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ABSTRACT. Fault diagnosis using immunity-based systems is well-known for its ability
to detect unknown faults in systems composed of multiple sensors. However, it has a
limitation in that the algorithm cannot detect faulty sensors when multiple sensors in a
local area of the sensor network break down simultaneously. This is because test results
obtained using multiple faulty sensors are occasionally inaccurate, and they delay the
ability to change the parameters for fault detection. In this paper, we propose an efficient
algorithm for this kind of fault detection in an immunity-based system diagnosis. The
proposed algorithm identifies a local area in which sensors suspected of having faults
ezist, and excludes the test results obtained from these sensors from the calculation based
on the dynamical model of the parameters for fault detection. The proposed algorithm
is advantageous in terms of cost because it does not require any additional redundant
sensors. Our experimental results demonstrate that the proposed algorithm can detect
fault patterns, which cannot be detected by the conventional algorithm. The fault pattern
is represented by multiple faulty sensors that break down simultaneously in a local area
of the system.

Keywords: Simultaneous multiple faults, Diagnosis, Immunity-based system

1. Introduction. Fault diagnosis using immunity-based systems is well known for its
ability to detect unknown faults [1,2] — without prior learning, which is required for
neural networks — and many applications have been proposed for it [3-7]. An application
that uses the immunity-based dynamic network architecture for the diagnosis of a system
composed of many sensors is shown in [7]. The diagnosis algorithm in [7] detects the faults
of not only the sensors but also the components of the system. This feature is very helpful
in fault detection in large-scale systems. Therefore, the algorithm should be applied to
the diagnosis of an automotive exhaust gas purification system [12,13], which has an
increasing scale, to reduce air pollution. Each sensor contained in the system presented in
[7] has a parameter for fault detection, called “credibility”. A sensor is determined to be
normal or faulty depending on credibility, which is calculated using the results of mutual
tests with other sensors and their credibility.

The conventional algorithm [7] has two limitations. First, the algorithm needs con-
siderable computation even for typical and known faults. Second, the algorithm cannot
detect faulty sensors when multiple sensors in a local area of the sensor network break
down simultaneously. Trivial solution to this problem is to add redundant sensors to the
network, but it is disadvantageous with cost. To overcome the first problem, we have
already proposed an algorithm [8,9].
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In this paper, we propose a new algorithm to overcome the second problem, which
can efficiently and correctly detect simultaneous multiple sensor faults. Specifically, we
improve on the previous analysis of the problem of multiple faults [11], and theoretically
demonstrate that the algorithm enables simultaneous multiple fault detection. Further-
more, we experimentally demonstrate that our algorithm is superior to the conventional
one [7] in terms of the number of necessary sensors and the number of sampling iterations.
To verify the effectiveness of the algorithm, we apply it to the diagnosis of the automotive
exhaust gas purification system mentioned above.

Why can immunity-based system diagnosis not detect simultaneous multiple faults
without any additional redundant sensors? The reason is that the results of mutual tests
among only the faulty sensors may incorrectly be judged as “Normal”, i.e., all sensors
in the test may be judged as normal even though they are faulty. These misjudgments
prevent correct simultaneous multiple fault detection. Therefore, we propose our new
algorithm — which identifies a local area in which sensors suspected of having faults exist,
and excludes the test results obtained from these sensors from the calculation based on
the dynamical model of each sensor’s credibility.

We perform two experiments, which show that the proposed algorithm can correctly
detect simultaneous multiple faults of the sensors without the requirement of any addi-
tional redundant sensors. The first experiment is an example of simultaneous triple fault
detection, showing the efficiency of the proposed algorithm. The result shows that the
proposed algorithm can detect the fault mode with normal sensors and sampling iterations
fewer than those required by the conventional one. The second experiment applies the
proposed algorithm to the diagnosis of the automotive exhaust gas purification system
mentioned above, as a practical application. The results of this example show that the
proposed algorithm can correctly detect a faulty mode that cannot be detected by the
conventional algorithm. The experimental results indicate that our proposed algorithm
can be applied to many other systems as an efficient diagnosis method.

