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Abstract. In this paper we investigate unrelated parallel-machine scheduling problems
with simultaneous considerations of resource-dependent processing times and rate-modify-
ing activities. The scheduler has an option to perform a rate-modifying activity on each
machine to improve their production efficiency. We examine two types of resource al-
location, namely the linear resource allocation model and the convex resource allocation
model. We aim to find the optimal resource allocations, the optimal rate-modifying activ-
ity positions, and the optimal job sequence to minimize the cost function containing the
total completion time plus the resource allocation and the cost function containing the
total machine load plus the resource allocation, respectively. If the number of machines is
fixed, we show that the problem under study can be formulated as an assignment problem
and thus can be solved in a polynomial time algorithm.
Keywords: Scheduling, Unrelated parallel-machine, Resource allocation, Rate-modify-
ing activity

1. Introduction. Scheduling a rate-modifying activity becomes a popular topic among
researchers in the last decade. The rate-modifying activity is an activity that changes
the production efficiency of a machine. Lee and Leon [11] were among the pioneers who
brought the concept of the rate-modifying activity into the field of scheduling. Lee and
Leon considered several single-machine scheduling problems in this class to minimize the
makespan, flowtime, the weighted flowtime, and the maximum lateness. They assumed
that the machine may have at most one rate-modifying activity during the planning
horizon. They proposed polynomial or pseudopolynomial algorithms to solve the problems
under consideration. He et al. [7] studied a restricted version of the problem introduced
by Lee and Leon [11]. They showed that some related problems become NP-hard with the
restriction. Zhao et al. [36] extended some objectives studied by Lee and Leon [11] to the
identical parallel-machine environment. For the problem to minimize the total completion
time, they provided a polynomial algorithm to solve it. For the problem to minimize the
weighted completion time, they introduced a pseudopolynomial dynamic programming
algorithm to solve the case where the jobs satisfy an agreeable condition. Lodree and
Geiger [13] considered scheduling with a rate-modifying activity under the assumption
that a job’s processing time is time-dependent on a single-machine. The goal was to
derive the optimal policy for assigning a single rate-modifying activity in a sequence to
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minimize the makespan. They showed that under given conditions, the optimal policy is
to schedule the rate-modifying activity in the middle of the job sequence. Hsu et al. [8]
extended the model studied by Zhao et al. [36] to an unrelated parallel-machine setting.
For given the number of machines, they proposed an efficient polynomial time algorithm
such that the total completion time minimization problem can be solved in a lower order
algorithm. Zhao et al. [35] considered the parallel-machine scheduling with deteriorating
jobs and rate-modifying activities to minimize the total completion time. They proved
that the problem remains polynomially solvable. Yang et al. [33] showed that the time
complexity of the model studied by Hsu et al. [8] can be reduced. More recent papers
which considered scheduling jobs with the rate-modifying activity include Ji and Cheng
[10], Wang et al. [27], Zhao and Tang [37], Yin et al. [34], Yang and Yang [31], and
Rustogi and Strusevich [18].
On the other hand, in most scheduling studies, the job processing times are treated

as constant parameters. However, in many practical situations the scheduler can con-
trol the processing times by the addition of resources, such as worker, energy, gas, fuel,
and catalyzer, to the job operations. Resource-dependent processing times appear when-
ever resources can be employed to adjust processing requirements. For example, in the
steel industry, the ingot preheated process before hot rolling consumes lots of energy. The
manufacture can improve the efficiency of the production by allocating some extra energy.
Another practical example comes from a case where a manufacturer can improve the pro-
duction efficiency by adding the workers. In these situations, job scheduling and resource
allocation decisions should be coordinated carefully to achieve the most efficient system
performance. Pioneering research in the area of scheduling with resource-dependent pro-
cessing times was conducted by Vickson [23,24] and Van Wassenhove and Baker [22].
Janiak [9] described an interesting application of a scheduling problem with resource-
dependent processing times in steel mills. Trick [21] concerned another interesting appli-
cation of resource allocation arising from scheduling in a machine-tooling environment,
where the job processing time is a function of the feed rate and the spindle speed used
for each operation. Comprehensive surveys of different scheduling problems concerning
resource-dependent processing time are presented by Nowicki and Zdrzalka [15], Chudzik
et al. [4], and Shabtay and Steiner [19]. For new trends in scheduling with resource-
dependent processing time, we refer the reader to Wang et al. [25], Wang and Wang [26],
Wang and Wang [28], Wei et al. [29], Zhu et al. [39], Rudek and Rudek [17] and Oron
[16].
Parallel-machine scheduling problems with resource-dependent processing time are com-

