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Abstract. Based on the calculus of variation, an optimal switching control problem
for switched autonomous systems with time-delay is studied. The switching times in a
sequence of fixed vector fields are the sole control variables and the subsystems do not
require a refractory period, which can bring more generality. The analytic expressions for
the partial derivatives of the given performance cost with respect to the control variables
are derived. Furthermore, necessary conditions for a stationary solution are obtained for
the switched delay systems with separable modes. Finally, the efficiency and effectiveness
of the proposed method are demonstrated by two examples.
Keywords: Optimal control, Switched systems, Time-delay, Calculus of variation

1. Introduction. A switched dynamic system is a particular kind of hybrid system that
consists of several subsystems and a switching law specifying the active subsystem at
each switching instant. Such systems arise in a variety of applications, including power
systems, industrial process control, automotive systems, and networked control systems
[1-7].

As the wide applications of switched systems, many results for the stability analysis
and controller design have appeared in the literature [8-11]. In some practical problems,
some performance should also be considered. Due to the problems’ significance in theory
and application, recently, considerable research efforts have been made for the optimal
control of switched systems. Many of them concern the problems whose control variables
consist of a proper switching law and the input u(t) [3,8]. However, a more special class
considers autonomous systems where the term u(t) is absent, the modes sequence is fixed
and the switching times are the only control variables [13-15].

Most of the approaches in the literature are based on discretization method, which
may lead to computational combinatoric explosions and the obtained solutions may not
be accurate enough. Without using the discretization method, [14] formulates an opti-
mization problem in terms of minimizing a cost functional defined on the states dependent
on the switching times. In that work, the gradient formula of the cost with respect to
the switching times is derived and can be applied in various nonlinear programming al-
gorithms. Further, [15] considers a similar problem, and develops an especially simpler
formula, which leads itself to be directly used in conjunction with various gradient descent
algorithms.
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The above existing results are focused on switched systems without time-delay, but
time-delay is often encountered in a variety of practical systems and often sources of
instability and poor performance in systems. Therefore, the study of the switched systems
with time-delay has penetrated into various branches, such as passivity and passification,
stability analysis and controller design, H∞ filtering problem, optimal control and the
references therein [16-21]. It is worth noting that the switching times are not regarded as
control variables among these results.
In addition, it should be noted that the optimal switching problem bears some relation

to the optimal impulsive control problem [22,23]. In [22], the optimal impulsive control
problem for a single delay system is studied. It is assumed that the considered systems
all have a refractory period, in the sense that once an action is taken, it takes a non-
infinitesimal amount of time before a subsequent action can be taken. Consequently, the
optimal sequence no longer follows from the solution of the fixed sequence problem. [23]
considers a similar problem, it can overcome the assumptions that the systems all require
a refractory period, and hence brings more generality.
In this paper, we extend the results of [15] to a class of time-delay systems. Here, the

systems do not require a refractory period. This problem has been rarely studied since
the presence of delay makes the problem much more complicated. Meanwhile, its presence
adds a nontrivial twist to the original problem posed in [14].
The main contribution is that for the switched delay systems with separable modes, us-

ing calculus of variations [24], we derive the analytic expressions for the partial derivatives
of performance cost with respect to switching times. The paper is organized as follows.
Section 2 formulates the problem and presents the notations. For switched delay systems
with separable modes, Section 3 derives the necessary conditions for a stationary solution
via classical variational methods. Two examples prove the feasibility of the proposed
method in Section 4. Finally, Section 5 states the conclusions and discussions.

2. Problem Formulation. Consider a system with a single time-delay τ . Following
the standard notation in [25], denote xt = {x (t+ θ) |−τ ≤ θ ≤ 0}. In this paper, the
discussed dynamical system is a switched autonomous delay system with a fixed sequence
of vector fields: fi (xt), i = 1, · · · , N . We assume that the state is continuous at switching
times. The switching instants are the sole control variables.
The problem is to determine these switching times control variables such that the

performance cost

J =

∫ TN

T0

L (x, ξ) dt+
N∑
i=1

Φi

(
x (Ti) , {Tj}Nj=1

)
(1)

is minimized for a fixed initial time (T0 = 0) and terminal time (TN = T ). Here, ξ (t) is a
discrete state, taking values in the finite set Ξ = {1, · · · , N} and denoting the operating
mode at time t. Φi, i = 1, · · · , N are switching costs associated with the control.

