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ABSTRACT. Effective traffic management has always been one of the key considerations
in datacenter design. It plays an even more important role today in the face of in-
creasingly widespread deployment of communication intensive applications and cloud-
based services, as well as the adoption of multipath datacenter topologies to cope with
the enormous bandwidth requirements arising from those applications and services. Of
central importance in traffic management for multipath datacenters is the problem of
timely detection of elephant flows — flows that carry huge amount of data — so that the
best paths can be selected for these flows, which otherwise might cause serious network
congestion. In this paper, we propose FuzzyDetec, a novel control architecture for the
adaptive detection of elephant flows in multipath datacenters based on fuzzy logic. We
develop, perhaps for the first time, a close loop elephant flow detection framework with
an automated fuzzy inference module that can continually compute an appropriate thresh-
old for elephant flow detection based on current information feedback from the network.
The novelty and practical significance of the idea lie in allowing multiple imprecise and
possibly conflicting criteria to be incorporated into the elephant flow detection process,
through simple fuzzy rules emulating human expertise in elephant flow threshold classi-
fication. The proposed approach is simple, intuitive and easily extensible, providing a
promising direction towards intelligent datacenter traffic management for autonomous
high performance datacenter networks. Simulation results show that, in comparison with
an existing state-of-the-art elephant flow detection framework, our proposed approach can
provide considerable throughput improvements in datacenter network routing.
Keywords: Datacenters, Traffic management, Fuzzy logic

1. Introduction. Endowed with a precise mathematical formalism to accommodate un-
certainty or resolve conflict arising from impreciseness and ambiguity, fuzzy logic enables
approximate reasoning [1, 2, 3] that entails drawing inferences from fuzzy rules emulating
human judgments based on domain expert knowledge. This human-like reasoning capabil-
ity makes it particularly attractive for addressing engineering application problems, where
it is impractical or impossible to precisely assess a situation in which the information ac-
cessible for quality decision making is inherently ambiguous or conflicting. Applications
of fuzzy logic include medical decision supports [4, 5, 6], bioinformatics [7], finance [8, 9]
and planning and management [10, 11]. In this paper, we present a novel application of
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fuzzy logic to intelligent traffic management of datacenter networks — a problem of central
importance in today’s ubiquitous cloud computing environments.

In coping with the increasingly enormous bandwidth demands arising from scientific
computing [12], communication intensive cloud-based services [13] and web search en-
gine applications [14], new datacenter network designs with multiple paths between pairs
of sources and destinations have been proposed to replace conventional hierarchical tree
topologies [15]. The basic premise is that if flows can be distributed proportionally among
available paths then hosts can communicate with other hosts at the maximum speed of
their network interface cards (NICs), maximizing the aggregate bisection bandwidth [16].
Newly proposed architectures, such as Fat-tree [16], HyperX [17] and Flattened Butterfly
[18], have been shown to provide much higher aggregate bisection bandwidth than con-
ventional tree architectures, provided fine-grained routing techniques are employed for
load balancing and distributing flows among available paths [19].

Until recently, static routing techniques, of which the most popular one is ECMP (Equal
Cost Multipath) [20], are employed in multipath datacenters for load balancing. ECMP
is an oblivious routing technique, which distributes flows using only flow hashing. It is
simple to implement, requires low computational effort, and can deliver high aggregate
bisection bandwidth when flows are uniform in size [21]. However, using ECMP, problems
arise when flow sizes vary, which is often the case in datacenter traffics [22]. In this case,
a relatively small number of elephant flows — flows that carry huge amount of data — often
carry a large fraction of datacenter traffics [22]. Without considering flow size and the
current network utilization, ECMP may inadvertently place two elephant flows onto the
same congested path in the network, creating unnecessary long-lived collision.

To remedy ECMP but still retain its useful features, an intuitive approach is to only
use EMCP to route non-elephant flows. Elephant flows would then need to be detected as
soon as possible upon entering the network, and routed dynamically based on the current
network utilization. In implementing this approach, however, a challenging problem is
how to detect elephant flows in a timely manner. Detecting elephant flows too late may
create unnecessary network congestion since ECMP might have already been inadvertently
used to route them. This problem is further exacerbated by the lack of preciseness in the
definition of elephant flows, namely, how big and when is a flow size considered “elephant”?
As a simple illustration, if a network has a current bandwidth capacity of 100 Gbps, a
1 GB flow might be safely classified as “non-elephant”, but if the same network has a
bandwidth capacity of only 1 Gbps remaining, possibly due to high network utilization,
a 1 GB flow should be better treated as “elephant”.