In Section 2, we show the conventional algorithm in the immunity-based system di-
agnosis [7]. Then, in Section 3, we explain a problem associated with the conventional
algorithm for fault detection if multiple sensors in a local area of the system break down
simultaneously. In Section 4, we propose an algorithm that can efficiently detect multiple
faulty sensors that break down simultaneously. In Section 5, we present the experimental
results. Finally, we conclude the paper in Section 6.

2. Conventional Algorithm. In this section, we explain the conventional algorithm
used for the immunity-based system diagnosis [7], which is a base model of our proposed
algorithm. Each sensor has a credibility which is used as a parameter for fault assessment.
If this parameter is more than 0.5, the sensor corresponding to it is considered to be
as “Normal”, otherwise, it is considered to be “Faulty”. Each parameter used in the
conventional algorithm is calculated from the results of the mutual test among other
sensors, and the credibilities of the sensors that are used in the mutual tests. Some
variations in the dynamical model of the credibility have been proposed in accordance
with their purpose [7]. We conducted our study using the dynamical model that allows an
ambiguous state of the credibility because in future, we will conduct a further study using
the magnitude of the credibility as a measure of the degree of deterioration. Figure 1 shows
a control system for a factory that comprises several plants. In the system, the control
center summarizes the information from sensors located in each plant. Furthermore, the
sensors in the same plant monitor each others’ outputs, and the plants and the control
center also monitor each other. s; (i = 1,---,n) is a sensor in the system, and Sk
(k=1,---,m) is a sensor group that includes the sensors whose outputs have a mutual
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correlation. We define “have a mutual correlation” as a functional relationship, i.e., the
relationship in which one variable is determined if other variables are given. Figure 2
shows the relationship between sensors in the system shown in Figure 1. The number
marked right side of sensors in Figure 1 corresponds to the sensor number ¢ of s; in
Figure 2. This system has a sensor s; (i = 1,---,7), and there is a sensor group Sk
(k=1,---,9), where S is a set of sensors that has mutual correlations. For example,
in the case of S; = {s1, $2}, the output value of sy is determined uniquely if that of s;
is given. Ty (k= 1,---,9) is a parameter of test results, and takes either a positive or
negative value according to the result of the test, whether or not the sensors included in
Sy satisfy the predetermined relationship. r;(t) is the time function of the credibility of
sensor s; at time ¢, and its dynamical model is expressed as Equation (1) [8,9,11].

ilt) S~ rirn o) I B b - 20 1)

dt ) T
k,s; €5, 758;€Sk
J7i
where > is a sum of index k of sensor group Sy that includes sensor s;, and [ is
k,s; €Sk 7,85 €Sk

a product of the credibility of index j of sensor s; included in S except s;. In Eq]uittion
(1), the second term on the right side is added as a time constant 7 to that of stated in
the cited paper [7] so that the dynamical model does not depend on specifying a unit of
time [9]. R;(t) € [0, 1] is the credibility calculated by normalizing r;(t) € (—o0,00), as in
Equation (2).
1
i~ - (2)
p(=ri(t))

The sensor s; is judged as being “Faulty” if R;(t) < 0.5; otherwise, s; is considered to be
“Normal”. T}, is a basic parameter of mutual test results between outputs of sensors in
Sk, and it is defined as in Equation (3).