mon in practice. Alidaee and Ahmadian [1] considered parallel-machine scheduling prob-
lems with controllable job processing times. They aimed to minimize the total processing
cost plus the total flow time and the total processing cost plus the total weighted earli-
ness and weighted tardiness, respectively. They showed that both problems can be solved
in polynomial time algorithms. Cheng et al. [3] focused on unrelated parallel-machine
scheduling problems where the job processing times can be compressed by a convex func-
tion. The objectives were to minimize the total compression cost plus the total flow time
and the total compression cost plus the sum of earliness and tardiness costs, respectively.
They provided polynomial time algorithms for solving both problems. Su and Lien [20]
considered the problem of scheduling a set of jobs on parallel machines when the process-
ing time of each job depends on the amount of resource consumed. They aimed to find
the allocation of resources to jobs and jobs to machines to minimize the makespan. The
problem has been proven to be NP-hard even for the fixed job processing times. They



UNRELATED-PARALLEL MACHINE SCHEDULING 1589

proposed a heuristic algorithm for solving the problem. Lee and Yang [12] studied multi-
objective scheduling problems involving deterioration effects and resource allocations si-
multaneously on an unrelated parallel-machine setting. They developed polynomial time
algorithms for all the problems studied if the number of machines is given. Edis et al.
[5] presented a review and discussion of studies on parallel-machine scheduling problems
with additional resources.

It is natural to study scheduling problems combining resource-dependent processing
time and rate-modifying activity. To the best of our knowledge, only Zhu et al. [38]
and Yang et al. [30] studied the problem of this type. Zhu et al. [38] addressed single-
machine scheduling problems in which the actual job processing times are determined
by resource allocation function, its position in a sequence and a rate-modifying activity
simultaneously. They showed that all the problems studied are polynomially solvable.
Yang et al. [30] considered unrelated parallel-machine scheduling involving controllable
processing times and rate-modifying activities simultaneously. If the number of machines
is a given constant, they proposed an efficient polynomial-time algorithm to solve the
proposed problem.

Motivated by the observation in a product assembly process, the processing time of a job
depends both on the number of labors allocated to process the job and the labors’ skills.
The production efficiency can be improved after a training course for the labors. The
training course can be considered as a type of rate-modifying activity. Consequently, in
this paper we investigate unrelated parallel-machine scheduling problems with simultane-
ous considerations of resource-dependent processing times and rate-modifying activities.
We aim to determine the optimal resource allocations, the optimal rate-modifying activity
positions, and the optimal job sequence to minimize two cost functions. The rest of this
paper is organized as follows. In Section 2 we introduce and formulate the problem. Some
preliminary results for further analysis are provided in Section 3. We find the optimal
solutions for the objective functions in Sections 4, 5, 6 and 7. The last section concludes
this paper.

2. Problem Formulation. In this section we first introduce the notation to be used
throughout the paper, followed by formulation of the problem.

n: the number of jobs;
m: the number of machines, m < n;
Jj: job j, j = 1, 2, . . . , n;
Mi: machine i, i = 1, 2, . . . ,m;
ni: the number of jobs assigned to process on machine Mi, n =

∑m
i=1 ni, i = 1, 2, . . . ,m;

aij: the normal processing time of job Jj scheduled before a rate-modifying activity on
machine Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;

bij: the normal processing time of job Jj scheduled after a rate-modifying activity on
machine Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;

vij: the compression rate of job Jj on machine Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
uij: the amount of resource allocated to job Jj on machine Mi, i = 1, 2, . . . ,m, j =

1, 2, . . . , n;
ūij: the upper bound on the amount of resource allocated to job Jj on machine Mi,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
pijr′ : the actual processing time of job Jj scheduled in the rth position on machine Mi,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n and r = 1, 2, . . . , ni;
pijh: the actual processing time of job Jj scheduled in the hth position to the last job

on machine Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n and h = 1, 2, . . . , ni;
k: a positive constant for the convex resource allocation model;
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Gij: the per unit time cost associated with the resource allocation to job Jj on machine
Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
Cij: the completion time of job Jj on machine Mi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
C i

max: the makespan of machine Mi, i = 1, 2, . . . ,m;
Si: the set of jobs assigned to machine Mi, i = 1, 2, . . . ,m;
S: the set of all feasible schedules.

Subscript
[ir′]: the job scheduled in the rth position on machine Mi;
[ih]: the job scheduled in the hth position to the last job on machine Mi.
We consider a set of n independent jobs to be processed on a set of m unrelated parallel

machines. Each job Jj, j = 1, 2, . . . , n, becomes available for processing at time zero.
Preemption is not allowed and each machine is only able to process one job at a time.
Let S = (S1, S2, . . . , Sm) be a schedule for the machines. Then Si ∩ Sj = ∅, ∀i 6= j, and∪m