3. Variational Approach to Optimal Switching. Note that the above problem is
actually a multivariable parameter optimization problem. However, solving it requires
the explicit solution of the state equations, which are dependent on the switching times
Ti, i = 1, · · · , N . We, therefore, solve the problem by classical variational methods.
For simplicity, we consider the separable modes systems with one time-delay:

ẋ (t) = fi (x (t)) + gi (x (t− τ)) , Ti−1 ≤ t ≤ Ti (2)
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Setting L (x, ξ (t)) = Li (x) in the interval (Ti−1, Ti), then the performance cost (1)
expands to:

J =
N∑
i=1

∫ Ti

Ti−1

Li (x (t)) dt+
N∑
i=1

Φi

(
x (Ti) , {Tj}Nj=1

)
(3)

For this, we will firstly analyze the cost variation between two systems: an “unper-
turbed” system x with nominal switching times Ti and a “perturbed” system x̃ for which
arbitrary, independent perturbations ε are added to the control variables, i.e., Ti → Ti+εθi
with ε → 0.

Figure 1. Compared trajectories

Figure 1 shows how x and x̃ differ, with a focus on intervals (Ti, Ti + εθi) and (Ti + τ, Ti

+τ + εθi). Outside these intervals, the variation is continuous and ε-small, we write
x̃ (t) = x (t) + εη (t). The following equations describe the differences between the two
systems:
1) t ∈ (Ti, Ti + εθi),

ξ (t) = i+ 1

ξ̃ (t) = i

x (t) = x
(
T+
i

)
+O (ε) = x (Ti) +O (ε)

x̃ (t) = x
(
T−
i

)
+O (ε) = x (Ti) +O (ε)

x̃τ (t) = xτ (t) +O (ε) = xτ (Ti) +O (ε)

˙̃x (t) = x
(
T−
i

)
+O (ε)

(4)

2) t ∈ (Ti + τ, Ti + τ + εθi),

ξ (t) = ξ̃ (t) = ξ (Ti + τ)

x̃ (t) = x (t) +O (ε) = x (Ti + τ) +O (ε)

xτ (t) = x
(
T+
i

)
+O (ε) = x (Ti) +O (ε)

x̃τ (t) = x
(
T−
i

)
+O (ε) = x (Ti) +O (ε)

x̃τ (t) = xτ (t) +O (ε) = xτ (Ti) +O (ε)

˙̃x (t) = ẋ
(
(Ti + τ)−

)
+O (ε) = ẋ (Ti + τ) +O (ε)

(5)
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3) otherwise,

ξ̃ (t) = ξ (t)

x̃ (t) = x (t) + εη (t)

x̃τ (t) = xτ (t) + εητ (t)

˙̃x (t) = ẋ (t) + εη̇ (t)

(6)

Since T0 < · · · < TN−1 < TN , there is no overlap between any two sets (Ti, Ti + εθi)
and (Tj, Tj + εθj) as ε → 0. Similar to [25], we assume no overlap between any two sets
(Ti + τ, Ti + τ + εθi) and (Tj, Tj + εθj). Thus, the first equation in (5) does not require

that on (Ti + τ, Ti + τ + εθi), ξ̃ (t) = ξ (t) = i + 1, which means that subsequent switch
happening before Ti + τ (i.e., Ti+1 < Ti + τ) is allowable. In other words, a refractory
period of τ seconds after each switch is not required, as was the case in [22,26,27].
Then, we analyze the induced variation in performance index. Because of the switch, we

adjoin dynamical constraints with a Lagrange multiplier λ (t), defined in the subintervals
between state switches. Moreover, due to the continuity of state a change in Tj will have
an effect on all the modes i > j. Considering the accumulation of effects, keeping track of
all these effects will complicate the derivation [26]. As in [26,27], we adjoin the constraints
x
(
T−
i

)
= x

(
T+
i

)
at the switching times with a sequence of Lagrange multipliers µi.