Against this background, this paper develops a simple, yet effective fuzzy inference
architecture called FuzzyDetec to tackle the challenging problem of timely detection of
elephant flows. Through an innovative application of fuzzy logic, we demonstrate the
role of incorporating human expertise and judgments as fuzzy rules to handle the impre-
ciseness of flow size classification for elephant flow detection, and propose a close loop
control framework for the adaptive detection of elephant flows. The proposed approach
is simple, intuitive and easily extensible, providing a promising direction towards intel-
ligent datacenter traffic management for autonomous high performance datacenter net-
works. Importantly, over Mahout [23], an existing state-of-the-art elephant flow detection
framework, we experimentally show that FuzzyDetec can provide considerable throughput
improvements in datacenter network routing.

To the best of our knowledge, this paper presents perhaps the first attempt that applies
fuzzy logic reasoning to intelligent traffic management of datacenter networks. Apart
from our work, to date, fuzzy logic has surprisingly found little application in the field
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of datacenter networks, other than managing virtual computing resources in datacenters
[24, 25] and selecting one from multiple datacenters to service applications [26].

The rest of the paper is organized as follows. Section 2 presents the motivation and
main contributions of our work. In Section 3, we review relevant background and related
work in datacenter network topologies, routing and traffic management. We then present
the design of FuzzyDetec in Section 4. In laying a clear and uncluttered research foun-
dation for FuzzyDetec, only the most basic and fundamental concepts and techniques in
fuzzification, fuzzy inference and defuzzification are presented in this paper. To make
this paper self-contained, these concepts and techniques are briefly reviewed in Section
4 as necessary. In Section 5, we experimentally evaluate FuzzyDetec. Finally, Section 6
concludes the paper.

2. Motivation and Contributions. Our research is performed within the increasingly
popular model of simple-switch /smart-controller datacenter, as proposed in the OpenFlow
framework [27]. Within this model, non-elephant flows are handled by the state-of-the-art
routing mechanism using ECMP modules implemented at every switch in the network,
while notifications of elephant flow detections are directed to a center controller, which
dynamically computes the best paths for these flows based on the current network utiliza-
tion. In order to do so, the center controller is connected to all switches in the network
and can poll statistics to estimate buffer and link utilizations as well as receive elephant
flow notification.

Existing approaches in detecting elephant flows can be broadly classified as using one
of the following strategies:

1. Modify and enable applications to identify whether their flows are elephants [28].

2. Use switches to maintain per-flow statistics, and the center controller to periodically
poll these statistics and identify a flow as elephant when some statistical conditions
are met [21].

3. Use the center controller to sample packets from individual switches and identify a
flow as elephant after it has seen a sufficient number of packet samples from the flow
[29].

4. Use every end-host to monitor the number of bytes in its buffer for every flow and
identify a flow as elephant as soon as the number of bytes in its buffer is greater
than a threshold that is set [23].

Modifying existing applications and forcing new applications to incorporate features
to detect elephant flows, as proposed in the first strategy, are often impractical [23].
Polling per-flow statistics and sampling packets from switches, as proposed in the sec-
ond and third strategy, respectively, incur high monitoring cost for the center controller,
consume significant network communication bandwidth and switch resources, and might
require long detection time. An elephant flow detection architecture called Mahout [23]
has been developed to implement the fourth strategy. Compared with the rest, the work
is promising for its demonstrated merits of shorter detection time, low monitoring cost
and low consumption of switch resources, laying a good foundation for datacenter traffic
management. However, Mahout is essentially an open loop architecture, without an au-
tomated decision-making module that can continually compute an appropriate threshold
for elephant flow detection based on information feedback from the network. This is a key
limitation of Mahout for continuous datacenter operation. Besides, threshold setting faces
a dilemma: on the one hand, setting a threshold that is too low will cause too many flows
to be recognized as elephants, overloading the center controller with tasks of computing
paths for these flows; on the other hand, setting a threshold that is too high will cause too
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many flows to be recognized as non-elephants, possibly creating long-lived but actually
avoidable collisions in the network when only ECMP is deployed to distribute them.

We assert that a threshold for use in elephant flow detection algorithms should be
dynamically set, based on important criteria such as current network utilization and center
controller load. If network utilization is already high, for example, the cost incurred for
dynamically routing elephant flows might exceed the benefits gained since there might be
no path that could accommodate the flows. In this case, a large threshold value should be
set, so that less flows are identified as elephant flows. Similarly, if the center controller is
lightly loaded, it should consider more flows for routing instructions, and a small threshold
value should be set.

Without a suitable formalism, incorporating the abovementioned criteria in threshold
setting for elephant flow detection is difficult. This is because, being based mostly on
human expertise and judgments, firstly, describing the problem in terms of the criteria
and threshold decisions to take are imprecise or vague. Such vagueness of description
arises in general due to fuzziness [1] in the semantic meanings of events and phenomena.
For example, statements such as “current network utilization is high”, “current controller
load is low”, “set a large elephant flow detection threshold” and “this flow is elephant”
are vague because the meanings of high, low, large and elephant (or non-elephant) are
not precise and depend on context. In datacenter operations, this context is characterized
by the bisection bandwidth capability of the datacenter network, the computational ca-
pability of the center controller and the characteristics of the datacenter traffic patterns.
Secondly, the criteria could be conflicting with each other. For example, when network
utilization is high and controller load is low, it is hard to decide whether a low or a high
threshold value should be set, since the former condition implies a high threshold setting
while the latter implies a low threshold setting.

