International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 5, October 2014 pp. 16531667

DETERMINISTIC-RULE PROGRAMS
ON SPECIALIZATION SYSTEMS

KivosHr AKAMA' AND EKAWIT NANTAJEEWARAWAT?

Information Initiative Center
Hokkaido University
Sapporo, Hokkaido 060-0811, Japan
akama@Qiic.hokudai.ac.jp

2Computer Science Program
Sirindhorn International Institute of Technology
Thammasat University
Pathumthani 12121, Thailand
ekawit@siit.tu.ac.th

Received August 2013; revised February 2014

ABSTRACT. In this paper, we formulate a class of deterministic programs, called determi-
nistic-rule programs, on a specialization system, and formalize their procedural seman-
tics, called the clause-model semantics, taking their recursive conditional state-transition
structures into account. The proposed theory makes clear what it means for a determinist-
ic-rule program to be correct with respect to a specification. It provides a basis for de-
veloping methods for synthesis of deterministic programs from declarative specifications.
Taking a specialization system as a parameter, the theory is applicable to many concrete
classes of deterministic-rule programs with various forms of data structures through pa-
rameter instantiation.

Keywords: Deterministic computation, Specialization system, Program synthesis, Que-
ry-answering problem, Equivalent transformation

1. Introduction. Program synthesis is concerned with the construction of a correct and
efficient program from a given specification. A general class of specifications based on
query-answering (QA) problems is considered in this paper. Given a specification, we want
to construct a deterministic program that is correct with respect to it. Starting from an
initial state constructed from an input query, a deterministic program uniquely determines
a (finite or infinite) sequence of states, called a computation, and if the computation ends
with a final state, an output value is obtained. A deterministic program is correct with
respect to a specification iff for each query, the program yields a finite computation with an
obtained output value being equal to the answer to the query defined by the specification.

We establish a class of deterministic programs that are suitable for program synthesis.
A program in this class is called a deterministic-rule program (D-rule program). Tt is
a sequence of deterministic rules (D-rules) for transformation of definite clauses, which
are regarded as computation states. Application of D-rules is determined by pattern
matching and their applicability condition, which together make them very expressive
for computation control. We give a clear and elegant semantics, called the clause-model
semantics, for D-rule programs, taking their recursive applicability-checking structures
into consideration. Based on this semantics, the correctness of a D-rule program with
respect to a specification is clearly defined. Since a specification can be represented
using clauses, the clause-model semantics narrows the gaps between D-rule programs and
specifications, thereby simplifying the difficulty of program synthesis.

1653

1654 K. AKAMA AND E. NANTAJEEWARAWAT

The paper is organized as follows. After defining the class of specifications and that of
program synthesis problems considered herein, Section 2 introduces the concept of a deter-
ministic program in general and identifies the objective of the paper. Section 3 introduces
D-rules by means of examples. Section 4 formulates D-rule programs on a specialization
system. Section 5 describes computation states and computations of D-rule programs, and
presents the clause-model semantics. Section 6 shows how D-rule programs are used for
computing the answers to QA problems and illustrates program correctness and program
synthesis on the space of D-rule programs. Section 7 summarizes the characteristics of the
D-rule language and makes a comparison with Prolog [1], Guarded Horn Clause (GHC)
[2], the nondeterministic-rule (N-rule) language [3], and imperative languages. Section 8
concludes the paper.

Preliminary Notation. The notation that follows holds thereafter. Given a set A, pow(A)
denotes the power set of A and partialMap(A) the set of all partial mappings on A (i.e.,
from A to A). For any sets A and B, f : A - B denotes a partial mapping f from A
to B and partialMap(A, B) the set of all partial mappings from A to B. For any partial
mappings f and g, f og denotes the composition of f with ¢'. For any nonempty sequence
s, first(s) denotes the first element of s; last(s) denotes the last element of s if s is finite;
and rest(s) denotes the sequence obtained from s by removing its first element. For any
sequences s and ', if s is finite, s - 8’ denotes the concatenation of s and s'.

2. Program Synthesis Problems and Design of Deterministic Programs. First,
the class of specifications and that of program synthesis problems considered in this paper
are defined in Section 2.1. The concepts of a deterministic program, its computations,
and its computed answers are given in Section 2.2. The objective of the paper is then
identified in Section 2.3.

2.1. Specifications and program synthesis problems.

2.1.1. QA problems on definite clauses. A query-answering problem (QA problem) on def-
inite clauses is a pair (D, ¢), where D is a set of definite clauses, representing background
knowledge, and ¢ is a user-defined atom, representing a query. The answer to a QA prob-
lem (D, q) is the set M(D) N rep(q), where M (D) is the least model of D and rep(q) is
the set of all ground instances of q.

2.1.2. Specifications. A specification based on QA problems on definite clauses is a set of
QA problems on definite clauses with common background knowledge, i.e., a set {(D, q) |
q € Q}, where D is a set of definite clauses and () is a set of query atoms. All specifications
considered henceforth are specifications in this class.

A specification {(D, q) | ¢ € Q} is denoted by the pair (D, Q). Let G denote the set of all
ground atoms. A specification S = (D, Q) determines a mapping answers : @ — pow(G)
such that for any ¢ € Q, answers(q) = M(D) N rep(q).