T, = { L, if |fe(vi(t))] < e (3)

—1, otherwise

R;(t)

where fi(vi(t)) = 0 is a typical relationship among sensors in S, and vi(t) is the vector of
outputs of sensors included in Sy at time . A constraint among sensors in S}, is expressed
as | fe(vi(t))] < ek, where g is the allowable error that is predetermined considering the
manufacture tolerance and so on. A basic parameter of test result 7, becomes 1 if the
constraint is satisfied; otherwise, Ty becomes —1. T} is a parameter of the mutual test
result defined as Equation (4).

where h; is the number of sensors included in Sy, and )\, is an adjustment factor for
adjusting the range of T;". )y is set such that 0 < A\, < hy [7].
Similarly, the credibility of a constraint is introduced. Rr,(t) is a credibility of con-

straint | fx(vi(t))| < €, and its time function is 77, (t) € (—00,0]. A dynamical model of
rr, (t) is expressed as Equation (5), and Ry, (t) is expressed as Equation (6).

der (t) _ o+ T, (t)
g = L [T R - - (5)

1,8;ESk

1, Tk =1
Ry, (1) = { 2/{1 +exp(—rr,(t))}, otherwise (©)
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FIGURE 1. Factory control system with 4 plants
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FIGURE 2. Sensor network (with 7 sensors and 9 sensor groups)

3. Difficulty with Simultaneous Multiple Faults on the Conventional Algo-
rithm. The occurrence of simultaneous multiple faults is a difficult challenge for immu-
nity-based system diagnosis, because it prevents the credibilities of faulty sensors from
decreasing if the fault mode occurs, and the diagnosis may not detect faulty sensors.
First, we explain the dynamical model of the credibility of the faulty sensor in the case
where a single sensor breaks down. Next, we explain the model for where multiple sensors
in a local area of the system break down simultaneously. Considering the case where a
single sensor s, in the system breaks down, all of the constraints of the sensor groups that
include s, are not satisfied, and all results of mutual tests corresponding to the sensor
groups become NG (NG: T}, = —1). Therefore, we obtain the dynamical model of the time
function of the credibility R, of faulty sensor s, from Equations (1) and (4) as Equation

(7).

dr(t t
Wl s 3R [T R0 -
k,s4€Sy j,§g€Sk T
: o (7
t
— Z {(Ak—%k)RTk(t) H R;(t) _ 7o)
k,sg€S}, J,8g€ESk T
\ j?é'sg
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In this paper, we set adjustment factor A, as A\, = hy so that the absolute values of
T, are same that either constraint |fy(vy(¢))| < e, satisfies or not. Therefore, we obtain
T, = M\ — 2hy < 0 from Equation (4). Then, the first term on the right side of Equation
(7) becomes negative and the credibility of s, then quickly decreases below the threshold
of the fault value; finally, a single faulty sensor is assessed as being faulty.

Next, we explain the case where multiple sensors that have mutual correlation break
down simultaneously. The results of the mutual tests among faulty sensors may incorrectly
be assessed as being OK (OK: T} = 1). Figure 3 shows the situation where two sensors
s1, Sp in a local area of the network break down simultaneously. Figure 4 shows the
relationship between the output of sensor s; and that of sy, where sensor group S; =
{s1, 82}, the vector of their output v; = (v, v5), and the constraint | fi(vy)| = v — va| <
g1. Table 1 shows the results of the mutual test between s; and sy, which correspond to
the relationship shown in Figure 4. Cases A, B and C in Figure 4 show the situations
described below. Case A shows the situation where both v; and vy are normal. Case B
shows the situation where v; is abnormal (too small) and vy is normal. Case C shows
the situation where both v; and vy are abnormal (too small). The test result of Case
C becomes “OK” (77 = 1) even though both v; and v, are abnormal, because Case
C satisfies the constraint |fi(vq)| < ;. However, this result is a “Wrong” output. A
situation such as that in Case C can be seen where the sensor’s parts deteriorate over
time, and the output of the sensor decreases more than its original.

Next, we explain the influence of the “Wrong” result of the mutual test on the dynamical
model of the credibilities. Let the sensor groups that include a faulty sensor s;, where
the mutual test results are NG be ZV¢ and let the sensor groups that include s,, where
the mutual test results for faulty sensors are incorrectly “OK” be Z9%. We obtain the
dynamical model of credibility of s, from Equation (1) as Equation (8), where T} = hy,

® Faulty sensor
Q Nomnal sensor

Vi 4 .