In an application context where criteria cannot be sharply defined, fuzzy logic provides
a powerful conceptual formalism for reasoning, learning and decision making. The theory
has been demonstrated to be effective in handling multiple conflicting criteria as well
as their vagueness in a natural way [1]. In this paper, we propose a fuzzy logic based
architecture called FuzzyDetec. The architecture closes the elephant flow detection loop in
Mahout with a fuzzy logic inference module resident in the center controller. The module
reasons based on simple fuzzy rules incorporating datacenter network criteria in a manner
emulating human expertise, and computes appropriate elephant flow threshold decisions in
accordance to information feedback on current network conditions. This threshold, which
is communicated by the center controller to every end-host for elephant flow detection,
is an aggregation of various criteria related to the current network environment. As an
illustration, we present and justify several rules for setting a threshold value based on
current network utilization and current controller load, and evaluate our approach with
extensive simulations.

In equipping the center controller with a fuzzy logic inference module for automatically
computing appropriate thresholds for elephant flow detection, we overcome Mahout’s
key limitation of an open loop architecture that only allows some pre-determined, static
value for the elephant flow threshold. Closing the elephant flow detection loop, as in
FuzzyDetec, is an essential step towards fully automating datacenter network operations.
And, to the best of our knowledge, this work is the first attempt on classifying flows based
on current datacenter network conditions. Since different treatments of elephant flows are
certainly needed for different network conditions, we believe this is a promising direction
for improving the performance of datacenters. Importantly, the proposed approach of
using fuzzy logic based elephant flow detection is simple and intuitive, allows multiple
criteria to be flexibly incorporated in the detection process, and is easily extensible.
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3. Background and Related Work.

3.1. Multipath topologies. Traditionally, datacenter topologies are hierarchical trees
with a layer of racks of hosts at the bottom, with all hosts in a rack connecting directly
to a Top of Rack (ToR) switch, and a layer of core switches at the top. ToR switches are
connected to aggregation switches, and these switches are aggregated further, connecting
to core switches [15]. Moving up the hierarchy, ToR switches are the smallest and cheapest
with the lowest speed, while core switches are the densest in port numbers and most
expensive, and have the highest speed (see Figure 1).
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FIGURE 1. A conventional network topology for datacenters

Due to the high costs of port-dense and high speed switches, the over-subscription ratio!
increases rapidly as we go up the hierarchy. At the bottom level, hosts typically have 1:1
over-subscription to other hosts in the same rack, allowing them to communicate intra-
rack at the maximum speed of their NICs. However, up-links from ToRs over-subscription
ratios are typically 1:5 to 1:20, and paths through the core switches can be 1:240 over-
subscribed [30]. These large over-subscription ratios severely limit the communication
bandwidth between hosts in different racks [30].

With the increasing deployment of communication intensive applications and cloud-
based services in datacenters, new topologies, such as Fat-tree [16], HyperX [17] and
Flattened Butterfly [18], are proposed to cope with the enormous bandwidth demands.
Fat-tree topology [16], for example, enables commodity switches to be connected in a
manner that maintains 1:1 over-subscription across the whole network, allowing hosts to
potentially communicate with other arbitrary hosts at the maximum speed of their NICs
(see Figure 2).

One common feature of the newly proposed datacenter topologies is that they are
all designed with multiple data paths with equal length between every pair of source
and destination switches, providing the possibility for managing network congestion and
maximizing aggregate bisection bandwidth. To extract the best aggregate bandwidth
from these multipath topologies, fine-grained routing techniques must be designed for load
balancing, namely, distributing flows among available paths so that none of these paths
are overloaded while others are underloaded. Traditional shortest path routing protocols,
such as OSPF [31], are not suitable for this purpose since they might concentrate traffics
going to a given destination in a single port of an aggregation switch and a single port of
a core switch, even though other choices exist, causing avoidable network congestion [21].

LOver-subscription ratio is the ratio of the worst-case achievable aggregate bandwidth among end-hosts
to the total bisection bandwidth of a particular network topology.
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FIGURE 2. A 4-array fat-tree topology for datacenters. In a k-array fat-tree
network there are 5k%/4 identical k-port switches, with k%/4 core switches
and the remaining k? switches are organized into k pods, each of which
contains one layer of k/2 aggregation switches and one layer of k/2 edge
switches. In each pod, each k-port edge switch is connected to k/2 hosts
and k/2 aggregation switches in the same pod. The remaining k/2 ports
of each aggregation switch is connected to k/2 core switches in an order
similar to the one shown in the figure. By scarifying compact wiring, a
fat-tree network ensures that the number of input links to any switch is
equal to the number of links going out of it, thereby maintaining 1:1 over-
subscription ratio across the whole network and allowing hosts to potentially
communicate with arbitrary other hosts at the full speed of their NICs. See
[16] for a detailed discussion of fat-tree topology.