2.1.3. Program synthesis problems and program correctness. A program synthesis problem
is to find in a given program space a program that is correct with respect to a given
specification. A program P is correct with respect to a specification S = (D, Q) iff for
any query atom ¢ € @, (i) P returns an answer to the QA problem (D, ¢) in finite time
and (ii) the returned answer coincides with answers(q).

Hfog={(z,2) | (z,y) €9) & ({y,2) € f)}-

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1655

2.2. Deterministic programs and computations. A deterministic program P has
the following characteristics:

1. P is associated with a set STA of states, which includes a set INT of initial states and
a set, FIN of final states.

2. P is deterministic, i.e., for any given initial state st € INI, P uniquely determines a
(finite or infinite) sequence of states beginning with s¢, which is called a computation
of P from st.

3. A computation of P contains at most one final state, which can occur only as its
last state.

4. P determines a partial mapping compp : INT + FIN as follows: let st € INI.

(a) If the computation of P from st reaches a final state st € FIN in finite steps,
then compp(st) = st'.

(b) If the computation of P from st ends in finite steps without reaching any final
state in FIN, then compp(st) is undefined.

(c) If the computation of P from st does not end in finite steps, then compp(st) is
undefined.

A set Q of query atoms is associated with a mapping makeStateg : () — INI for
determining initial states from query atoms. Associated with FIN is a partial mapping
val : FIN - pow(G) for determining answers obtained from final states. Given a set @ of
query atoms, a deterministic program P determines a partial mapping compute(P, Q) :
Q + pow(g) by

compute(P, Q) = valo compp o makeStateg.

The obtained partial mapping compute(P, (Q)) associates with query atoms in () the an-
swers computed using P.

Given a specification S = (D, @), a deterministic program P is correct with respect to
S iff compute(P,Q)(q) = answers(q) for any ¢ € Q.

2.3. Objective. The objective of this paper is to design a program space P that satisfies
the following requirements:

1. Each program in the space P is deterministic.

2. The program space P has rich expressive power.

3. For any program P in the space P, the partial mapping compp is clearly and elegantly
defined.

4. The space P is suitable for program synthesis both practically and theoretically.

In this paper, we propose a program space P that fulfills these requirements and make the
partial mapping compute(P, Q) explicit for any program P in P and any set @) of query
atoms.

3. D-Rules by Examples. Next, D-rules are introduced by way of examples. For rea-
sons of readability, D-rules in the domain of first-order terms are used.

3.1. Built-in atoms, built-in evaluators, and user-defined atoms. In a D-rule
system, some atoms, including extralogical atoms, are used for specifying predefined op-
erations, and are referred to as built-in atoms. Built-in atoms are evaluated by a pre-
determined built-in evaluator, and if the evaluation succeeds, it yields a substitution as
a result. Examples of built-in atoms are equality atoms, i.e., atoms of the form =(¢,t),
where ¢ and t' are first-order terms. An equality atom represents a unification operation.
If t and t' are unifiable, the evaluation of =(¢,¢') succeeds, with the resulting substitution
being their most general unifier.

1656 K. AKAMA AND E. NANTAJEEWARAWAT

Atoms other than built-in atoms are considered as user-defined atoms. User-defined
atoms are target atoms for rule application; they are evaluated through transformation
of definite clauses by applying D-rules. In the examples that follow, atoms of the forms
app(l,1',1"), toSet(l,1"), member(t,l), and occur(t,t') are user-defined atoms, where I,1',1"
are lists and ¢, ¢ are terms. They are intended to mean, respectively, “appending the list
I' to the list [yields the list I"”, “I" is the list representing the set obtained from the list
[by removing repeated elements”, “the term ¢ is an element of the list {7, and “the term
t occurs in the term t'”.

3.2. Simple D-rules. Figure 1 shows two D-rules for rewriting app-atoms, where each
variable begins with an asterisk. Their applicability is determined by pattern matching.
As specified by its left side, the rule r; (respectively, 73) matches any app-atom whose
first argument is the empty list (respectively, a nonempty list). When applied, the rules
r1 and 79 replace their target app-atoms with corresponding instances of atoms specified
in their right sides. Table 1 illustrates transformation of definite clauses by application
of these two rules and the built-in evaluator. The predicate ans stands for “answer” and
the definite clause in the first row of the table is intended to mean “xA is the answer if it
is the result of appending the list [3] to the list [1,2]”. When the first atom in the body
of a definite clause is an app-atom, it is rewritten using either r; or ro. When it is an
equality atom, it is evaluated using the built-in evaluator. The label of the rule applied
at each rule-application step is shown in the second column of the table. The letter ‘e’ in
the same column indicates a transformation step resulting from built-in atom evaluation.
The transformation changes the initial clause into the unit clause ans([1, 2, 3]) <, which
means “the list [1, 2, 3] is the answer unconditionally”.

ricapp([], %Y, xZ) — =(xY, +2).
ro: app([xa|x X1, *Y, xZ) — =(xZ, [xa|xW]), app(x X, xY, «W).

