclusion patterns
without noise by using a reverse recall method, extra recall time is required and increases
for reverse recall methods as the number of included patterns increases.

To reduce the extra recall time for the reverse recall method, we proposed a simplified
reverse recall method that reduces extra recall time by simplifying a formula of the reverse
recall for binary stored patterns [11]. The MAM employing the simplified reverse recall
method is suitable for hardware implementation because its operations are simple and
executable in parallel. As hardware implementation of an MAM, Guzman et al. proposed
a processor-based MAM that is effective in image recognition [10]. Unfortunately, the
processor cannot handle inclusion patterns because it is based on Ritter’s original MAM.
In our previous work, we proposed a high-speed compact hardware model of the MAM
employing simplified reverse recall in parallel architecture to accelerate the operation and
for real-world applications [12]. This MAM hardware model is designed to handle the
inclusion patterns by refining our previous work [7]. In this paper, we introduce the
MAM hardware model we have developed.

The model developed in this study can recall a plausible pattern even from a similar
pattern. Furthermore, it can separate each pattern from the inclusion pattern, and recall
a plausible recall pattern corresponding to an input pattern. For example, this model
can be applied to real-world applications such as image recognition and character recog-
nition, where many similar patterns exist. In addition, the developed hardware model
can recognize a pattern with high-speed operation, working in parallel. We confirm the
performance of the MAM hardware model by comparing the operation speed of the hard-
ware model with that of a software model. This paper is a culmination of our previous
three papers [8,11,12].

2. Morphological Associative Memory: MAM.

2.1. Ritter’s MAM. Ritter’s MAM consists of two-stage recall processes using memory
matrices “M” and “W” in the stages [2], as shown in Figure 1. In the recall process of
Ritter’'s MAM, a kernel image Z" is used as an index for association. The kernel image
consists of partial units of the stored pattern X". The elements of the memory matrices
m;; and w;; are given as

R
mij = r\:/l (z: - Z;) ’ (1)
R

<
—_

where R is the total number of stored patterns. V and A denote maximum and minimum
operators, respectively. The output pattern Y is obtained as follows:

2z = j/i\l (mij + :U;) i=1,---,n, (3)

Yy = ,Gl (wg+2) i=1,--m. (4)
]:
In Ritter’s MAM, the kernel image corresponding to the input pattern can be recalled

at the first recall using Equation (3), and the output pattern can be obtained at the
second recall using Equation (4) for the kernel image recalled by the first recall.
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FIGURE 1. Schematic of Ritter’s MAM having two-stage recall process [2]
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FIGURE 2. Schematic of the MAM using the stored pattern independent
kernel image [7]
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FiGURE 3. Noise tolerance of the MAM using a stored pattern independent
kernel image and Ritter’s MAM for twenty alphabet patterns [7]. “sb”
represents the number of blocks in the block splitting step in Figure 2.

2.2. MAM employing effective kernel design. In Ritter’s MAM, the design of the
kernel image becomes difficult as the total number of stored patterns increases, because
the kernel image consists of partial units of stored pattern that do not overlap. Therefore,
we proposed an MAM using a stored pattern independent kernel image [7]. In this kernel
design method, only one element of the kernel image is “1” while the others are “0”.
Figure 2 shows the recall process of the MAM using a stored pattern independent kernel
image. Figure 3 shows noise tolerance of the MAM using a stored pattern independent
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kernel image and Ritter’s MAM in the hetero-association experiments for twenty alphabet
patterns. This model facilitates the design of the kernel image and improves the perfect
recall rate when noise appears in the input images.

2.3. MAM employing reverse recall. However, like conventional MAMs, the MAM
using a stored pattern independent kernel image cannot recall the correct pattern for a
pattern completely included with other stored patterns (e.g., “C and G”, “E and F”),
which is called “inclusion pattern” in this paper. As shown in Figure 4, an MAM using
a stored pattern independent kernel image recalls the overlapped output pattern for the
inclusion pattern.

To overcome this problem, we proposed a reverse recall method [8]. As shown in
Figure 5, in this method, the candidates of an input pattern are reversely recalled by each
separated kernel image. Subsequently, the plausible recall pattern can be determined by
comparing the input pattern with the candidates obtained by the reverse recall. Figure
6 shows noise tolerance of the MAM employing the reverse recall method, and the MAM
using the stored pattern independent kernel image in hetero-association experiments for
twofold inclusion patterns.

input Kernel image output
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FIGURE 4. Problem of an MAM using a stored pattern independent kernel
image. Pattern “F” is completely included with pattern “E”.
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FIGURE 6. Noise tolerance in hetero-association for twofold inclusion pat-
terns: (a) the result of the MAM employing reverse recall, and (b) the
stored pattern independent kernel image method

3. Hardware Implementation.

3.1. Simplified reverse recall method. In an MAM employing a reverse recall, ad-
ditional calculations are required for the reverse recall method. The extra recall time is
approximately equal to 0.5 X Njj, X Tjccqu, Where Nj, is the number of included patterns,
and Tjeequ is the recall time without inclusion patterns. In an MAM employing a reverse
recall, the overlapped kernel image is separated into individual kernel images, and then
the stored pattern corresponding to each kernel image is reversely recalled using each
separated kernel image.