i=1 Si = {J1, . . . , Jn}. The scheduler has an option to perform a rate-modifying activity
on each machine to improve their production efficiency. We assume that each machine
may have at most one rate-modifying activity during the planning horizon. We further
assume that the rate-modifying activity can be performed immediately after completing
the processing of any job and the duration of the rate-modifying activity on machine
Mi is ti. From a practical point of view, however, scheduling a rate-modifying activity
before we process any job on a machine is meaningless. So, in this paper we do not
consider the case of scheduling a rate-modifying activity before we process any job on a
machine. For convenience, we say that the rate-modifying activity is scheduled in position
ki (0 < ki ≤ ni) on machine Mi if it is performed immediately after the completion of the
job scheduled in the kith position on machine Mi.
In this study, the processing time of a job is controllable by additional resources. We

examine two different types of resource allocation. In the first one that describes the
bounded linear function, the actual processing time of job Jj scheduled in position r is
given by the following function:

pijr′ =

{
aij − vijuij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, r ≤ ki,
bij − vijuij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, r > ki,

(1)

where aij > bij > 0, 0 ≤ uij ≤ ūij <
bij
vij
, and vij > 0. The second model concerns a convex

decreasing function whereby if job Jj is scheduled in the rth position on machine Mi, its
actual processing time is given by

pijr′ =


(
aij
uij

)k

, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, r ≤ ki,(
bij
uij

)k

, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, r > ki,

(2)

where aij > bij > 0, uij > 0, and k is a positive constant.
The objective of this study is to determine the optimal resource allocations, the optimal

rate-modifying activity positions, and the optimal job sequence such that one of the fol-
lowing two cost functions is minimized: the cost function containing the total completion
time plus the resource allocation and the cost function containing the total machine load
[32] plus the resource allocation, i.e.,

TC =
m∑
i=1

ni∑
j=1

Cij +
m∑
i=1

ni∑
j=1

Gijuij (3)
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and

TL =
m∑
i=1

C i
max +

m∑
i=1

ni∑
j=1

Gijuij. (4)

Following the three-field notation in Graham et al. [6], we denote our problems as Rm|rm,
lin|TC, Rm|rm, con|TC, Rm|rm, lin|TL, and Rm|rm, con|TL, respectively, where rm in-
dicates the rate-modifying activity and lin and con represent the linear resource allocation
model and the convex resource allocation model, respectively.

3. Preliminary Analysis. In this section we present two important lemmas for an op-
timal schedule of the problem under study.

Lemma 3.1. [14] The number of nonnegative integer solutions to x1 + x2 + . . .+ xm = n

is C(n+m− 1,m− 1) = (n+m−1)!
(m−1)!n!

.

Lemma 3.2. [8] The number C(n+m,m) is bounded from above by (2n)m

m!
.

4. Minimization of Rm|rm, lin|TC. In this section we consider the Rm|rm, lin|TC
problem. First, we denote that the rate-modifying activity is scheduled in position li
(0 ≤ li < ni) on machine Mi if it is scheduled immediately before the job scheduled in
the lith position to the last job on machine Mi. Note that if li = ni, it indicates that
we perform the rate-modifying activity before we process any job on machine Mi; while
if li = 0, it means that there is no rate-modifying activity scheduled on machine Mi. In
addition, from a practical point of view, scheduling a rate-modifying activity before we
process any job on a machine is meaningless. Then, the actual processing time of job Jj
if it is scheduled in the hth position to the last job on machine Mi is given by:

pijh =

{
bij − vijuij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, h ≤ li,
aij − vijuij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, h > li.

(5)

Let (l1, l2, . . . , lm) be the rate-modifying activity position vector for the machines when
the rate-modifying activity is scheduled immediately before the job scheduled in the lith
position to the last job on machine Mi and p[ih] be the actual processing time a job
scheduled in the hth position to the last job on machine Mi, for i = 1, 2, . . . ,m and

h = 1, 2, . . . , ni. Thus, for a given vector (l1, l2, . . . , lm), if we substitute C[ih] =
h∑

r=1

p[ir]

into (3), then we obtain that

TC =
m∑
i=1

(
li∑

h=1

h(b[ih] − v[ih]u[ih]) +

ni∑
h=li+1

h(a[ih] − v[ih]u[ih])

)

+
m∑
i=1

liti +
m∑
i=1

ni∑
h=1

G[ih]u[ih]

=
m∑
i=1

[
li∑

h=1

(
hb[ih] + (G[ih] − hv[ih])u[ih]

)
+

ni∑
h=li+1

(
ha[ih] + (G[ih] − hv[ih])u[ih]

)]

+
m∑
i=1

liti.

(6)

Note that [ih] denotes the job scheduled in the hth position to the last job on machine Mi.
Obviously, for a given vector (l1, l2, . . . , lm), we can ignore the times required to perform
the rate-modifying activities, as it represents a constant in (6).
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Lemma 4.1. Given a sequence, the optimal resource allocation for the Rm|rm, lin|TC
problem can be determined by

u∗
[ih] =

{
ū[ih], if G[ih] < hv[ih],
0, if G[ih] ≥ hv[ih],

(7)

where u∗
[ih] denotes the optimal resource allocation of a job scheduled in the hth position

to the last job on machine Mi.