FIGURE 1. D-rule examples

TABLE 1. An example of a transformation sequence using the rules in Fig-

ure 1
Step Rule Definite clause
ans(+A) < app([1, 2], [3], *A)

1 ry | ans(xA) =(xA, [1xW1]), app([2], [3], *W'1)

2 e ans([1|xW1]) < app([2], [3], *xW'1)

3 To ans([1|xW1]) < =W 1, [2|«xW2]), app(][], [3], xIW?2)
4 e ans([1, 2|xW2]) « app([], [3], xW2)

5 T ans([1, 2|xW2]) «+ =([3], xW2)

6 e ans([1,2,3]) <

r3: toSel([], xZ) — =(xZ,]]).

ry: toSet([xa|xX], xZ), {member(xa,*X)} — toSet(xX, xZ).
rs: toSet([xa|xX],xZ) — =(xZ, [xa|xW]), toSet(x X, «W).

re: member(xa, [xa|xX]) —
rr: member(xa, [xb|xX]) — member(xa, *X).

FIGURE 2. D-rule examples

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1657

TABLE 2. An example of a transformation sequence using the rules in Fig-

ure 2
Step Rule Definite clause
ans(xA) < toSet([1,2, 1], *A)

1 Ty ans(xA) < toSet([2, 1] *A)
2 s ans(xA) < =(xA, [2|xW1]), toSet([1], *xW1)
3 e ans([2]xW1]) < toSet([1], «W1)
4 5 ans([2[xW1]) <= =(«W1, [1|xW2]), toSet([], xIW2)
5 e ans([2, 1|xW2]) + toSet([], *W2)
6 T3 ans([2, 1|xW2]) < =(xW2,[])
7 e | ans([2,1]) «]

TABLE 3. Checking whether r4 is applicable at the first step in Table 2

Step Rule Definite clause
toSet([2, 1], xA) < member(1,[2,1])
1 7 toSet([2, 1], xA) < member(1,[1])
2 6 toSet([2,1],%xA) < []
rg: occur(xa,xa) —>.

ro: occur(xa, [xA|xB]), {occur(xa,xA)} —
ro: occur(xa, [xA|xB]) — occur(xa, *B).

FIGURE 3. D-rule examples

3.3. D-rules with applicability conditions. In addition to pattern matching, some
applicability condition may be specified in order to confine a rule to being applicable to
a more specific class of target atoms, enabling more specific atom replacement. Figure 2
shows D-rules for rewriting toSet-atoms and member-atoms. The rule r, has an applica-
bility condition, i.e., {member(xa,*X)}, which indicated using a pair of curly braces in
its left side. When its target-atom pattern, i.e., toSet([xa|*xX],*7), is instantiated into a
body atom using a substitution f, its corresponding instantiated applicability condition
is checked, i.e., member(xaf, *X0) is evaluated. A separate transformation sequence is
constructed for the evaluation. Consider, for example, the definite clause in the first row
of Table 2. To check whether r, is applicable to the body atom toSet([1,2,1],*A), the
instantiated condition member(1,[2,1]) is evaluated using the transformation in Table 3.
Since this transformation ends with a unit clause, indicating the success of the evaluation,
ry is applied, resulting in the first transformation step in Table 2

For each transformation step, a rule is selected deterministically: the applicabilities of
rules are checked one-by-one in the rule appearance order and (only) the first applicable
rule is selected. For example, to make the second transformation step in Table 2, the
applicability of ry to the target atom toSet([2,1],*A) is checked first, i.e., member(2,[1])
is evaluated. Since the evaluation fails, the next rule, i.e., r5, which is applicable to the
target atom, is used at that step.

3.4. D-rules with recursive applicability conditions. It is often natural to write a
D-rule with a recursive applicability condition. Consider the D-rules for rewriting occur-
atoms in Figure 3. The rule ry removes an atom of the form occur(t,,[ta|ts]), where
ta,ta,tp are terms, if t, occurs in ty, i.e., if occur(t,,t) is satisfied. Table 4 illustrates a

1658 K. AKAMA AND E. NANTAJEEWARAWAT

TABLE 4. An example of a transformation sequence using the rules in Fig-
ure 3

Step Rule Definite clause
ans < occur(1,[[2,1,0],[5, 4, 3]])
1 Tg ans < |]

TABLE 5. Checking whether ry is applicable at the first step in Table 4

Step Rule Definite clause
ans < occur(1,[2,1,0])
1 10 ans < occur(1, [1,0])
2 T9 ans + []

TABLE 6. A transformation failure

Step Rule Definite clause
ans < occur(1,2)

1 - 4

transformation sequence using the rules in Figure 32. To determine whether 74 is applica-
ble to the body atom occur(1,[[2, 1, 0], [5, 4, 3]]), the condition occur(1,[2,1,0]) is checked,
initiating the transformation sequence in Table 5. To make the first transformation step
in Table 5, the applicability of r9 to occur(1,[2,1,0]) is determined, i.e., the condition
occur(1,2) is checked recursively using the transformation sequence in Table 6. Since
none of rg, re, and ryy is applicable to occur(1,2), the transformation in Table 6 fails,
which is indicated by the symbol ‘L’. The rule rqg is thus not applicable at the first step
in Table 5 and the next rule, i.e., 719, is used at that step.

3.5. Passing values through applicability conditions. Evaluating an applicability
condition may yield a substitution that instantiates body atoms, having the effect of
passing a value to them. To illustrate, let us assume that (1) a calc-atom is a two-
argument built-in atom that takes its first argument as an input for performing some
calculation and outputs the calculation result as its second argument, and (2) a cond-
atom is a one-argument built-in atom that tests whether its argument satisfies a certain
condition. Now consider the following two rules:

calcCond(xx, x2), { cale(xx, xy), cond(xy)} — =(*z, *y).
calcCond(xx, %2) — =(*z, *x).