Hence, assuming optimal switching control variables Ti, i = 1, · · · , N exist, and con-
sidering both the dynamical constraints and the state continuity constraints, the optimal
nominal performance index J̄0 is:

J̄0 =
N∑
i=1

∫ Ti

Ti−1

[
Lξ(t) (x (t)) + λT (t)

(
fξ(t) (x (t)) + gξ(t) (x (t− τ))− ẋ (t)

)]
dt

+
N∑
i=1

[
Φi

(
x (Ti) , {Ti}Nj=1

)
+ µT

i

(
x
(
T+
i

)
− x

(
T−
i

))] (7)

For simplicity, define the Hamiltonian functionals:

Hξ (x, xτ , λ)
def
= Lξ (x) + λT [fξ (x) + gξ (xτ )] (8)

Then, (7) becomes:

J̄0 =
N∑
i=1

∫ Ti

Ti−1

[
Hξ (x, xt, λ)− λT ẋ

]
dt

+
N∑
i=1

[
Φi

(
x (Ti) , {Ti}Nj=1

)
+ µT

i

(
x
(
T+
i

)
− x

(
T−
i

))]
= J̄

(1)
0 + J̄

(2)
0

(9)

Remark 3.1. The expression of the second term J̄
(2)
0 of (9), i.e., switching cost adjoined

with the state continuity constraints obviates the need for computing the perturbations at
switching times.

Similarly, for the perturbed systems, we have:

J̄ε =
N∑
i=1

∫ Ti+εθi
Ti−1+εθi−1

[
Hξ̃ (x̃, x̃t, λ)− λT ˙̃x

]
dt+

N∑
i=1

[
Φi

(
x̃ (Ti + εθi) , {Tj + εθj}Nj=1

)
+µT

i

(
x̃
(
(Ti + εθi)

+)− x̃
(
(Ti + εθi)

−))]
= J̄

(1)
ε + J̄

(2)
ε

(10)

Noting that on ε-small intervals (Ti, Ti + εθi) and (Ti + τ, Ti + τ + εθi), the discrepan-

cies between ξ and ξ̃, x and x̃, or xτ and x̃τ yield a discrepancy in the Hamiltonian.
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Therefore, we split the integral terms J̄
(1)
0 and J̄

(1)
ε of (9) and (10), and then we have:

J̄
(1)
0 =

N∑
i=1

∫ Ti−1+εθi−1

Ti−1

[
Hξ (x, xτ , λ)− λT ẋ

]
dt+

N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
Hξ (x, xτ , λ)− λT ẋ

]
dt

+
N∑
i=1

∫ Ti−1+τ+εθi−1

Ti−1+τ

[
Hξ (x, xτ , λ)− λT ẋ

]
dt

+
N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
Hξ (x, xτ , λ)− λT ẋ

]
dt

=
N∑
i=1

εθi−1

[
Hi

(
x (Ti−1) , xτ (Ti−1) , λ

(
T+
i−1

))
− λT

(
T+
i−1

)
ẋ
(
T+
i−1

)]
+

N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
Hξ (x, xτ , λ)− λT ẋ

]
dt+

N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
Hξ (x, xτ , λ)− λT ẋ

]
dt

+o (ε) +
N∑
i=1

εθi−1

[
Hξ(Ti−1+τ)

(
x (Ti−1 + τ) , x (Ti−1) , λ

(
(Ti−1 + τ)+

))
−λT

(
(Ti−1 + τ)+

)
ẋ
(
(Ti−1 + τ)+

)]
and

J̄
(1)
ε =

N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
Hξ̃ (x̃, x̃τ , λ)− λT ˙̃x

]
dt+

N∑
i=1

∫ Ti−1+τ+εθi−1

Ti−1+τ

[
Hξ̃ (x̃, x̃τ , λ)− λT ˙̃x

]
dt

+
N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
Hξ̃ (x̃, x̃τ , λ)− λT ˙̃x