3.2. Static vs. dynamic routing. In one extreme, load balancing can be done with
minimal computational efforts using ECMP [20], a static, oblivious routing technique.
In essence, an ECMP-enabled switch is configured with multiple paths for a given desti-
nation. When a packet with multiple candidate paths arrives, it is forwarded to a path
that corresponds to a hash of selected fields in the packet header, modulo the number
of paths. In this way, flows between a pair of source and destination switches are split
across multiple paths. ECMP works well when flows are small and uniform in size [21].
When elephant flows are present, however, its key limitation is that two elephant flows
might collide in their hash and route through the same path in the network, resulting in
long-lived congestion.

In the other extreme, load balancing can be done in a completely dynamic fashion, with
every new flow placed in the best path selected online by a routing algorithm, taking into
account the current utilization of every link and buffer in the network. Such a routing
algorithm is often run by a center controller, which is connected to all switches and can poll
statistics from them to estimate the utilization of every link and buffer. This approach,
however, requires high computational efforts and introduces unacceptable setup delays
for latency-sensitive flows, such as those generated from interactive applications [21, 23].

Modern datacenter routing mechanisms for multipath topologies often combine both
static and dynamic routings: Paths for elephant flows are computed online, while paths for
non-elephant flows are selected using ECMP. It has been shown [21] that by detecting and
dynamically placing elephant flows in carefully selected paths based on current network
utilization, as much as 113 % higher aggregate throughput can be achieved as compared
to using ECMP alone.

3.3. Elephant flow detection. Of central importance to effectively select and deploy
routing algorithms for multipath topologies is the problem of timely detection of elephant
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flows. Curtis et al. [23] propose Mahout, an architecture for end-host based elephant flow
detection which has proven to be superior to previous approaches [21, 29] in terms of early
detection and low computational overload. The Mahout architecture, which subscribes
to the popular simple switch/smart controller model as proposed in OpenFlow [27], is
shown in Figure 3. In this architecture, end-hosts are responsible for the timely detection
of elephant flows and a center controller connecting to every switch in the network is
responsible for computing the best paths for newly detected elephant flows. An end-host
detects elephant flows through what is called a shim layer implemented in its network
stack, enabling the host to monitor the socket buffer of every flow originating from it.
An end-host will identify a flow as an elephant as soon as the number of bytes in its
buffer is greater than a threshold. Once an end-host detects an elephant flow, it sets the
Differentiated Services (DS) Field bits of every packet in this flow to 00001100, to inform
the edge switch that is directly connected to it (see Algorithm 1). The edge switch notifies
the center controller of the arrival of a new elephant flow, which in turn computes the
best path for this elephant flow, and installs flow-specific routing entry to every necessary
switch in the network.

Algorithm 1: Pseudo-code for end-host shim layer

begin
When sending a packet, if rhe number of bytes in buffer = T hreshold then
| Mark the packet as belonging to an elephant flow by setting its DS bit to 00001100;

However, a key limitation of Mahout for continuous datacenter operation is that it
is essentially an open loop architecture, without an automated decision-making module
that can continually compute an appropriate threshold for elephant flow detection based
on information feedback from the network. Besides, threshold setting faces a dilemma:
on the one hand, setting a threshold that is too low will cause too many flows to be
recognized as elephants, overloading the center controller; on the other hand, setting a
threshold that is too high will cause too many flows to be recognized as non-elephants,
resulting possibly in long-lived but actually avoidable collisions in the network.
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4. Fuzzy Logic Based Elephant Flow Detection. The proposed FuzzyDetec archi-
tecture is shown in Figure 4. In FuzzyDetec, the center controller is equipped with a fuzzy
logic inference module that computes appropriate values for the elephant flow threshold
based on current network conditions. It then communicates the computed value to every
end-host in the datacenter which in turn inputs the new threshold value to Algorithm
1 for elephant flow detection. In equipping the center controller with a fuzzy logic in-
ference module for automatic elephant flow threshold computation based on information
feedback on current network conditions, we close the control loop in Mahout, an essential
step towards fully automating datacenter network operations.

In the following, we describe the design of the fuzzy logic inference module. We present
how Threshold can be determined based on the current network utilization cur NetUtil,
and the current controller load curCtrload. The approach can easily be extended to
incorporate new criteria other than network utilization and controller load.