Suppose that a target atom calcCond(t,, xz) is given, where ¢, is a term representing an
input. To transform this target atom, the applicability of the first rule to it is checked
first, i.e., a value ¢, is produced from ¢, using a calc-atom and then the condition cond(t,)
is evaluated. If the evaluation of cond(t,) succeeds, the first rule is applied, i.e., the target
atom is replaced with the equality atom =(xz,t,). If the evaluation of cond(t,) fails, the
second rule is used instead, by which the target atom is replaced with =(xz,).

Supposing that the first rule is applied, the value ¢, is in turn passed to xz by the
evaluation of the equality atom =(xz,?,). One may produce the same effect by changing
the first rule into

calcCond(xx, x2), { cale(xx, xy), cond(xy)} — calc(xx, *2).

2When it takes no argument, an ans-atom means “true”.

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1659

The application of this new rule does not pass the value ¢, to its right side. Instead,
it replaces the target atom with calc(t,, *z), the evaluation of which assigns the value
t, directly to xz. This alternative, however, requires two calc-atoms to be evaluated —
one for rule applicability checking and another for instantiating xz — with their input
arguments being the same. If the evaluation of a calc-atom takes high cost, the new rule
is apparently less efficient.

4. D-Rule Programs on Specialization Systems. After recalling the notion of a
specialization system in Section 4.1, we formulate on it a general class of D-rule programs
in Section 4.2.

4.1. Specialization systems. The concept of a specialization system, introduced in [4],
provides an axiomatic structure for studying the common interrelations between various
forms of extended atoms and specialization operations on them. It provides a basis for
a discussion of data structure extension [5] and for formulating declarative descriptions
in many data domains, e.g., typed feature terms [6], conceptual graphs [7], and XML
expressions [8]. A specialization system is recalled below.

Definition 4.1. A specialization system T is a quadruple (A, G, S, 1) of three sets A, G,
and S, and a mapping p from S to partialMap(A) that satisfies the following conditions:
1. (Vs',s" € §)(3s € S) : u(s) = p(s") o pu(s").
2. (3seS)(Vae A):pu(s)(a) =a.
3. G C A
Elements of A, G, and S are called atoms, ground atoms, and specializations, respectively.
The mapping p is called the specialization operator of I'. A specialization s € S is said to
be applicable to a € A iff a € dom(u(s)). m

In the rest of this paper, assume that a specialization system I' = (A, G, S, p) is given.
A specialization in § is often denoted by a Greek letter such as 0. A specialization
0 € S is often identified with the partial mapping u(f) and used as a postfix unary
(partial) operator on A, e.g., u(0)(a) = af, provided that no confusion is caused. Given
an expression F containing occurrences of atoms in A and # € S such that 6 is applicable
to all those atoms, we write Ff to denote the expression obtained from E by replacing
each atom a € A that occurs in E with afl. Let € denote the identity specialization in S,
i.e., ae = a for any a € A. For any #,0 € S, let # o 0 denote a specialization p € S such
that pu(p) = p(o) o u(0), ie., a(f o o) = (ah)o for any a € A.

A subset A’ of A is said to be closed iff for any a € A" and any 0 € S, and if @ is
applicable to a, then af € A’.

4.2. D-rule programs on specialization systems. D-rules and D-rule programs on
I' are defined below. Assume that Ag and Ay are disjoint closed subsets of A such
that Ag U Ay = A. Atoms in Ap are regarded as built-in atoms, and those in Ay as
user-defined atoms.

A deterministic rule (for short, D-rule) r on T" is an expression of the form

h,{Cl,...,Cm}—>b1,...,bn,

where h € Ay; m,n > 0; ¢; € Ag U Ay for each i € {1,...,m}; and b; € Ag U Ay
for each j € {1,...,n}. The user-defined atom h is called the head of r, denoted by
head(r). The sequences [ci,...,cn] and [by, ..., b,] are called the applicability condition
of r, denoted by cond(r), and the body of r, denoted by body(r), respectively. The pair of
braces on the left side of r does not indicate the set notation; the order of atoms in the
applicability condition as well as the order of those in the body of r is important. When

1660 K. AKAMA AND E. NANTAJEEWARAWAT

m = 0, the pair of braces on the left side of r is omitted. A specialization # € S is said
to be applicable to r iff @ is applicable to each atom occurring in r. Let DRULE(I") denote
the set of all D-rules on T'.

A deterministic-rule program (for short, D-rule program) on I' is a finite sequence of
D-rules on I'.

5. Computations of a D-Rule Program and Clause-Model Semantics. First, a
computation and a complete computation set are defined in Section 5.1. Applicability of
D-rules to states with respect to a complete computation set is then defined in Section 5.2.
The conditional state-transition structure of a D-rule program is described in Section 5.3.
It is followed by a formalization of the clause-model semantics in Section 5.4.

5.1. States and computations. A clause-model state (for short, C-state) on T' takes
one of the following forms:

1. ((ans(as) < gs), p), where as and gs are finite sequences of atoms in A and p is a
specialization in S.
2. A special symbol 1, which is called the null C-state.