]
dt+

N∑
i=1

∫ Ti+εθi
Ti

[
Hξ̃ (x̃, x̃τ , λ)− λT ˙̃x

]
dt

=
N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
Hξ (x+ εη, xτ + εητ , λ)− λT (ẋ+ εη̇)

]
dt

+
N∑
i=1

εθi−1

[
Hξ(Ti−1+τ)

(
x (Ti−1 + τ) , x (Ti−1) , λ

(
(Ti−1 + τ)+

))
−λT

(
(Ti−1 + τ)+

)
ẋ
(
(Ti−1 + τ)−

)]
+

N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
Hξ (x+ εη, xτ + εητ , λ)− λT (ẋ+ εη̇)

]
dt

+
N∑
i=1

εθi
[
Hi

(
x (Ti) , xτ (Ti) , λ

(
T+
i

))
− λT

(
T+
i

)
ẋ
(
T−
i

)]
+ o (ε)

Now, by taking the first order Taylor expansion at ε, a change in variable, and noting
that θ0 = θN = 0, we get the first part of the derivative:

J̄
(1)
ε −J̄

(1)
0

ε
=

N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
DxHξ − λT η̇

]
dt+

N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
DxHξ − λT η̇

]
dt

+
N−1∑
i=1

θiλ
T
(
(Ti + τ)+

) [(
ẋ
(
(Ti + τ)+

)
− ẋ

(
(Ti + τ)−

))]
+

N−1∑
i=1

θi
[
Hi

(
x (Ti) , xτ (Ti) , λ

(
T+
i

))
− λT

(
T+
i

)
ẋ
(
T−
i

)]
−

N−1∑
i=1

θi
[
Hi+1

(
x (Ti) , xτ (Ti) , λ

(
T+
i

))
− λT

(
T+
i

)
ẋ
(
T+
i

)]
+ o (1)

(11)

where DxHξ is the functional derivative of Hξ:

DxHξ = lim
ε→0

Hξ (x+ εη, xτ + εητ , λ)−Hξ (x, xτ , λ)

ε
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In (11), we replace the Hamiltonian with its expression from (8), take the first order
Taylor approximation to DxHξ, and integrate by parts the λT η̇ terms:

J̄
(1)
ε −J̄

(1)
0

ε
=

N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
∂Lξ(x)

∂x
η + λT

[
∂fξ(x)

∂x
η +

∂gξ(xτ )

∂xτ
ητ

]
+ λ̇Tη

]
dt− λTη

∣∣Ti−1+τ

Ti−1+εθi−1

+
N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
∂Lξ(x)

∂x
η + λT

[
∂fξ(x)

∂x
η +

∂gξ(xτ )

∂xτ
ητ

]
+ λ̇Tη

]
dt

− λTη
∣∣Ti

Ti−1+τ+εθi−1
+

N−1∑
i=1

θi [ [Li (x (Ti))− Li+1 (x (Ti))]

+λT
(
T+
i

) [
ẋ
(
T+
i

)
− ẋ

(
T−
i

)]
+ λT

(
T+
i

)
[fi (x (Ti)) + gi (xτ (Ti))]

−λT
(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (xτ (Ti))]

+λT
(
(Ti + τ)+

) [(
ẋ
(
(Ti + τ)+

)
− ẋ

(
(Ti + τ)−

))]]
(12)

Before concerning on the second part of the derivative, we derive useful equations:

x̃ (Ti + εθi) = x̃ (Ti) + εθi ˙̃x (Ti) + o (ε)

= x (Ti) + εη (Ti) + εθiẋ (Ti) + o (ε)

x̃
(
(Ti + εθi)

+)− x̃
(
(Ti + εθi)

−)
= x

(
(Ti + εθi)

+)+ εη
(
(Ti + εθi)

+)− x̃
(
(Ti + εθi)