Proof: From (6), we see that for any sequence, the optimal resource allocation of a job
in a position with G[ih] − hv[ih] < 0 should be its upper bound on the amount of resource
ū[ih], and the optimal resource allocation of a job in a position with G[ih] − hv[ih] ≥ 0
should be 0. It should be noted that if u[ih] = 0, it means that no additional resource is
allocated on the job. This completes the proof.
Next, we define yijs = 1 if job Jj is in the sth position to the last job processed on

machine Mi and yijs = 0 otherwise. Let wijs be the positional weight of job Jj scheduled
in the sth position to the last job on machine Mi. Then, the Rm|rm, lin|TC problem can
be formulated as follows:

Minimize
m∑
i=1

n∑
j=1

n∑
s=1

wijsyijs. (8)

subject to
n∑

j=1

yijs = 1, i = 1, 2, . . . ,m, s = 1, 2, . . . , li, (9)

n∑
j=1

yijs ≤ 1, i = 1, 2, . . . ,m, s = li + 1, li + 2, . . . , n, (10)

m∑
i=1

n∑
s=1

yijs = 1, j = 1, 2, . . . , n, (11)

n∑
j=1

yij1 ≥
n∑

j=1

yij2 ≥ . . . ≥
n∑

j=1

yijn, i = 1, 2, . . . ,m, (12)

yijs ∈ {0, 1} , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s = 1, 2, . . . , n, (13)

where

wijs =

{
sbij + (Gij − svij)uij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s ≤ li,
saij + (Gij − svij)uij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s > li,

(14)

and

u∗
ij =

{
ūij, if Gij < svij,
0, if Gij ≥ svij.

(15)

Constraint (9) ensures that each position (s ≤ li, i = 1, 2, . . . ,m) on each machine is taken
by one job. Constraint (10) makes sure that each position (s ≥ li + 1, i = 1, 2, . . . ,m)
on each machine is taken by at most one job. Constraint (11) ensures that each job is
scheduled exactly once. Constraint (12) makes sure that on every machine, the unassigned
positions must precede all the assigned positions, so that yijs = 1 if and only if job Jj is
indeed in the sth position to the last job on machine Mi.
Lemma 4.2 is useful to find the optimal solution for the Rm|rm, lin|TC problem.

Lemma 4.2. In (14), wij1 ≤ wij2 ≤ · · · ≤ wijli and wij(li+1) ≤ wij(li+2) ≤ · · · ≤ wijn, for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n.



UNRELATED-PARALLEL MACHINE SCHEDULING 1593

Proof: Let f and g be two positions to the last job processed on machine Mi and f > g.
Case a: f ≤ li (thereby g < li)

If f ≤ li, from (14) and (15), we obtain the following results:

(i) If Gij ≥ fvij, then we have that u∗
ij = 0 and wijf = fbij > gbij = wijg.

(ii) If Gij < gvij, then we obtain that u∗
ij = ūij and wijf = fbij + (Gij − fvij)ūij =

f(bij − vijūij) +Gijūij > g(bij − vijūij) +Gijūij = wijg.
(iii) If gvij ≤ Gij < fvij, then we know that wijf = fbij +(Gij − fvij)ūij and wijg = gbij.

We see that wijf −wijg = fbij +(Gij − fvij)ūij − gbij = f(bij − vijūij)+Gijūij − gbij
> f(bij − vijūij) + gvijūij − gbij = f(bij − vijūij)− g(bij − vijūij) > 0.
Thus, wijf > wijg.

Case b: g ≥ li + 1 (thereby f > li + 1)
If g ≥ li + 1, from (14) and (15), we have the following results:

(i) If Gij ≥ fvij, then we obtain that u∗
ij = 0 and wijf = faij > gaij = wijg.

(ii) If Gij < gvij, then we have that u∗
ij = ūij and wijf = faij + (Gij − fvij)uij =

faij + (Gij − fvij)ūij = f(aij − vijūij) +Gijūij > g(aij − vijūij) +Gijūij = wijg.
(iii) If gvij ≤ Gij < fvij, then we have that wijf = faij +(Gij − fvij)ūij and wijg = gaij.

We see that wijf −wijg = faij +(Gij −fvij)ūij −gaij = f(aij −vijūij)+Gijūij −gaij
≥ f(aij−vijūij)+gvijūij−gaij = f(aij−vijūij)+g(aij−vijūij) = (f−g)(aij−vijūij) >
0.
Thus, wijf > wijg.