S @ Case: A
D_ _O /_’_ 'o/ o Case: B
‘ /1 Fivv)=0
B ll A Case C
g A i /A actual value
1

F1GURE 4. Relationship showing output of two sensors
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TABLE 1. Test result corresponding to Figure 4

Case Output of sensor lf7(v;.v5) | Testresult
Vi V2
A Normal Normal < g1 OK
B Faulty Normal > gl NG
C Faulty Faulty <el OK(Wrong)

Ry, (t) =1, if Sy € 2% and T;f = —hy, if Sk, € ZVC from Equation (6).

dry(t)

— = > TiRn () [ RO
k,s4€Sk,S,€EOK §,5g€S,SeZO0K
J#g

+ ¥ TRt [ RO o)

-
k,s4€Sk,SLEENC l,54€Sk,SLEENCG
l#g
(8)
= > o ] R
k75965k7sk€EOK j,ngSk,SkEEOK
J#g

+ Y —mBr,(t) [ R - r(t)

-
k,sg€Sy,SLEENG l,54€Sy,SEENC
I#g

The first term on the right side of Equation (8) is positive, so the decreasing speed of
the credibility of s, becomes slower than that of s,, which was calculated by Equation
(7). Therefore, the “wrong” result of the mutual test delays the timing with which the
fault is determined. Furthermore, if R,(t) > 0.5 (r4(t) > 0), and the magnitude relation
on the right side of Equation (8) becomes as in Equation (9), then the dynamical model
of R, remains above the fault threshold value, i.e., the diagnosis cannot judge sensor s,
as being faulty.

> Sm I mo
k,s4€S),S,€EO0K §,89€Sk,S,EEOK
J#9g
) (9)
rg(t)
> > R () [ R =
k,SQESk,,SkEENG l,SQESk,Sk,EENG
\ l#g

Assuming that the number of sensors included in Sy is all same as shown in Figure 2,
that is, by are all same, and that [ R;(¢) is equal to [] R;(t) because all credibilities are
same normal value at just after simultaneous multiple faults occurrence. Taking Ry, €
[0,1] into consideration, it is likely that Equation (9) will be satisfied if the magnitude

relation of the number of sensor groups Z°% and ZV¢ becomes |=VY| < |Z9K|. Generally,
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the outputs of sensors in a local area of the system have high correlation. Therefore, there
are high density connections among sensors in this area. Inappropriate results of mutual
tests among faulty sensors may occur if multiple sensors break down simultaneously in
such an area. Increasing the number of sensor groups |=V¢| is an effective method of
suppressing the satisfaction of the magnitude relation of Equation (9), even though there
are inaccurate results of mutual tests. The method is the same as adding redundant
sensors and increasing sensor groups for which the mutual test results are NG. However,
this method is disadvantageous with respect to cost.

We show the difficulty associated with multiple fault detection using a simulation. The
simulation conditions were as follows. The target network architecture of the simulation
has 7 sensors, as shown in Figure 2. The arrangement of faulty sensors in this network is
shown in Figure 5, and the number of faulty sensors is 3, which is nearly half of the sensors
in the network. Furthermore, the connections of the 3 faulty sensors form a complete
graph. This formation is an important condition of fault detection, because faulty sensors
have many connections with other faulty sensors; there are likely to be inaccurate mutual
test results that may prevent the detection of faulty sensors. For simplicity, the output
values of all sensors are the same and are time-invariant. Furthermore, we set the condition
of the output value of faulty sensors so that the results of mutual tests among the faulty
sensors are all “OK(Wrong)”. Details of the simulation condition are shown in Table 2.
Figure 6(a) shows the behavior of the credibility of each faulty sensor in the case where
they alternately break down, i.e., one sensor breaks down after a fault assessment of
another faulty sensor. In this case, the fault detection for each faulty sensor is correct. The
reason is that the influence of the “OK(Wrong)” on the dynamical model of the credibility
of a faulty sensor (expressed as Equation (8)) decreases because the credibilities of other
faulty sensors have already become small after assessments of their faults. However, all of
the credibilities of faulty sensors increase over the fault judgment value after identifying
a third faulty sensor, i.e., the diagnosis algorithm cannot continue to assess faults for
three faulty sensors. The reason is that the results of mutual tests 77, T, and T3 become
“OK(Wrong)” after the third faulty sensor judgment, then the dynamical model of the