An initial C-state on T' is a C-state on I' of the first form such that p is the identity
specialization €. A final C-state on T is either the null C-state (L) or a C-state on I" of
the first form such that g¢s is the empty sequence. Let STA, INI, and FIN be the set of all
C-states, the set of all initial C-states, and the set of all final C-states, respectively, on I'.
When no confusion is caused, a C-state is simply called a state.

Definition 5.1. A computation on STA is a nonempty sequence of states in STA. A
computation on STA is said to be infinite if it is an infinite sequence, and it is said to
be finite otherwise. A computation com on STA is said to be complete with respect to INI
and FIN iff it satisfies the following conditions:

L. first(com) € INIL.
2. If com is finite, then last(com) € FIN. ®

Definition 5.2. A set M of computations on STA is deterministic iff for any com, com’ €
M, if first(com) = first(com'), then com = com/. W

Definition 5.3. A set M of computations on STA is complete with respect to INI and
FIN iff the following conditions are satisfied:

1. For any computation com in M, com is complete with respect to INT and FIN.
2. M is deterministic.

Let cMPCOMP(STA, INT, FIN) denote the set of all complete sets of computations on STA
with respect to INI and FIN. B

When no confusion is caused, cMPCOMP(STA, INI, FIN) is also written as cMPCOMP.

Let a partial mapping fin : cMPCOMP x INT + FIN be defined as follows: for any
M € cmpCoMmP and any st € INI, if M contains a finite computation com such that
first(com) = st and last(com) € FIN, then fin(M, st) = last(com); otherwise it is unde-
fined.

5.2. Applicability of D-rules with respect to a complete computation set. To
apply a rule to a state, a pattern-matching specialization is determined. If no pattern
matching is possible, the rule is not applicable. The determination of pattern-matching
specializations is specified by a mapping

m : (DRULE(T") x (STA — FIN)) —» (SU{L})

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1661

such that for any rule r € DRULE(T") and any state st = ((ans(as) < gs), p) € STA — FIN,
if m(r, st) is a specialization, say #, in S, then

1. @ is applicable to r (i.e., it is applicable to head(r), cond(r), and body(r)), and

2. head(r)0 = first(gs).
Intuitively, given a D-rule r and a state st = ((ans(as) <— gs), p) € STA — FIN,

e if m(r, st) is a specialization § € S, then head(r) is matched with first(gs) by 6 and
the applicability of r to st will be checked further by considering cond(r)f; and
e if m(r,st) = L, then r is not applied.
Now let M be a complete set of computations and st € STA — FIN. Applicability and
non-applicability of a D-rule to st with respect to M are defined as follows:

Definition 5.4. A D-rule r is applicable to st with respect to M iff m(r, st) is a special-
wzation, say 0, in S and M contains a finite computation com such that

L. first(com) = ((ans(body(r)f) < cond(r)d),e) € IN1, and

2. last(com) = ((ans(body(r)fo) < []),0) € FIN for some specialization o € S.
The specialization o in Condition 2 above is unique if it exists, and is referred to as
spec(r,st, M). m

Definition 5.5. A D-rule r is non-applicable to st with respect to M iff either (i)
m(r,st) = L or (i) m(r,st) is a specialization, say 0, in S and M contains a finite
computation com such that

1. first(com) = ((ans(body(r)f) < cond(r)f),e) € IN1, and

2. last(com) = L. m

It follows directly that:

Proposition 5.1. Let r be a D-rule, st € STA — FIN, and M, M' € cmpCOMP such that
M C M'. If r is applicable to st with respect to M, then r is applicable to st with respect
to M'. If r is non-applicable to st with respect to M, then r is non-applicable to st with
respect to M'. m

5.3. Successor states with respect to a complete computation set. Given a com-
plete set M of computations, the conditional state-transition structure of a D-rule pro-
gram P with respect to M is characterized by a partial mapping condSuccp(M), which
determines the successors of states by considering computations in M for evaluating rule
applicability conditions and for computing specializations used for constructing the suc-
cessors. More precisely, a mapping

condSuccp : CMPCOMP — partialMap(STA — FIN, STA),

called the conditional successor mapping of P, is defined as follows: let M € cmpCoOMP
and st = ((ans(as) < gs), p) € STA — FIN. Then:

1. If first(gs) is a built-in atom whose evaluation fails, then condSuccp(M)(st) = L.
2. If first(gs) is a built-in atom whose evaluation yields a specialization o and o is
applicable to as and gs, then

condSuccp(M)(st) = ((ans(aso) < rest(gs)o), po o).

3. If first(gs) is a user-defined atom and every D-rule in P is non-applicable to st with
respect to M, then condSuccp(M)(st) = L.

4. If first(gs) is a user-defined atom and there exists a D-rule r in P such that
(a) r is applicable to st with respect to M, and
(b) every D-rule that precedes r in P is non-applicable to st with respect to M,

1662 K. AKAMA AND E. NANTAJEEWARAWAT

then
condSuccp(M)(st) = ((ans(aso) < body(r)fo - rest(gs)o), po o),
where § = m(r, st) and o = spec(r, st, M).

The conditional state-transition structure formalized by the mapping condSuccp is an
extension of a simple state-transition structure discussed in [9], where each step in a state-
transition sequence is determined without considering other state-transition sequences.

Since a successor state can be known only when all necessary computations required

for checking relevant rule applicability are supplied by M, condSuccp(M) is in general
not total.