4.1. Linguistic variables and membership functions. Ordinary Boolean logic deals
with exact reasoning where a variable can only take a value of either true or false. Fuzzy
logic is an extension of Boolean logic to deal with approximate reasoning. This is achieved
by introducing linguistic variables that can take numerical values, and associating each of
these variables with a collection of linguistic values. A linguistic value represents what is
called a linguistic set containing a subrange of the numerical values defined for a linguistic
variable. Every linguistic value of a linguistic variable is associated with a membership
function that takes values between 0 and 1, denoting the degree that the linguistic value
represents every specific numerical value in the linguistic set (that it represents) for the
variable.

In FuzzyDetec, there are two input linguistic variables curNetUtil and curCtrload,
and one output linguistic variable T'hreshold. The objective of FuzzyDetec is to deduce a
numerical value for Threshold from the numerical values of cur NetUtil and curCtriload.
The numerical values of cur NetUtil and curCtrload are provided by the center controller
and the numerical value of Threshold is deduced by fuzzy inferencing (see Figure 4).

The linguistic variables cur NetUtil and curCtrload can take linguistic values of either
LOW, MEDIUM or HIGH, and Threshold can take linguistic values of either SMALL,
MEDIUM or LARGE. We define the network utilization cur NetUtil as the average of all
link utilizations in the datacenter. The current controller load curCtrload is estimated
by the current number of elephant flows that the center controller has to compute routing

curNetUtilization Threshold
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Controller ; | Inference Engine )l I
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Fuzzy rule base

Fuzzy Logic Inference Module
Q g : a Core Switches vos

Aggregation
Switches

: m u ; : m u ; Edge Applications
W N W RNy

-
RS,

OO0 D COEOEaEd COEaEaE T £ I|:|l\|___|l Mahout Shim layer _

N-—,
End-hosts

An end-host structure

FIGURE 4. FuzzyDetec — A fuzzy logic based elephant flow detection system
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paths for. An example of membership functions for the linguistic values of cur NetUtil,
curCtrload and Threshold is shown in Figure 5.

The shape of a membership function emulates human expertise in a particular appli-
cation context. Membership functions can often be constructed by addressing questions
such as the following: To what degree is a 20% network utilization considered low and
medium? To what degree is a 60% network utilization considered medium and high? By
answering these questions, pairs of numerical values and the degrees that these values are
represented by each linguistic value (low, medium or high) are defined, forming the respec-
tive linguistic sets and corresponding membership functions. The membership functions
can be constructed using curve-fitting methods such as trapezoidal approximation. In
fuzzy logic applications, it is a common practice to use trapezoidal and triangular shapes
for membership functions due to their computational efficiency, such as those presented
in Figure 5; but other shapes can also be used [1].

4.2. Fuzzification and fuzzy rule base. The center controller in FuzzyDetec collects
statistics from switches in the datacenter and estimates numerical values of curNetUtil
and curCtrload. These values are then converted to linguistic sets in a process called
fuzzification. This is done by a procedure called fuzzifier (see Figure 4) that takes the nu-
merical value of a linguistic variable and converts it to a collection of linguistic sets using
the membership functions associated with the linguistic variable. The threshold setting
strategy is expressed in terms of a set of if-then rules that maps linguistic variables to
linguistic variables. These rules are normally constructed by datacenter experts, incorpo-
rating their experiences on classification of elephant flow threshold as small, medium or
large. As an illustration, we present in Table 1 concise threshold classification rules that
essentially map the linguistic values of cur NetUtil and curC'trload to those of Threshold.
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TABLE 1. The rule base for threshold classification

curNetUtil | curCtrload | Threshold

Low Small
Low Medium Small

High Medium

Low Medium

Medium Medium Medium
High Large

Low Medium
High Medium Large
High Large

Intuitively, when the network utilization is already high, it is often hard to find a path
that could accommodate elephant flows. Therefore, we would want to set a large threshold,
so that less flows are identified as elephant. Similarly, if the center controller load is high,
less flows should be directed to it for routing instructions, hence a large elephant flow
threshold should be set. This intuition is expressed by the rule in the last row of Table 1,
namely, if cur NetUtil is HIGH and curCtrload is HIGH, Threshold is LARGE. In the
other extreme and by the same intuition, if the network utilization is low and the center
controller load is low, a small threshold should be set, namely, if cur NetUtil is LOW and
curCtrload is LOW, Threshold is SMALL, as expressed by the rule in the first row of
Table 1.

Other rules in Table 1 can be interpreted similarly. For example, the rule in the third
row of Table 1 states that if curNetUtil is LOW and curCtrload is HIGH, Threshold
is MEDIUM. This rule attempts to balance the two conflicting conditions of requiring a
small threshold setting on the one hand, as prescribed by a low network utilization, and
of requiring a large threshold setting on the other, as prescribed by a high controller load.