@ Faulty sensor

O Normal sensor

FIGURE 5. Simulation model (with 3 faulty sensors and 4 normal sensors)

TABLE 2. Simulation conditions

Parameters Value
Normal | 1 (constant)
Faulty 0 (constant)

Output of sensor

Allowable error (gi; k=1,"--,9) 0.5
Adjstment factor (2x; £=1,""".9) 2
Time constant (1) 1.0

Step size (i) 0.1
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Number of time of sampling _ Number of time of sampling
(a) In case of breaking down one by one (b) In case of simultaneous breaking down

FIGURE 6. Simulation results for the detection of 3 faulty sensors using the
conventional algorithm (behavior of the credibilities)

credibilities of sy, sy, s3 has two “OK(Wrong)” test results and one NG test result,
and they become positive. Figure 6(b) shows the behavior of the credibility of each
faulty sensor in the case where they break down simultaneously. Slight changes in the
credibilities can be seen just after faults occur, but no credibilities decrease below the
fault judgment value.

As a result, the conventional algorithm cannot detect three faulty sensors that break
down simultaneously in a local area of the system.

4. Proposed Algorithm. In the previous section, we explain that the credibilities of
faulty sensors in the immunity-based system diagnosis may be prevented from decreasing
due to inaccurate test results. Then, its fault detection timing is either delayed [11] or it
cannot, detect faulty sensors if simultaneous multiple faults occur.

To overcome this problem, we proposed a new algorithm for simultaneous multiple-fault
detection. The feature of the proposed algorithm is identifying a local area in which the
“suspected faulty” sensors exist, and excluding the mutual test among sensors suspected
of having faults based on calculations of the dynamical model of the credibility of each
Sensor.

The proposed algorithm is composed of three parts as follows:

[Step 1] Assessment of the presence/absence of application of excluding the inaccurate
mutual test result.

[Step 2] Identifying a local area in which the “suspected faulty” sensors exist, and detecting
these sensors.

[Step 3] Excluding inaccurate mutual test results among “suspected faulty” sensors.

A detailed explanation of this algorithm is given below:

[Step 1] The presence/absence of application of excluding the inappropriate mutual test
result is assessed by the possibility that multiple faulty sensors exist. The algorithm
determines the possibility of multiple faulty sensors, and applies the excluded inaccurate
test results if there are more than two test results that are “NG” in the system.

[Step 2] Count the number of results of mutual tests that include s; (i = 1,---,n) of
“NG” and that of “OK” for each s;. The set of sensor groups that includes s; is Z;
(i =1,---,n), i.e., Z; = {Skls; € Sk}. The set of sensor groups that includes s; and
whose test result is “NG” is ZNC (i = 1,--- ,n), i.e.,, NG = {Si|s; € Si, Ty = —1}. In
a similar way, the set of sensor groups that includes s; and whose test result is “OK” is
EOK (i =1,---,n), ie., 29K = {Sy|s; € Sy, Tx = 1}. The numbers of elements of set

1 1
ENG and EK are N; (i =1,---,n) and O; (i = 1,--- ,n), respectively, i.e., N; = |[EN¢|,
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0, = |ElOK| If 2 < N; < O; and O; is the largest in the all sensors, then let the elements

included in ZN¢ except s; be a set of “suspected faulty” sensors D;.