Proposition 5.2. The mapping condSuccp is monotonic, i.e., for any M, M'e cmpCoMP,
if M C M', then condSuccp(M) C condSucep(M').

Proof: Let M,M' € cmMpCoMP such that M C M’'. Assume that st € STA — FIN,
st' € STA, and (st, st') € condSuccp(M). It follows from Proposition 5.1 that (st, st') €
condSuccp(M'). ®

5.4. Clause-model semantics. Based on the mapping condSuccp, a mapping Kp on
cMPCOMP is associated with P as follows:

Definition 5.6. For any M € cMPCoMP, Kp(M) is the set consisting of every compu-
tation com on STA that satisfies the following conditions:
L. first(com) € INIL.

2. For any two successive states st; and stii1 in com, condSuccp(M)(st;) = stii1.
3. If com is finite, then last(com) € FIN. =

Obviously, Kp(M) is deterministic for any M € cmpCoMP, and Kp is a well-defined
mapping from cMPCOMP to cMPCoOMP. It is also readily seen that for any M €
cMPCoOMP, Kp(M) contains a single-state computation [st] for any final state st € FIN.

It follows directly from Proposition 5.2 that:

Proposition 5.3. Kp is monotonic. ®

For any n > 0, let K3(&) be defined by: K%(&) = @ and if n > 1, then Kp(9) =
Kp(K5'(2)). Using Kp, the meaning of P is defined below.

Definition 5.7. The meaning of P, denoted by M(P), is defined as lim, ., K%(2). &

Since Kp is monotonic, M(P) is well defined.

In the following examples, let BComp denote the set consisting of every computation
com on STA such that (i) first(com) is a non-null state and (ii) the atom sequence on the
right-hand side of the clause in first(com) consists only of built-in atoms in Ag.

[((ans([app([1,2], (3], *A)]) < [app([1, 2], [3], * A)]), €),

((ans([app([L,2], (3], *A)]) « [=(+A, [1[+W1]), app([2], [3], *W1)]),),
((ans([app([1,2], [3], [L+xW1])]) = [app([2], [3], «W1)]), {+A/[1[+W1]}),
((ans([app([1,2], (3], [LxW1])]) « [=(«WL, [2[+W2]), app((], [3], «W2)]), {x A/[1[+W1]}),
((ans([app([1,2], (3], [1, 21+ W2])]) « [app([], (3], xW2)]), {x A/[1, 2[+W2], «W1/[2[xW2]}),
((ans([app([1,2], 3], [L, 2[+W2])]) = [=([3], *W2)]), {x A/[1, 2|xW 2], +sW1/[2xW2]}),
((ans(lapp([1,2], 3], [1,2,3])]) < [I), {xA/[1,2,3],«W1/[2,3],«W2/[3]})]

FIGURE 4. An example of a computation

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1663

Example 5.1. Referring to the D-rules ri and ro in Figure 1 (Section 3.2), let P be the
D-rule program [ri,7s]. Obviously, K5(@) = BComp U {[st] | st € FIN}. Figure J gives
an example of a computation in K3(2) — Kp(). B

Example 5.2. Next, consider the D-rules rg, ry, and rig in Figure 3 (Section 3.4). Let P
be the D-rule program [rg,T9,r10]. Again Kp(@) = BComp U {[st] | st € FIN}. Consider
the sets K3(@) — Kp(@) and K3 (@) — Kp(D). The former set is a proper subset of the
latter one. Both of them contain, for example, the following computations:

1. [{(ans([occur(3,2)]) < [occur(3,2)]), €), L]

2. [((ans([occur(3,3)]) <= [occur(3,3)]), €), ((ans([occur(3,3)]) <= []), €)]

Figure 5 illustrates a computation that belongs to the latter set but not the former one. W

[{(ans([occur(3, [2,3])]) « [occur(3,[2,3])]), €),
((ans([occur(3,[2,3])]) « [occur(3, [3])]), €),
((ans([occur(3, [2,3])]) 1), €)]

FIGURE 5. An example of a computation

6. Query Answering and Program Synthesis on the Space of D-Rule Programs.
Following the general scheme established in Section 2.2, how the clause-model semantics
characterizes D-rule programs in the context of query answering is described in Section 6.1.
Along with program correctness, program synthesis on the space of D-rule programs is
illustrated in Section 6.2.

6.1. Query answering using D-rule programs. Let P be a D-rule program. Referring
to the general scheme in Section 2.2 and the partial mapping fin in Section 5.1, how
M(P) determines the computed answers to query atoms is given below. Assume that
@ is a set of query atoms. First, a mapping makeStateg : () — INI, a partial mapping
compp : INT - FIN, and a partial mapping val : FIN -» pow(G) are given as follows:

e For any query atom ¢ € @), makeStateqg(q) is the initial state ((ans([q]) < [q]), €)-

e For any initial state st € INI, compp(st) = fin(M(P), st).

e val(L) = @ and for any non-null final state st = ((ans(as) < []), p) € FIN, if asis a
singleton sequence [al], then val(st) = rep(a); otherwise val(st) is undefined.