So, we have that wij1 ≤ wij2 ≤ · · · ≤ wijli and wij(li+1) ≤ wij(li+2) ≤ · · · ≤ wijn, for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. This completes the proof.

In what follows we prove that the Rm|rm, lin|TC problem can be optimally solved in
O(nm+3) time.

Theorem 4.1. The Rm|rm, lin|TC problem can be solved in O(nm+3) time.

Proof: From Lemma 4.2, we know that wij1 ≤ wij2 ≤ · · · ≤ wijli and wij(li+1) ≤
wij(li+2) ≤ · · · ≤ wijn, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and thus

∑n
j=1 yij1 ≥∑n

j=1 yij2 ≥ . . . ≥
∑n

j=1 yijli and
∑n

j=1 yij(li+1) ≥
∑n

j=1 yij(li+2) ≥ . . . ≥
∑n

j=1 yijn, for

i = 1, 2, . . . ,m. In addition, from constraints (9) and (10), we know that
∑n

j=1 yijli(=

1) ≥
∑n

j=1 yij(li+1)(≤ 1) for i = 1, 2, . . . ,m. Thus, the inequality
∑n

j=1 yij1 ≥
∑n

j=1 yij2 ≥
. . . ≥

∑n
j=1 yijn holds, for i = 1, 2, . . . ,m. As a result, we can remove constraint (12) from

the formulation without affecting the optimal solution value of the problem. Hence, the
Rm|rm, lin|TC problem can be re-formulated as the following assignment problem and
thus can be solved in O(mn3) time [2]:

Minimize
n∑

i=1

m∑
j=1

n∑
s=1

wijsyijs

subject to (9), (10), (11) and (13).

Moreover, since there are n jobs to be assigned to m unrelated parallel machines, we
obtain that 0 < l1+ l2+ . . .+ lm ≤ n. Let lm+1 = n− (l1 + l2 + . . .+ lm) ≥ 0. This means
that l1 + l2 + . . .+ lm+1 = n. By Lemma 3.1, the number of nonnegative integer solutions
to l1 + l2 + . . . + lm+1 = n is C(n + m,m). By Lemma 3.2, the number C(n + m,m)
is bounded from above by (2n)m/m!. Therefore, we conclude that the Rm|rm, lin|TC
problem can be solved in O(nm+3) time. This completes the proof.

Clearly, if the number of machines m is fixed, then the Rm|rm, lin|TC problem is
polynomially solvable.

From the above analysis, we propose the following algorithm to solve the Rm|rm,
lin|TC problem.
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Algorithm 1.
Step 1: For all the possible vectors (l1, l2, . . . , lm), calculate wijs by using (14), for i =
1, 2, . . . ,m, j = 1, 2, . . . , n and s = 1, 2, . . . , n.
Step 2: Solve the corresponding assignment problem to obtain the local optimal schedule
and the corresponding total cost for each possible vector (l1, l2, . . . , lm).
Step 3: The global optimal solution for the problem is the one with the minimum value
of the total cost TC.
Step 4: Calculate the optimal resources by using (7).
Step 5: Calculate the actual processing times by using (5).
The following example illustrates applying Algorithm 1 to find the optimal solution of an

11 jobs instance. For given the position of the rate-modifying activity on each machine,
i.e., (l1, l2), we solve the corresponding assignment problem using LINGO version 11.0
on a personal computer with Intel Core i7-2600 CPU @3.40GHz and 8GB RAM under
Windows 7.

Example 4.1. There are 11 jobs to be processed on two identical parallel machines. The
set of job parameters is presented in Table 1. The duration of the rate-modifying activity
is 2.0 for both machines.

Table 1. Job parameters for Example 4.1

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11
aj 28.0 16.0 11.0 14.0 22.0 27.0 19.0 15.0 25.0 18.0 20.0
bj 21.0 9.6 9.9 11.9 14.3 21.6 18.05 10.5 12.5 14.4 18.0
ūj 5.5 4.2 2.5 3.1 5.2 3.8 4.5 3.5 3.6 4.8 5.6
vj 2.4 1.2 3.1 1.5 2.2 2.5 1.6 1.8 1.4 2.1 1.9
Gj 10.0 16.0 8.0 14.0 12.0 17.0 6.0 15.0 11.0 13.0 18.0

Table 2. Optimal job sequences and total cost for all the possible positions
of rate-modifying activities for Example 4.1