pi= U Su-{sd) (10)

u,S, €ENC

In Equation (10) S, — {s;} is defended as S, — {s;} = {sk|sx € Su, k # i}. The condition
2 < N; < O; and Equation (10) are based on the following consideration: sensor s;, which
has more “OK” results than that of “NG” is regarded as a “normal sensor”, and s; is
assumed to be on the boundary line between the region in which the multiple “suspected
faulty” sensors exist and that where the “possibly normal” sensors exist if s; satisfies
2 < N; < Oy, as shown in Figure 7. The sensors whose mutual test results with s; are
“NG,” are regarded as “suspected faulty” sensors.

Boundary line

Region of the Region of the
'suspected of faulty’ sensors . 'Tegarded as normal' sensors

----------------------- Sui

Saz

Saz
@ Faulty sensor
O Normal sensor

e e--

O, test results
(all OK)

_______________________

Ficure 7. Concept of identifying local area in which the suspected faulty
sensors exist

The set of “suspected faulty” sensors in the entire system F'is a sum of D;, which is
expressed as Equation (11).

F=|]JD; (11)

[Step 3] Exclude the results of the mutual test among only the “suspected faulty” sensors
from the calculation of the dynamical model of the credibility of each sensor. To exclude
the test results, we expanded the parameters of test result 7, in the conventional algo-
rithm that is expressed as Equation (3) and Equation (4). The expanded parameter of
test result 7} is defined in Equation (12).

[0, ifSy€eP(F)

Ty = { T, otherwise (12)

where P(F') is a power set of set F'. P(F) is the set of sensor groups which includes only
“suspected faulty” sensors. The dynamical model of the credibility, which is expressed as
Equation (1), is modified as Equation (13) using the expanded test result T}

D _ S~ A erg o) T B s - 0 (13)

dt , T
k;siesk ],Sjesk
J#
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|
- ¥
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!

Calculate the dy namical model of credibility
Dr¢{N) with Equation(13)

Ficure 8. Flowchart of the proposed algorithm

| Judge sensor s; as "Fanlty" ‘ ‘ Judge sensor s; as "Normal" ‘

The parameter of the results of mutual test 7;' among only “suspected faulty” sensors
in S, € P(F) is calculated as 0 using Equation (12). Therefore, the inaccurate mutual
test result is excluded from the first term on the right side of Equation (13). The flowchart
of the proposed algorithm is shown in Figure 8.

5. Experiments. In this section, we demonstrate that our algorithm is superior to the
conventional one [7] in terms of the number of necessary sensors and the number of
sampling iterations by performing computer simulations.

5.1. Simultaneous triple fault detection. We show two kinds of results of the simul-
taneous triple fault detection in this section. The first is the result performed under the
condition where the number of faulty sensors is one less than that of normal sensors. This
condition is the most difficult for the diagnosis using immunity-based system to detect
faulty sensors, because the diagnosis uses a mutual test together with other sensors, so it
is impossible in principle to detect faulty sensors which are greater in number than nor-
mal sensors. The second is the comparison of the minimum number of necessary normal
sensors between the proposed algorithm and the conventional one.

First, we set the simulation conditions to be the same as what was explained in Section
3, i.e., where the conventional algorithm cannot correctly detect faulty sensors.