Here, in an MAM employing reverse recall, if X" = (z7,---,2]) and Z" = (2], -+, 2]),
the stored pattern X" reversely recalled for the kernel image Z" is given as
T R r
7=V (5 —my), (5)

where z; is ¢-th unit of the kernel image Z", and z; is j-th unit of the stored pattern X".
R is the total number of stored patterns. For binary stored patterns, Equation (5) can
be rewritten as

; =
Equation (6) shows that the stored pattern corresponding to each kernel image can be
reversely recalled by one element of the kernel image. Using Equation (6) instead of
Equation (5), the stored pattern can be reversely recalled in one shot. In this method, if
the overlapped kernel image is recalled at the first recall, the stored pattern corresponding
to each kernel image is reversely recalled by the corresponding firing unit of the kernel
image. The plausible kernel image is then selected by comparing the input pattern with
the patterns obtained by the simplified reverse recall, as illustrated in Figure 7.

3.2. MAM hardware model. The block diagram of the MAM hardware we developed
[12] handles thirty-two stored patterns, shown in Figure 8. It is designed by introducing
a reverse recall unit into the hardware model of the MAM using the stored pattern in-
dependent kernel image [7]. Here, each stored pattern consists of 64 binary units. The
MAM hardware model consists of a memory unit, first recall unit, majority logic unit,
reverse recall unit, and second recall unit. In the memory unit, memory matrices “M”

T =z — My (6)
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and “W7” are calculated from the input and corresponding output patterns. Using the
first recall and majority logic units, the kernel image corresponding to the input pattern
is recalled. When the overlapped kernel image is recalled, the plausible kernel image can
be determined from the overlapped kernel image at the reverse recall unit. Finally, the
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second recall unit calculates the output pattern corresponding to the final kernel image.
Figure 9 shows the block diagram of the reverse recall unit. In this unit, using a simplified
version, the stored pattern corresponding to each kernel image is calculated using Equa-
tion (6). In the comparator unit, the final kernel image is determined by comparing the
input with the stored patterns reversely recalled by the simplified reverse recall unit. In
the selected signal generator, the overlapped kernel image is detected. If the overlapped
kernel image cannot be detected, the kernel image of the majority logic unit is selected.

4. Experimental Results.

4.1. MAM software model. To evaluate performance of the MAM employing the
simplified reverse recall method, we investigate the perfect recall rate through hetero-
association experiments. In the experiment, each pattern consists of 10 x 10 = 100 binary
units. The unit of pattern takes either “1” or “0”, which represents black and white,
respectively.

We investigate the perfect recall rate of the MAM employing the simplified reverse
recall for patterns shown in Figure 10, which shows stored patterns consisting only sets
of twofold inclusion patterns. The expected patterns are different from those illustrated
in Figure 10. Here, the perfect recall rate is evaluated by an average of 10,000 trials in
simulation. The noise is defined as changing “1” to “0” (or “0” to “1”).

T
T
TITIT

FiGure 10. Stored patterns: twenty patterns consisting only sets of
twofold inclusion patterns

Figure 11 shows noise tolerance of the MAM using the previous reverse recall and the
simplified reverse recall method for patterns illustrated in Figure 10. As shown in Figure
11, the performance of the simplified reverse recall method is equivalent to the previous
reverse recall method.

4.2. MAM hardware model. The performance of the MAM hardware model is investi-
gated by using a logic simulator ModelSim [9] for hetero-association experiments. Figures
12(a) and 12(b) show the stored pattern pairs. Each stored pattern consists of 8 x 8 = 64
binary units.

Figure 13 shows the simulation result of the MAM hardware model for twofold inclusion
patterns. As shown in Figure 13, the output corresponding to the input pattern can be
recalled in fifteen clock cycles.
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FIGURE 11. Noise tolerance in hetero-association for twofold inclusion pat-
terns: (a) the result of the MAM employing the previous reverse recall and
(b) the simplified reverse recall method
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FIGURE 12. Stored pattern pairs (input and expected patterns):
twofold inclusion patterns and (b) threefold inclusion patterns
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FIGURE 13. Simulation result of the MAM hardware model

TABLE 1. Performances of the MAM hardware model

Method Maximum clock Operation speed (pusec)
frequency (GHz) | Twofold inclusion | Threefold inclusion
Previous 2.8 43.2 54.1
Software | LEVEIse recall
Simplified
2.8 31.4 32.1
reverse recall
Hardware 0.14 0.11 0.11

Table 1 shows comparison of the performances on recalls for inclusion patterns between
the MAM hardware and software models. Here, the CPU used is an Intel Core i5@2.8
GHz. As shown in Table 1, the MAM hardware model achieved approximately 280 times
speedup in comparison with software execution of the simplified method. Furthermore,
the recall time of the MAM hardware model does not increase even if the number of
inclusion patterns increases. Here, the Virtex5 (xchbvsx95t) with 58,880 logic slices is
assumed as a target device.

5. Conclusion. In this paper, we introduced an MAM hardware model of an MAM
employing the simplified reverse recall. In our previous work, we proposed an MAM
employing the simplified reverse recall to reduce the extra recall time for a reverse recall
method. This model is suitable for hardware implementation because of its simple and
parallel architecture. Therefore, to accelerate the operation, we proposed the hardware
model of the MAM employing a simplified reverse recall for binary stored patterns. This
MAM hardware model achieved more than 280 times speedup in comparison with software
execution.

The MAM hardware model can recall the associated pattern at high speed for noisy
and inclusion patterns as well. We expect this hardware model to work effectively in
real-world applications of pattern recognition, filters and pattern retrievals, etc., where
many similar patterns exist. Moreover, the compactness and high-speed operations in the
MAM hardware model are expected to contribute to vision systems for autonomous mobile
robots. In our future work, we will extend the handling pattern to more complicated values
and tackle applying our hardware model for practical applications.
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