(l1, l2) Job sequences TC
(0, 0) M1 = (J3, J7, J8, J11, J9, J6), M2 = (J4, J2, J10, J5, J1) 582.5
(0, 1) M1 = (J3, J7, J8, J11, J6, J1), M2 = (J4, J2, J10, J5, J9) 574.0
(0, 2) M1 = (J3, J7, J8, J11, J5, J6), M2 = (J4, J2, J10, J9, J1) 554.5
(0, 3) M1 = (J3, J7, J2, J10, J11, J6), M2 = (J4, J8, J9, J5, J1) 533.6
(0, 4) M1 = (J3, J7, J8, J10, J11, J6), M2 = (J4, J2, J9, J5, J1) 510.0
(1, 1) M1 = (J3, J7, J8, J11, J6, J1), M2 = (J4, J2, J10, J5, J9) 569.0
(1, 2) M1 = (J7, J8, J11, J5, J1), M2 = (J3, J4, J2, J10, J9, J6) 551.1
(1, 3) M1 = (J3, J7, J8, J10, J11, J1), M2 = (J4, J2, J9, J5, J6) 530.2
(1, 4) M1 = (J3, J7, J8, J10, J11, J1), M2 = (J4, J2, J9, J5, J6) 506.6
(2, 2) M1 = (J3, J7, J2, J11, J9, J1), M2 = (J4, J8, J10, J5, J6) 537.7
(2, 3) M1 = (J3, J7, J10, J11, J9, J1), M2 = (J4, J8, J2, J5, J6) 522.5
(2, 4) M1 = (J3, J7, J8, J11, J10, J1), M2 = (J4, J2, J9, J5, J6) 503.4
(3, 3) M1 = (J3, J7, J10, J9, J11, J1), M2 = (J4, J8, J2, J5, J6) 513.0
(3, 4) M1 = (J3, J7, J8, J9, J11, J1), M2 = (J4, J2, J5, J10, J6) 495.7
(4, 4) M1 = (J3, J7, J8, J9, J10, J1), M2 = (J4, J2, J5, J11, J6) 479.7a

a: the minimum total cost
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Table 3. The optimal resource allocations and the actual processing times
for Example 4.1

M1 M2

r 1 2 3 4 5 6 1 2 3 4 5
J[ir′] J3 J7 J8 J9 J10 J1 J4 J2 J5 J11 J6
u∗
[ir′] 2.5 4.5 0 0 0 0 0 0 0 0 0

p[ir′] 3.25 11.8 10.5 12.5 14.4 21.0 14.0 9.6 14.3 18.0 21.6

J[ir′]: a job scheduled in the rth position on machine Mi; u
∗
[ir′]: the optimal

resource allocated on job J[ir′]; p[ir′]: the actual processing time of job J[ir′].

Solution. Table 2 shows the optimal job sequences and the total cost for all the
possible positions of rate-modifying activities of the problem. From Table 2, we see that
the optimal solution for this example is obtained when (l1, l2) = (4, 4), the job sequences
on machines M1 and M2 are M1 = (J3, J7, J8, J9, J10, J1) and M2 = (J4, J2, J5, J11, J6),
respectively. The minimum total cost is 479.7. It should be noted that (l1, l2) = (4, 4)
means that the rate-modifying activity is located immediately after the completion of
job J7 on machine M1 and the rate-modifying activity is performed immediately after
the completion of job J4 on machine M2. Furthermore, we obtain the optimal resource
allocations and the actual processing times of jobs for this example and the results are
summarized in Table 3. From Table 3, we know that the actual processing times of jobs
J3 and J7 are compressed by additional resources.

5. Minimization of Rm|rm, con|TC. In this section we investigate the Rm|rm,
con|TC problem. Following the analysis of the Rm|rm, lin|TC problem, the actual pro-
cessing time of job Jj if it is scheduled in the hth position to the last job on machine Mi

is defined by:

pijh =


(
bij
uij

)k

, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, h ≤ li,(
aij
uij

)k

, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, h > li.

(16)

For a given vector (l1, l2, . . . , lm), we see that

TC =
m∑
i=1

[
li∑

h=1

h

(
b[ih]
u[ih]

)k

+

ni∑
h=li+1

h

(
a[ih]
u[ih]

)k
]
+

m∑
i=1

liti +
m∑
i=1

ni∑
h=1

G[ih]u[ih]. (17)

Again, we can ignore the term of
m∑
i=1

liti in (17).

Lemma 5.1. Given a sequence, the optimal resource allocation, u∗
[ih], for the Rm|rm,

con|TC problem is

u∗
[ih] =


(

hk

G[ih]

) 1
k+1

b
k

k+1

[ih] , i = 1, 2, . . . ,m, h ≤ li,(
hk

G[ih]

) 1
k+1

a
k

k+1

[ih] , i = 1, 2, . . . ,m, h > li.

(18)
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Proof: From (17), we take the first derivative of TC with respect to u[ir] and let it be
equal to 0. Then, we obtain that

u∗
[ih] =


(

hk

G[ih]

) 1
k+1

b
k

k+1

[ih] , i = 1, 2, . . . ,m, h ≤ li,(
hk

G[ih]

) 1
k+1

a
k

k+1

[ih] , i = 1, 2, . . . ,m, h > li.