4.3. Fuzzy inference. The membership functions associated with linguistic values in
a fuzzy inference system normally overlap. Therefore, several rules typically contribute
to determining the linguistic value of an output linguistic variable. The result of exe-
cuting each if-then rule is a fuzzy linguistic set, which is represented by a membership
function derived from membership functions (for the linguistic values) of the linguistic
variables specified in the if-then rule. Fuzzy linguistic sets need to be aggregated into a
final linguistic set through a process called fuzzy inference. This is done by aggregating
membership functions of individual linguistic sets to arrive at a final membership function
representing the final linguistic set. This final linguistic set is then mapped into a specific
numerical value of the output variable by applying an operator called “defuzzification”
on its membership function (see Figure 4).

Key to the fuzzy inference process is how linguistic sets of fuzzy if-then rules are de-
termined and aggregated. In fuzzy set theory [1], there are altogether eight important
considerations for designing the output linguistic sets of fuzzy if-then rules and the ag-
gregation operators. These considerations have led to the development of standard ways
to implement the fuzzy inference process. A detailed discussion of this development is,
however, outside the scope of this paper.

Let x, y, z be three linguistic variables and A, B, C be three linguistic values associated
with them in order. In the following, we briefly describe how the fuzzy rule “if x is A and
y is B then z is C” is normally realized in fuzzy logic applications.
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Let p4, g, ptc be membership functions associated with the linguistic values A, B and
C, and zy and yy be numerical values of  and y, respectively. The fuzzy statement “if x
is A and y is B” is often realized by a minimum operator on the membership functions,
namely, it is interpreted as the crisp value Z° = min(pu4 (o), u(yo)). The linguistic set
of the rule “if x is A and y is B then z is C” is then defined by the membership function
per(2) = min(Z2°, pe(2)).

If there are several rules, each rule is evaluated individually using the minimum operator
as described above, and their results are aggregated using a maximum operator on the
membership functions obtained for the individual rules. The overall result is a membership
function representing the final linguistic set, aggregating individual linguistic sets.

The inference procedure described is called “min-max”, referring to operators applied
on membership functions. Other inference procedures can also be used. For example, the
algebraic product operator can be used in place of the min operator and the algebraic sum
operator can be used in place of the max operator, resulting in a “product-sum” inference
procedure. Combinations of these operations, such as “min-sum” and “product-max”,
are also possible. In FuzzyDetec, we implement the fuzzy inference process using the
“min-max” procedure.

4.4. Defuzzification. Fuzzy inference in FuzzyDetec results in a linguistic set of the
linguistic variable Threshold. This linguistic set is represented by a membership func-
tion. To compute a numerical value of the elephant flow threshold for the end-hosts, the
linguistic set obtained must be converted to a numerical value. This is done by applying
a “defuzzification” operator on a linguistic set of T'hreshold. Defuzzification methods are
often developed based on heuristic ideas, such as “taking the value that corresponds to
the maximum membership” or “taking the value that is at the center of two peaks”. They
can also be derived through rigorous analysis processes, such as fuzzy linear programming
or multi criteria analysis [1].

In the literature, the most common method used in defuzzification is the Center of
Gravity method. This method computes a numerical value for the threshold from a
linguistic set T as follows.

[ Tup(r)dr
S wr(r)T
where pi7 is the membership function representing the linguistic set 7.

Other methods for defuzzification include the “Max Criterion” method, the “Mean
of Maxima” method and the “Bisector of Area” method [1]. In comparison with other
methods, the Center of Gravity method has one important advantage of guaranteeing
that every if-then rule contributes to determining the final output. In this paper, we use
the Center of Gravity method for defuzzification in FuzzyDetec.

threshold =

4.5. Discussion.

4.5.1. Dynamic routing algorithms. Once presented with a set of elephant flows, there
are several ways for the center controller to compute and allocate paths to these flows.
Correa and Goemans [32] propose an increasing first fit algorithm, which allocates the
least congested path among possible paths to elephant flows, one at a time in a decreasing
order of flow rates. Al-Fares et al. [21] propose two algorithms for computing paths for
elephant flows: one greedily assigns a flow to the first path that can accommodate it and
the other is based on Simulated Annealing [33], a population-based, probabilistic search
algorithm. Either of the algorithms can be incorporated into FuzzyDetec for dynamically
computing paths for detected elephant flows. In a concrete implementation of FuzzyDetec,
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for the purpose of comparison with Mahout, we chose to implement the same algorithm
as used in Mahout, namely, the increasing first fit algorithm proposed in [32].

4.5.2. Threshold communication. The elephant flow detection threshold is updated con-
tinually in response to changes in the values of the network utilization and center controller
load. If every updated value is immediately communicated to the end-hosts, bandwidth
resources might be consumed unnecessarily. To mitigate this problem, the center con-
troller in FuzzyDetec only informs the end-hosts whenever there is a significant change in
the threshold value, such as a change of 10% or more. An alternative is to use in-band
signaling by piggybacking updated threshold values in OpenFlow protocol messages that
the center controller frequently sends to individual switches. Further study is needed to
investigate this alternative.