−)
= x

(
T+
i

)
+ εθiẋ

(
T+
i

)
+ εη

(
T+
i

)
− x

(
T−
i

)
− εη

(
T−
i

)
− εθiẋ

(
T−
i

)
+ o (ε)

=
[
x
(
T+
i

)
− x

(
T−
i

)]
+ ε

[
η
(
T+
i

)
− η

(
T−
i

)]
+ εθi

[
ẋ
(
T+
i

)
− ẋ

(
T−
i

)]
+ o (ε)

Similarly, at t = Ti + τ + εθi, we get:

x̃
(
(Ti + τ + εθi)

+)− x̃
(
(Ti + τ + εθi)

−)
=

[
x
(
(Ti + τ)+

)
− x

(
(Ti + τ)−

)]
+ ε

[
η
(
(Ti + τ)+

)
− η

(
(Ti + τ)−

)]
+εθi

[
ẋ
(
(Ti + τ)+

)
− ẋ

(
(Ti + τ)−

)]
+ o (ε)

Because both x (t) and x̃ (t) are continuous at Ti + τ , we have:[
η
(
(Ti + τ)+

)
− η

(
(Ti + τ)−

)]
+ θi

[
ẋ
(
(Ti + τ)+

)
− ẋ

(
(Ti + τ)−

)]
+ o (1) = 0

Then, the non-integral term in (10) expands to

J̄
(2)
ε =

N∑
i=1

[
Φi

(
x̃ (Ti + εθi) , {Tj + εθj}Nj=1

)
+ µT

i

(
x̃
(
(Ti + εθi)

+)− x̃
(
(Ti + εθi)

−))]
=

N∑
i=1

[
Φi

(
x (Ti) + εη (Ti) + εθiẋ (Ti) , {Ti + εθj}Nj=1

)
+µT

i

([
x
(
T+
i

)
− x

(
T−
i

)]
+ ε

[
η
(
T+
i

)
− η

(
T−
i

)]
+ εθi

[
ẋ
(
T+
i

)
− ẋ

(
T−
i

)])
+ o (ε)

]
=

N∑
i=1

[
Φi

(
x (Ti) , {Tj}Nj=1

)
+ µT

i

[
x
(
T+
i

)
− x

(
T−
i

)]]
+ε

N∑
i=1

[
∂Φi

∂x
(η (Ti) + εθiẋ (Ti)) +

{
∂Φi

∂T
θj
}N

j=1

+µT
i

([
η
(
T+
i

)
− η

(
T−
i

)]
+ θi

[
ẋ
(
T+
i

)
− ẋ

(
T−
i

)])
+ o (ε)

]
where ∂Φi

∂x
is the partial derivative of Φi (x, T, µ) taken at

(
x (Ti) , {Tj}Nj=1 , µ

)
. We get

the second part of the derivative:

J̄
(2)
ε −J̄

(2)
0

ε
=

N∑
i=1

[
∂Φi

∂x
(η (Ti) + εθiẋ (Ti)) +

{
∂Φi

∂T
θj
}N

j=1

+µT
i

([
η
(
T+
i

)
− η

(
T−
i

)]
+ θi

[
ẋ
(
T+
i

)
− ẋ

(
T−
i

)])] (13)
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By adding (12) and (13), and some rearrangements, we get an expression of the total
derivative of J :

δJ = lim
ε→0

J̄ε−J̄0
ε

=
N−1∑
i=1

[
∂Φi

∂x
ẋ (Ti) +

{
∂Φi

∂T
θj
}N

j=1
+
(
λT

(
T+
i

)
+ µT

i

) [(
x
(
T+
i

)
− x

(
T−
i

))]
+ [Li (x (Ti))− Li+1 (x (Ti))] + λT

(
T+
i

)
[fi (x (Ti)) + gi (x (Ti − τ))]

−λT
(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (x (Ti − τ))]

]
θi

+
N∑
i=1

∫ Ti−1+τ

Ti−1+εθi−1

[
∂Lξ(x)

∂x
η + λT

[
∂fξ(x)

∂x
η +

∂gξ(xτ )