Since (17) is a convex function, (18) provides necessary and sufficient conditions for op-
timality. This completes the proof.
Furthermore, by substituting (18) into (17), we see that

TC =
m∑
i=1

ni∑
h=1

(
k

−k
k+1 + k

1
k+1

)
θ[ih]φih, (19)

where

θ[ih] =

{ (
G[ih]b[ih]

) k
k+1 , i = 1, 2, . . . ,m, h ≤ li,(

G[ih]a[ih]
) k

k+1 , i = 1, 2, . . . ,m, h > li,
(20)

and

φih = h
1

k+1 , (21)

for i = 1, 2, . . . ,m and h = 1, 2, . . . , ni.
In what follows we show that the Rm|rm, con|TC problem can be solved in O(nm+3)

time.

Theorem 5.1. The Rm|rm, con|TC problem can be solved in O(nm+3) time.

Proof: Following the analysis of the Rm|rm, lin|TC problem, we define yijs = 1 if job
Jj is in the sth position to the last job processed on machine Mi and yijs = 0 otherwise.
Then, the Rm|rm, con|TC problem can be formulated as follows:

Minimize
m∑
i=1

n∑
j=1

n∑
s=1

wijsyijs. (22)

subject to
n∑

j=1

yijs = 1, i = 1, 2, . . . ,m, s = 1, 2, . . . , li, (23)

n∑
j=1

yijs ≤ 1, i = 1, 2, . . . ,m, s = li + 1, li + 2, . . . , n, (24)

m∑
i=1

n∑
s=1

yijs = 1, j = 1, 2, . . . , n, (25)

n∑
j=1

yij1 ≥
n∑

j=1

yij2 ≥ . . . ≥
n∑

j=1

yijn, i = 1, 2, . . . ,m, (26)

yijs ∈ {0, 1} , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s = 1, 2, . . . , n, (27)

where

wijs =


(
k

−k
k+1 + k

1
k+1

)
(Gijbij)

k
k+1 s

1
k+1 , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s ≤ li,(

k
−k
k+1 + k

1
k+1

)
(Gijaij)

k
k+1 s

1
k+1 , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s > li.

(28)
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From (28), we know that wij1 ≤ wij2 ≤ · · · ≤ wijli and wij(li+1) ≤ wij(li+2) ≤ · · · ≤ wijn,
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and thus

∑n
j=1 yij1 ≥

∑n
j=1 yij2 ≥ . . . ≥

∑n
j=1 yijli

and
∑n

j=1 yij(li+1) ≥
∑n

j=1 yij(li+2) ≥ . . . ≥
∑n

j=1 yijn, for i = 1, 2, . . . ,m. Therefore, by

the proof of Theorem 4.1, we obtain that the Rm|rm, con|TC problem can be solved in
O(nm+3) time. This completes the proof.

We can obtain the optimal value of the Rm|rm, con|TC problem in a similar manner
of Algorithm 1.

6. Minimization of Rm|rm, lin|TL. In this section we consider the Rm|rm, lin|TL
problem. We denote by the subscript [ir′] the job scheduled in the rth position on machine
Mi, for j = 1, 2, . . . ,m and r = 1, 2, . . . , ni. Let (k1, k2, . . . , km) be the rate-modifying
activity position vector for the machines when the rate-modifying activity is scheduled
immediately after the completion of the job scheduled in the kith position on machine Mi

and p[ir′] be the actual processing time a job scheduled in the rth position on machine
Mi, for i = 1, 2, . . . ,m and r = 1, 2, . . . , ni. Thus, for a given vector (k1, k2, . . . , km), if we

substitute C[ir′] =
r∑

h=1

p[ih′] into (4), then we obtain that

TL =
m∑
i=1

[
ki∑
r=1

(
a[ir′] − v[ir′]u[ir′]

)
+

ni∑
r=ki+1

(
b[ir′] − v[ir′]u[ir′]

)]

+
m∑
i=1

ti +
m∑
i=1

ni∑
r=1

G[ir′]u[ir′]

=
m∑
i=1

[
ki∑
r=1

(
a[ir′] + (G[ir′] − v[ir′])u[ir′]

)
+

ni∑
r=ki+1

(
b[ir′] + (G[ir′] − v[ir′])u[ir′]

)]

+
m∑
i=1

ti.

(29)

Observe that
m∑
i=1

ti is a constant in (29). In addition, the rate-modifying activity position

vector (k1, k2, . . . , km) is bounded from above by (2n)m/m!. Then, performing a similar
analysis of Rm|rm, lin|TC, we have the following results:

Lemma 6.1. Given a sequence, the optimal resource allocation for the Rm|rm, lin|TL
problem can be determined by

u∗
[ir′] =

{
ū[ir′], if G[ir′] < v[ir′],
0, if G[ir′] ≥ v[ir′],

(30)

where u∗
[ir′] denotes the optimal resource allocation of a job scheduled in the rth position

on machine Mi.