Next, the computed answers to query atoms in () are determined by the partial mapping
compute(P, Q) : Q - pow(G) defined by compute(P, Q) = valo compp o makeStateg, i.e.,

compute(P, Q)(q) = val(fin(M(P), makeStateg(q)))

for any ¢ € Q. Tt is readily seen that for any ¢ € @, compute(P,Q)(q) can be restated as
follows:

1. compute(P,Q)(q) = rep(q') if M(P) contains a finite computation com such that
first(com) = makeStateg(q) and last(com) = ((ans([¢']) < []), p) for some specializa-
tion p € S.

2. compute(P,Q)(q) = @ if M(P) contains a finite computation com such that first(com)
= makeStateg(q) and last(com) = L.

3. compute(P,Q)(q) is undefined otherwise.

Given a query atom ¢ € @, compute(P,Q)(q) is the computed answer to ¢ obtained using
the D-rule program P.

1664 K. AKAMA AND E. NANTAJEEWARAWAT

6.2. Program synthesis problems for query answering. A D-rule program P is
correct with respect to a specification S = (D, @) iff for any ¢ € @, compute(P,Q)(q) =
answers(q). Let P be the set of all D-rule programs. A program synthesis problem for
a specification S on the space P is to construct a D-rule program that is correct with
respect to S.

Example 6.1. Assume that S is a specification (D,Q), where D consists of the two
definite clauses

Loapp([], #Y, *Y) -,

2. app([xa|xX], *Y, [xa|*Z]) < app(xX, xY, x7),

which together provide the definition of the predicate app, and
Q = {app(l1,l2,v) | (I1 and ly are ground lists) & (v is a variable)}.

An atom app(ly,l2,v) in Q represents the query “find the result of appending ly to l;” and
the answer to this query is given by instantiating v.

Let P be the D-rule program [ri,rs|, where r1 and ro are the D-rules in Figure 1 (Sec-
tion 3.2). P is correct with respect to the specification S, the reasons being as follows:

e From the background knowledge D, the following equivalent transformation (ET)
rules [3] are derived:

1. An atom of the form app([],*Y,*Z) can be replaced equivalently with a built-in
equality atom of the form =(xY, xZ).

2. An atom of the form app([xa|xX], Y, xZ) can be replaced equivalently with an
atom set of the form {=(xZ, [xa|xW1]), app(x X, xY, *W)}.

Since r1 and ro are directly obtained, respectively, from these two ET rules, each
state-transition step of P is always an equivalent transformation step with respect to
D (see, e.q., Figure /). Hence for any q € Q, if the computation of P for q ends with
a final state, then the obtained computed answer always coincides with the answer to
q defined by the specification S.

e Let com be any arbitrary computation of P that begins with makeStateg(q) for some
q € Q. It is readily seen that com possesses the following properties:

— The right-hand side of the clause in each non-final state in com comprises at
most one equality atom and at most one app-atom, which has ground lists as its
first and second arguments. An equality atom is always processable by the built-in
evaluator. One of 1 and ry is always applicable to any app-atom in a non-final
state in com. Therefore, P always makes state transition on any non-final state
possibly occurring in com.

— When 1o is applied to an app-atom whose first argument is a ground nonempty
list, the length of that first arqgument list decreases by one. As a result, after
a finite number of application of ro, 71 is always applicable. Application of ry
followed by the evaluation of an equality atom always yields a final state. So com
terminates within finite state-transition steps.

Hence for any q € @, the computation of P for q always terminates and reaches a
final state in finite time. M

7. Comparison with Related Rule Languages. Table 7 compares D-rule programs
with Prolog [1], Guarded Horn Clause (GHC) [2], and nondeterministic-rule (N-rule)
programs [3] from the following viewpoints:

(Chl) Single-clause state

(Ch2) Deterministic computation
(Ch3) Recursive applicability condition

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1665

(Ch4) Instantiation into specific classes of programs through specialization systems
(Chb) Appropriateness for synthesis of deterministic programs

Characteristics of D-rule programs from these viewpoints and the comparison in Table 7
are described below.

TABLE 7. Comparing D-rule, Prolog, GHC, and N-rule programs

Language/ |y (cna)| (Chs)|(Cha) | (Ch)
D-rule o o o o o
Prolog A o A % A
GHC o X A X A
N-rule X X X o o

o—“good”; A—“moderate”; X—“poor”

7.1. Characteristics of D-rule programs. A D-rule program is a sequence of D-rules
defined on a specialization system. A computation state for a D-rule program is a sin-
gle definite clause on a specialization system and a computation is a sequence of states
obtained by successive application of D-rules. Computation of a D-rule program is deter-
ministic, since the first atom in the right-hand side of a state is selected to be transformed
by the first applicable D-rule in the program. D-rules have recursive applicability con-
ditions. D-rule programs are appropriate for generation of deterministic programs for
solving QA problems, since many useful D-rules can be constructed directly from equiv-
alent transformation (ET) rules [3], which are derivable from clauses [10].

7.2. Comparison. A pure Prolog program [11] is a sequence of ordered definite clauses?,
which are conventionally regarded as rules for making backward chaining inference. The
main structure of the procedural semantics of a Prolog program is a deterministic depth-
first search for finding all answers to a given query. Such a search can be seen as a process
of successively transforming a set of definite clauses using general unfolding-based rules
[10]. Moreover, the applicability of a rule (an ordered definite clause) in pure Prolog is
determined solely by unification of its head and a target atom; no applicability condition
other than unification checking can be specified, resulting in the lack of expressive power
for computation control. The extralogical predicate cut is introduced in Prolog as a rem-
edy [1]. The sequence of atoms that precedes cut in the body of a rule can be considered as
the applicability condition of the rule. However, the introduction of cut increases difficulty
in semantics formalization, which is necessary for a discussion of program correctness and
program synthesis.