5. Performance Study. We now experimentally compare the performance of Fuzzy-
Detec with that of Mahout [23] to show the effectiveness of FuzzyDetec in throughput
improvement for datacenter traffic routing. In the following we describe the design of our
simulator, the methodology used to generate simulated traffics and simulation results.

5.1. Simulator. For the same time consuming reason given in [21], it is inefficient to use
existing packet level simulators, such as ns-2, ns-3 or OMNET, for our performance study.
As described therein, for a moderate size fat-tree network of 8,192 hosts, each sending
at 1Gbps, it would take around 71 hours to simulate just one test case of a 60-second
datacenter run.

We designed and implemented an event-based flow level simulator. In our design, a
datacenter network was modeled by a directed graph, with hosts and switches represented
by nodes in the graph and links represented by capacitated edges. All experiments were
run on directed graphs modeling a fat-tree network of 8192 hosts, with all links having
capacity of 1Gbps.

For simplicity and without bias effect on the network throughput performance, we
simulated ECMP by configuring every switch with multiple paths for every destination,
and when a flow with multiple candidate paths arrives at a switch, we forwared the flow
to a path selected randomly from the candidate paths.

Whenever a flow starts or completes, the simulator recomputes the rate of each flow.
Similar to the idea described in [21], the rate is regulated by TCP.

Like [23], we model the OpenFlow protocol by only accounting for the time delay that
a switch incurs in notifying the center controller of a new elephant flow and receiving
a routing table entry setup from the center controller in turn. This is done by setting
up a 10Mbps link (a typical bandwidth of OpenFlow links) between the center controller
with every switch in the network and assuming that a notification message of 1500 bytes
(the maximum transfer unit of Ethernet) is sent from a switch to the controller on this
link whenever the switch needs to inform the center controller of the presence of a new
elephant flow. A routing table entry setup message of 1500 byptes is then sent back from
the center controller to the switch on the same link. Other times consumed in computing
paths for elephant flows and setting up routing table entries are ignored. As a result, it
is likely that an OpenFlow datacenter implementing our FuzzyDetec module will perform
worse than predicted by our simulator in terms of throughput. However, this reduction
in throughput performance is mostly attributed to the detailed implementation of the
OpenFlow protocol and dynamic routing algorithms used by the center controller, and
not the design of our fuzzy logic inference module.
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5.2. Traffic patterns. In the absence of data on commercial datacenter network traces,
the nature of datacenter traffics is not completely understood. As a result, generating sim-
ulated traffics to evaluate the performance of datacenters has always been challenging. In
the literature, traffics are often generated from either synthetic communication patterns,
or application-specific communication patterns such as those generated by MapReduce
or scientific computing applications. However, both synthetic and simulated application-
specific communication patterns are not guaranteed to be representative of datacenter
traffics, which are often composed of traffics from a variety of distributed applications
[34].

Recent work [22, 30| has attempted to empirically capture both macroscopic and micro-
scopic measurements of datacenter traffics. The former specifies which hosts communicate
with which other hosts and when, while the latter characterizes the distributions of data-
center flows’ statistics such as durations, sizes, and inter-arrival times. At the macroscopic
level, Kanula et al. [22] observe that within a rack, a host communicates either with all
other hosts or less than 25% of the total number of hosts. Furthermore, a host either
does not communicate with other hosts in different racks, or communicate with 1-10% of
them. At the microscopic level, it is reported [22, 30] that 90% of flows carry less than
1MB of data and more than 90% of bytes transferred are in flows of sizes greater than
100MB.

To incorporate recent research results on the nature of datacenter traffics into our perfor-
mance study, we generated the simulated traffics as follows. The traffics were generated
as mixtures of application-specific traffics, namely, those generated by the MapReduce
application in its shuffle phase, and other background traffics. To generate MapReduce
traffics, we applied the methodology presented in [23]. Therein, each host sends 128 MB
to every other host during MapReduce’s shuffle phase. A host does so by simultaneously
transferring five flows, each of size 128MB, to five other hosts; and once one of these
flows is completed, it will start transferring another 128 MB flow to one of the remaining
hosts. The order in which a host is selected for receiving simulated MapReduce traffics is
uniformly random. Other background traffics were generated following the macroscopic
and microscopic measurements reported in [22, 30].

5.3. Simulation methodology and performance metrics. For each experiment, we
generated traffics as described in the previous section, and performed traffic routing in
Mahout and FuzzyDetec separately. In each experiment, MapReduce traffics generation
was started only five minutes after background traffics generation, to allow the background
traffics to reach a somewhat steady state. To track the performance of Mahout and
FuzzyDetec, we aggregated the throughputs of all flows in each experiment, and recorded
the average throughput of 50 experiments for each architecture.