Theorem 6.1. The Rm|rm, lin|TL problem can be solved in O(nm+3) time.

Proof: We define xijr′ = 1 if job Jj is in the rth position on machine Mi and xijr′ = 0
otherwise. Then, the Rm|rm, lin|TL problem can be formulated as follows:

Minimize
m∑
i=1

n∑
j=1

n∑
r=1

zijr′xijr′ . (31)

subject to
n∑

j=1

xijr′ = 1, i = 1, 2, . . . ,m, r = 1, 2, . . . , ki, (32)
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n∑
j=1

xijr′ ≤ 1, i = 1, 2, . . . ,m, r = ki + 1, ki + 2, . . . , n, (33)

m∑
i=1

n∑
r=1

xijr′ = 1, j = 1, 2, . . . , n, (34)

n∑
j=1

xij1′ ≥
n∑

j=1

xij2′ ≥ . . . ≥
n∑

j=1

xijn′ , i = 1, 2, . . . ,m, (35)

xijr′ ∈ {0, 1} , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, r = 1, 2, . . . , n, (36)

where

zijr′ =

{
aij + (Gij − vij)uij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, r ≤ ki,
bij + (Gij − vij)uij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, r > ki,

(37)

and

u∗
ij =

{
ūij, if Gij < vij,
0, if Gij ≥ vij,

(38)

where zijr′ is the positional weight of job Jj scheduled in the rth position on machine Mi.
From (37), we know that zij1′ = zij2′ = · · · = zijk′i and zij(ki+1)′ = zij(ki+2)′ = · · · = zijn′ ,
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and thus

∑n
j=1 xij1′ =

∑n
j=1 xij2′ = . . . =

∑n
j=1 xijk′i

and
∑n

j=1 xij(ki+1)′ =
∑n

j=1 xij(ki+2)′ = . . . =
∑n

j=1 xijn′ , for i = 1, 2, . . . ,m. Therefore, by

the proof of Theorem 4.1, we obtain that the Rm|rm, lin|TL problem can be solved in
O(nm+3) time. This completes the proof.
Again, we can obtain the optimal value of the Rm|rm, lin|TL problem in a similar

manner of Algorithm 1.

7. Minimization of Rm|rm, con|TL. In this section we study the Rm|rm, con|TL
problem. Following the analysis of the Rm|rm, lin|TL problem, we obtain that

TL =
m∑
i=1

[
ki∑
r=1

(
a[ir′]
u[ir′]

)k

+

ni∑
r=ki+1

(
b[ir′]
u[ir′]

)k
]
+

m∑
i=1

ti +
m∑
i=1

ni∑
r=1

G[ir′]u[ir′]. (39)

Again, the term of
m∑
i=1

ti in (39) is a constant. Then, we have the following lemma.

Lemma 7.1. Given a sequence, the optimal resource allocation, u∗
[ir′], for the Rm|rm,

con|TL problem is

u∗
[ir′] =


(

k
G[ir′]

) 1
k+1

a
k

k+1

[ir′] , i = 1, 2, . . . ,m, r ≤ ki,(
k

G[ir′]

) 1
k+1

b
k

k+1

[ir′] , i = 1, 2, . . . ,m, r > ki.
(40)

Proof: The proof is similar to that of Lemma 5.1.
Furthermore, by substituting (40) into (39), we see that

TL =
(
k

−k
k+1 + k

1
k+1

) m∑
i=1

ni∑
r=1

ϕ[ir′], (41)

where

ϕ[ir′] =

{ (
G[ir′]a[ir′]

) k
k+1 , i = 1, 2, . . . ,m, r ≤ ki,(

G[ir′]b[ir′]
) k

k+1 , i = 1, 2, . . . ,m, r > ki.
(42)

Theorem 7.1. The Rm|rm, con|TL problem can be solved in O(nm+3) time.
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Proof: The proof is similar to that of Theorem 6.1.
Obviously, we can solve the Rm|rm, con|TL problem in a similar manner of Algorithm 1.

8. Conclusions. In this paper we investigated scheduling problems with simultaneous
considerations of resource-dependent processing times and rate-modifying activities on an
unrelated parallel-machine setting. The linear and convex resource allocation models are
examined, respectively. We aimed to find the optimal resource allocations, the optimal
rate-modifying activity positions, and the optimal job sequence such that two cost func-
tions can be minimized, namely the cost function containing the total completion time
plus the resource allocation and the cost function containing the total machine load plus
the resource allocation. If the number of machines is given, we introduced polynomial
time algorithms for all the problems studied. It is worthy of future research to consider
the problem with variable rate-modifying activity durations or multiple rate-modifying
activities, or in more complicated machine setting, or optimizing other performance mea-
sures.
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