In terms of the simulation conditions, the network architecture and arrangement of
faulty sensors and normal sensors are shown in Figure 5, and the setting of each pa-
rameter is shown in Table 2. Table 3 shows the result of each parameter correspond-
ing to all sensors s; in the system, as calculated by the proposed algorithm. Only
s, satisfies the condition of detecting “suspected faulty” sensors, and 2 < N; < Oj.
The set of “suspected faulty” sensors corresponding to s4, D, is calculated as D, =
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TABLE 3. Simulation results of the proposed algorithm (results of detecting
“suspected faulty” sensors and excluding inaccurate test results)

i 5 5;N6 =% In:|o:| D F o |s,epp | Excluded
test results

1 15:,83,54} 154} 18:,83} 1 2 {g}

2 {S7,8:,85} {85} {8:,5-} 1]2 {g}

3 {5:,5:,56} {Ss} {52,853} 1 2 {6}

4 154,55,8657,56,80} | {854,55,55}|{57,85,50}| 3 3 |{s152,53{52,52,53}|8:1,82,85 | T1,72,T3

5 187} {s} {87} 01 {s}

6 1Ss} {0} {85} 0]1 {s}

7 {So} {0} {80} 0]1 {s}

1 £y I 1 Y I

:;:l —R1 MR :;:I —R2
U\ Caonventional algorithm Conventi onal algorithm

Timing of fault judgment (R,=<0.5)

= Timing of fault judgment (R, <0.5) I
= Number of time of Sampling: 19times = Number of time of Sampling: 19times
= 05 T - = 05
= =
8 [
: u\ : “\
—— | —— |
0 0
0 50 100 150 0 50 100 150
Number of time of sampling Number of time of sampling
(a) Credibility of sensor s; (fault) (b) Credibility of sensor s (fault)
1 Fa 1 1 i
W\ R3 | | | —ra
'S |
RJ
R, R, R, ——R5
I Timing of fault jucdgment (R;<0.5) = |
% 05 _e/ Number of time of Sampling: 19times g 05 Minimum value of credibilty RG
% ' % ' at timing of fault jucgment
5 o (R;=R,=R;=0.879) -
0 0
0 500 100 150 0 50 100 150
Number of time of sampling Number of time of sampling
(¢c) Credibility of sensor sz (fault) (d) Credibilities of sensor sy, s5, s¢ and s7 (normal)

FIGURE 9. Simulation results for the proposed algorithm (behavior of the credibilities)

U (Su—{s4}) = {s1,52,s3} using Equation (10). The set of “suspected faulty”
u,Sy €EYC
sensors of the entire system F' is calculated as F' = Dy = {s1, S2, 53} using Equation
(11). Then, P(F) = {¢, {s1}, {s2}, {s3}, {51, s2}, {52, 53}, {51, 53}, {51, 52, 53} }. The sen-
sor groups that satisfy Sy € P(F) are Si, Sy and S3. Therefore, the results of the mutual
tests that were excluded from each calculation of the dynamical model of the credibilities
are 11, Ty and T3; the expanded test results corresponding to 77, 15 and T3 are calculated
as Ty = Ty = T; = 0 using Equation (12).

Finally, the dynamical model of the credibility of each sensor is calculated from Equa-
tion (13). Figure 9 shows the behavior of the credibilities of each sensor. Figures 9(a)-9(c)
show the credibilities Ry, Ry and Rj3 of faulty sensors s;, ss and s3, respectively; they
show that all of the credibilities decrease below the fault judgment value at 19 sampling
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time intervals after the occurrence of faults of s, sy and s3. On the other hand, Figure
9(d) shows the credibilities of normal sensors sy, S5, s¢ and s7, and they stay in the normal
judgment region (over the fault judgment value).

Next, we show the second result. Table 4 shows the comparison of the minimum number
of necessary normal sensors. The proposed algorithm needs four normal sensors to detect
the fault mode, i.e., it can detect faulty sensors which number is one less than that of
normal sensors, that is, no redundant sensors, as demonstrated in the first result. On
the other hand, the conventional algorithm needs six normal sensors, i.e., it requires two
redundant sensors. Moreover, the proposed algorithm needs less number of sampling
iterations than the conventional one.

As a result, we demonstrated that the simultaneous break down of three faulty sensors
in a local area of the network is efficiently detected by the proposed algorithm.