5.4. Membership functions. We used standard trapezoidal and triangular shapes for
the membership functions of curUtil, curCtrload and Threshold in FuzzyDetec and put
them in different configurations, as presented in Figure 6. The membership functions
associated with curUtil are characterized by four parameters xy, x1, x5 and x3. Similarly,
those of curCtrload and Threshold were characterized by v, y1, ¥2, y3 and 2q, 21, 22, 23,
respectively. For each set of specific values of z;, y; and z; (0 < i < 3), we have a specific
configuration of membership functions for curUtil, curCtrload and Threshold.

5.5. Results.

5.5.1. Throughput performance. We compared the throughput performances of using EC
MP alone, using Mahout and using FuzzyDetec. We used five different thresholds for
Mahout, namely, 128 KB, 1MB, 20MB, 50MB and 100MB, and different configurations of
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membership functions for FuzzyDetec as described in the previous section. The center
controller in FuzzyDetec only informs the end-hosts whenever there is a change of 10%
or more in the threshold value. Figure 7 summarizes the representative results for three
different configurations of membership functions for FuzzyDetec, as detailed in Table 2.
As can be seen from Figure 7, the throughput performance of Mahout is dependent on
the chosen threshold value. Setting a threshold too low (i.e., 128KB in our experiment) or
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TABLE 2. Parameter configurations for membership functions of curUtil,
curC'trload and Threshold

Utilization in % | No. of flows in thousands | Threshold in MB

Configuration | zg | x1 | T2 | 23 | Yo Y1 Yo Y3 20 | 21| 22| 23
1 20140 60| 80 | 100 | 200 | 700 | 800 |0.5] 1 [20| 50

2 30145 175| 90 | 200 | 400 | 800 | 900 1 {20]50]| 80

3 40149190 | 99 | 200 | 600 | 600 | 900 | 20 | 50|80 | 99
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2973

S000 + TR05
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2010 m 5%
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10601 2772

0 + 1 T i

1 3 4 5

value is updated

Number of times the threshold

Configurations of membership functions experimented with in
FuzzyDetec (with 1, 2 and 3 presented in Table 2)

FIGURE 8. Number of times the threshold value is updated and the
throughput (in Gbps) achieved (indicated on top of each bar) for each
threshold change-setting of at least 5%, 10% and 20%

too high (i.e., 100MB in our experiment) will reduce throughput performance of Mahout
significantly, to almost that of using ECMP alone.

As expected, FuzzyDetect performed better than Mahout in all cases. This increase in
performance is attributed to both the intelligent fuzzy rules implemented in FuzzyDetec
(see Table 1) and the shapes of the membership functions for curUtil, curCtrioad and
Threshold. To confirm this, we repeated our experiments with arbitrary, non-standard
membership functions for curUtil, curCtrload and Threshold in FuzzyDetec, and found
that in some extreme cases, the throughput performance was reduced significantly, and
could be even worse than that of using ECMP alone. Using arbitrary non-intelligent rules
also produced the same negative outcome.

5.5.2. Control overhead. We examined the communication overheads versus performance
tradeoffs of FuzzyDetect, by counting the number of times the threshold value changed
by at least 5%, 10% and 20% for different configurations of membership functions, and
recording the throughput achieved for each such threshold-change setting. The number of
times the threshold value changed as set indicates how many threshold update messages
the center controller in FuzzyDetect needed to communicate to the end-hosts. The results
are presented in Figure 8. Not unexpectedly, the higher the threshold-change setting,
the lower the communication overheads. It can also be inferred from Figure 8 that the
throughput performance can be improved, but at the expense of higher communication
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overheads. Finally, we note that the throughput performance for all the configurations
considered was better than that of Mahout depicted in Figure 7.

6. Conclusion. Timely detection of elephant flows is essential for selecting and deploy-
ing routing algorithms for datacenter networks with multipath topologies. In this paper,
we have proposed FuzzyDetec, a novel close loop control architecture for the adaptive
detection of elephant flows. By using fuzzy inference rules to intelligently incorporate
human expertise and judgments in classifying elephant flow thresholds, FuzzyDetec is
practically simple but crucial towards making feasible the autonomous operation of high
performance end-host based elephant flow detection in datacenter networks. Our exper-
imental results show that, over a well-known state-of-the-art architecture called Mahout
[23], FuzzyDetec can achieve considerable improvement in throughput performance.

In conclusion, FuzzyDetec provides a new intelligent framework for datacenter network
designers on the one hand, and serves as an important emerging application for fuzzy
systems researchers on the other. The framework development is systematic, and is cur-
rently based on the most fundamental theory of fuzzy systems [1]. In future work, the
framework would benefit from more advanced treatments in fuzzy systems, such as in-
corporating data mining techniques for efficient design of fuzzy inference rule sets [35],
using probabilistic reasoning for automated selection of fuzzification schemes [36], and
managing membership functions actively to enable robust on-line self-adaptation of fuzzy
controllers [37]. We believe FuzzyDetec opens up rich opportunities for further theoretical
and practical investigation.
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