∂xτ
ητ

]
+ λ̇Tη

]
dt

+
N∑
i=1

∫ Ti

Ti−1+τ+εθi−1

[
∂Lξ(x)

∂x
η + λT

[
∂fξ(x)

∂x
η +

∂gξ(xτ )

∂xτ
ητ

]
+ λ̇Tη

]
dt

+
N∑
i=1

[
∂Φi

∂x
− µT

i − λT
(
T−
i

)]
η
(
T−
i

)
+

N∑
i=1

[
µT
i + λT

(
T+
i

)]
η
(
T+
i

)
+

N∑
i=1

[
λT

(
(Ti + τ)+

)
− λT

(
(Ti + τ)−

)]
η
(
(Ti + τ)−

)
(14)

In the following, we choose λ and µi to make all η terms disappear. By some mathe-
matical transformations, we can obtain the following results.

To avoid computation of η on these intervals, we choose λ so that on the intervals
(Ti−1, Ti−1 + τ) and (Ti−1 + τ, Ti), i = 1, · · · , N :

λ̇T (t) = −∂Lξ(t)(x(t))

∂x
− λT (t)

∂fξ(t)(x(t))

∂x
− λT (t+ τ)

∂gξ(t+τ)(x(t))

∂x
λ (t) = 0, (T, T + τ)

(15)

To avoid computation of η at T+
i , we choose the Lagrange multipliers µi so that

µT
i = −λT

(
T+
i

)
, i = 1, · · · , N (16)

To avoid computation of η at T−
i , we choose λ to be discontinuous at Ti with

λT
(
T−
i

)
=

∂Φi

∂x
+ λT

(
T+
i

)
, i = 1, · · · , N (17)

To avoid computation of η at Ti + τ−, we choose λ to be continuous at Ti + τ

λT
(
(Ti + τ)+

)
= λT

(
(Ti + τ)−

)
, i = 1, · · · , N (18)

Now that all η terms have disappeared, we obtain:

δJ =
N−1∑
i=1

∂J

∂Ti

θi (19)

Therefore,

∂J
∂Ti

= ∂Φi

∂x
ẋ (Ti) +

{
∂Φi

∂T
θj
}N

j=1
+ [Li (x (Ti))− Li+1 (x (Ti))]

+λT
(
T+
i

)
[fi (x (Ti)) + gi (x (Ti − τ))]−λT

(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (x (Ti − τ))]

]
=

{
∂Φi

∂T
θj
}N

j=1
+ [Li (x (Ti))− Li+1 (x (Ti))] + λT

(
T−
i

)
[fi (x (Ti)) + gi (x (Ti − τ))]

−λT
(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (x (Ti − τ))]

]
(20)

Finally, we summarize these results in the following theorem.

Theorem 3.1. Considering the switched delay system with separable mode in (2) and the
performance index J in (3) with fixed initial time (T0 = 0) and terminal time (TN = T ),
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a necessary condition for system (2) to minimize the cost (3) is that the switching times
Ti, i = 1, · · · , N − 1 satisfy:
Euler-Lagrange equations:

λ̇T (t) = −
∂Lξ(t) (x (t))

∂x
− λT (t)

∂fξ(t) (x (t))

∂x
− λT (t+ τ)

∂gξ(t+τ) (x (t))

∂x
(21)

Boundary conditions:

λ (t) = 0, (T, T + τ)

λT
(
T−
i

)
= ∂Φi

∂x
+ λT

(
T+
i

)
, i = 1, · · · , N

λT
(
(Ti + τ)+

)
= λT

(
(Ti + τ)−

)
, i = 1, · · · , N

(22)

Multipliers:

µT
i = −λT

(
T+
i

)
, i = 1, · · · , N (23)

Optimality conditions:

∂J
∂Ti

= ∂Φi

∂T
+ [Li (x (Ti))− Li+1 (x (Ti))] + λT

(
T−
i

)
[fi (x (Ti)) + gi (x (Ti − τ))]

−λT
(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (x (Ti − τ))]

= 0

(24)

Remark 3.2. Although analytic solution of (24) may be quite hard to achieve, the partial
derivatives of J can be used in a numerical gradient descent algorithm. See examples
in next section in detail. Moreover, as (24) corresponds to the sensitivity evaluation of
J with respect to Ti, it can also be used for providing descent direction in optimization
algorithm.