Guarded Horn Clause (GHC) rules [2] yield single-clause transformation and appear
to be more similar to D-rules than Prolog rules in regard to rule applicability checking.
The applicability of a GHC rule is determined by pattern matching and GHC provides
commit operators for specifying additional applicability conditions. However, the compu-
tation model of GHC is nondeterministic and parallel, while that of D-rule programs is
deterministic and sequential. A simplified version of GHC, i.e., Flat GHC, is often used
to reduce the cost of computing recursive applicability conditions. Research on GHC
focusses more towards parallelism and efficiency, rather than program synthesis.

3 An ordered definite clause is a definite clause whose right-hand side is regarded as an atom sequence,
rather than an atom set.

1666 K. AKAMA AND E. NANTAJEEWARAWAT

A nondeterministic-rule (N-rule) program [3] is a set of nondeterministic rules (N-
rules), which have no recursive applicability condition. A computation state for an N-rule
program is a set of definite clauses on a specialization system and a computation is a
sequence of states obtained by successive application of N-rules. Computation by an N-
rule program is nondeterministic, i.e., a target definite clause in a computation state, a
target atom for rule application, and an applicable N-rule is selected nondeterministically
for making state transition. With regard to program synthesis, if an N-rule program
comprises only ET rules, then its computation is guaranteed to yield a correct answer
whenever a final state is reached.

Programs in most imperative languages are deterministic programs. However, the pro-
cedural semantics of existing imperative languages has little in common with specifications
based on QA problems. It is thus difficult to establish relationships between programs in
these languages and specifications in this class, and consequently, difficult to develop a the-
ory for program synthesis based on these languages. Since the background knowledge of a
specification comprises clauses, the use of clauses as computation states facilitates insight-
ful understanding of the relationships between D-rule programs and specifications, and
simplifies the difficulty of program synthesis. For example, as illustrated in Section 6.2,
from a set of definite clauses representing background knowledge, ET rules [3] for equiv-
alent transformation of clauses can be derived and they provide high-level intermediate
artifacts for constructing a D-rule program. A method for systematically generating ET
rules from a set of definite clauses, called the squeeze method, was presented in [10].

8. Conclusions. In this paper, we have formulated a class of deterministic programs,
called deterministic-rule (D-rule) programs. D-rule programs have been extensively used
as part of an ET-based language called ETI. Many applications and experimental sys-
tems have been constructed using the ETI language. A D-rule program is similar to a
nondeterministic-rule (N-rule) program in that (i) they are both defined with special-
ization parameters, (ii) they employ clauses as components of their computation states,
thereby narrowing the gaps between them and declarative descriptions of QA problems,
and (iii) they can be generated based on ET rules. Compared to nondeterministic com-
putation by N-rule programs, D-rule programs can represent deterministic computation
precisely and provide richer expressive power through their recursive conditional state-
transition structures. Taking these features into account, we have formalized a procedural
semantics of D-rule programs, called the clause-model semantics. This semantics is the
only existing semantics that can clearly determine the correctness of a D-rule program
with respect to a specification. It provides a basis for developing practical methods for
synthesis of many deterministic programs from declarative specifications.

Acknowledgment. This research was supported by the Collaborative Research Pro-
grams 2012 and 2013, Information Initiative Center, Hokkaido University, and by the
National Research University Project of Thailand Office of Higher Education Commis-
sion.

REFERENCES

[1] L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1986.

[2] K. Ueda, Guarded Horn Clauses, Ph.D. Thesis, University of Tokyo, Japan, 1986.

[3] K. Akama and E. Nantajeewarawat, Formalization of the equivalent transformation computation
model, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.10, no.3,
pp.245-259, 2006.

[4] K. Akama, Declarative semantics of logic programs on parameterized representation systems, Ad-
vances in Software Science and Technology, vol.5, pp.45-63, 1993.

[5]

[10]

[11]

DETERMINISTIC-RULE PROGRAMS ON SPECIALIZATION SYSTEMS 1667

K. Akama, H. Koike and H. Mabuchi, Equivalent transformation by safe extension of data structures,
Lecture Notes in Computer Science, vol.2244, pp.140-148, 2001.

E. Nantajeewarawat and V. Wuwongse, Defeasible inheritance through specialization, Computational
Intelligence, vol.17, no.1, pp.62-86, 2001.

V. Wuwongse and E. Nantajeewarawat, Declarative programs with implicit implication, IEEE Trans-
actions on Knowledge and Data Engineering, vol.14, no.4, pp.836-849, 2002.

V. Wuwongse et al., A data model for XML databases, Journal of Intelligent Information Systems,
vol.20, no.1, pp.63-80, 2003.

K. Akama and E. Nantajeewarawat, State-transition computation models and program correctness
thereon, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.11, no.10,
pp-1250-1261, 2007.

K. Akama, E. Nantajeewarawat and H. Koike, Program generation in the equivalent transformation
computation model using the squeeze method, Lecture Notes in Computer Science, vol.4378, pp.41-
54, 2007.

J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer-Verlag, 1987.