Remark 3.3. For the delay-free case, the necessary conditions can be obtained by setting
gi = 0 of Theorem 3.1.

4. Example Simulation. In this section, we use the results of Theorem 3.1 in a descent
algorithm that is applied to two examples to illustrate the effectiveness and merit of our
results.
The gradient descent-based algorithm is shown as follows:

Algorithm 1:
Ti = Ti0, i = 1, · · · , N − 1 (initial guess)
repeat
solve for x (t) , t ∈ [t0, TN ] and ξ (t) forward in time
solve for λ (t) , t ∈ [t0, TN ] backward in time
compute the partial derivatives ∂J

∂Ti
with

∂J
∂Ti

= ∂Φi

∂T
+ [Li (x (Ti))− Li+1 (x (Ti))] + λT

(
T−
i

)
[fi (x (Ti)) + gi (x (Ti − τ))]

−λT
(
T+
i

)
[fi+1 (x (Ti)) + gi+1 (x (Ti − τ))]

updates: Ti := Ti − γi
∂J
∂Ti

until
∣∣∣ ∂J
∂Ti

∣∣∣ ≤ ε

Example 4.1. Consider the following scalar time-delay system with one switching time
which is taken from [22]:

ẋ (t) =

{
x (t) , t ∈ (0, T ]
x (t− 1) , t ∈ (T, 2]



OPTIMAL CONTROL FOR SWITCHED DELAY SYSTEMS 1563

with performance cost:

J =
1

2

∫ 2

0

(x (t)− 1)2 dt+
1

T
Algorithm 1 using Theorem 3.1 is applied to minimize the cost J . We choose the

nominal control variable T1 = 0.8 and initial condition x (t) = 0, t ≤ 0. After 12 iterations
we find that the optimal switching time T1 = 1.9786 and the corresponding optimal cost
J = 1.5025. The numerical simulation is shown in Figure 2.

Figure 2. Performance cost J

Example 4.2. We consider the scalar delay system with two switching times which is
taken from [23]:

ẋ (t) =


1
2
x (t) , t ∈ (0, T1]

1
2
x (t− 1) , t ∈ (T1, T2]

1
2
x (t) , t ∈ (T2, 3]

and performance cost:

J =
1

2

∫ 3

0

(x (t)− 1)2 dt+
1

T1

+
1

T2

Find optimal switching instants T1, T2 to minimize the above cost criterion J . For this
problem, we choose initial condition x (t) = 0.4, t ≤ 0, the initial nominal control variables
T1 = 0.8, T2 = 1.8 and the parameters γ1 = 0.2, γ2 = 0.3. Based on Theorem 3.1, after
20 iterations the optimal switching times are found to be T1 = 2.4029, T2 = 2.8041 and
the corresponding optimal cost is J = 1.0193. The result is shown in Figure 3.

As seen from Figure 3, the performance cost J can quickly converge to a minimum
value with the proposed method.

Remark 4.1. It is worth noting that, in this particular example, the optimal switching
times T1 and T2 are within τ seconds, i.e., T2 < T1 + τ . The previous work in [17], which
requires a refractory period of τ seconds between each switching times, can only provide a
suboptimal solution [23].



1564 X. LIU, K. ZHANG, S. LI AND H. WEI

Figure 3. Performance cost J

Figure 4. State trajectory

Moreover, the state trajectory associated with the optimal switching times T1 = 2.4029
and T2 = 2.8041 is shown in Figure 4.

5. Conclusions. We have proposed an approach for solving optimal control problem of
switched delay systems with prespecified sequences of active subsystems. In particular,
the necessary conditions for the stationarity have been derived. This is a first step in the
complete optimal control of such switched systems, where the optimal sequence of the
modes needs finding.
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