5.2. Application to the automotive exhaust gas purification system. In this sec-
tion, we apply the proposed algorithm to the diagnosis of the automotive exhaust gas
purification system shown in Figure 10 [12], as a practical application. This system pu-
rifies exhaust gas including hazardous substances such as hydrocarbons (HCs), carbon
monoxide (CO), and nitrogen oxide (NOx), using a three-way catalytic converter (TWC),
thus reducing air pollution. TWC converts these hazardous substances into harmless com-
ponents such as water vapor (H20), carbon dioxide (CO,), and nitrogen (N3). Optimal
conversion efficiency is attained if the mass ratio of air and fuel supplied to the automo-
tive engine is about 14.6, as shown in Figure 11 [13]. Therefore, an important task of the
system is to precisely supply fuel to the engine according to the amount of engine intake
air. To precisely supply fuel to the engine, the amount of supplied fuel is compensated
by the feedback control, which has a primary feedback loop with the linear air-fuel ratio
sensor and a secondary feedback loop with the oxygen sensor [14]. These sensors are ar-
ranged on the exhaust section of the engine, where temperature is very high. Therefore,
these sensors may break down simultaneously because of abnormally high temperature, if
abnormal combustion occurs because of use of inferior fuel. Considering such a situation,
we set the simulation conditions.

Let v; (1 =1,...,9) be the outputs of the sensors s; (i = 1,...,9). The sensor groups
and their constraints are expressed as follows. In the exhaust section, the sensor groups
are S; = {s1,82}, So = {s1,83,54,5s} and S3 = {s9, 53,4, 53}. Their constraints are
1 — G1(v2)| < €1, |v1 — Go(vs, vg, v8)| < €2, |vg — G3(v3, vy, v8)| < €3, Tespectively, where
vy = Gy(vy), v] = Ga(vs, vy, v8), vy = G3(vs, v4,vs), v] is the estimated value of vy, and v}
is the estimated value of v,. In the intake air mass measurement section, the sensor groups
are S; = {s3, 5,86} and S5 = {s3, s5,57}. Their constraints are |v3 — G4(vs,v6)| < &4
and |vs — G5(vs,v7)| < €5, respectively, where vy = G4(vs,vs), v = Gs5(vs,v7), and v}

TABLE 4. Comparison of the minimum number of necessary normal sensors

Condition Results
Number of sensors ; lt?autl.t Number of
etection
Algorithm lin;
Overall Normal Faulty |Redundant gom (O: detect S?tl.ﬁes]g
correctly)
9 6 3 ) Conventional O 110
Proposed O 14
3 5 3 I Conventional x -
Proposed O 16
Conventional X -
7 4 3 0
Proposed (@] 19
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is the estimated value of v3. In the intake air mass control section, the sensor group is
Se = {se, s7}, and its constraint is |vg — v7| < g6. In the fuel supply control section, the
sensor group is S; = {sy, S5, Ss, So}, and its constraint is |G7(vy, v8) — Gra(vs,v9)| < £7,
where G71(vyg,vs) is the estimated amount of the fuel supplied from the injector, and
G72(vs, vg) is that supplied from the high pressure pump.

Let the faulty sensors be the linear air—fuel ratio sensor (s;) and the oxygen sensor
(s2). Therefore, we set the simulation conditions in terms of the constraints of these
faulty Sensors as |7)1 -Gy (U2)| < ey, |U1 —GQ(Ug, V4, 7)8)| > €9, and |U2 —Gg(Ug, V4, 7)8)| > £3.

The sensor network of this simulation model is shown in Figure 12. Table 5 shows the
result of the parameters corresponding to all sensors s; in the system, as calculated by
the proposed algorithm. Only s3 satisfies the condition of detecting “suspected faulty”
sensors, and 2 < N3 < O3. Therefore, the result of the mutual test that was excluded
from each calculation of the dynamical model of the credibilities is T;. Figure 13(a) shows
the behavior of the credibilities of the sensors by using the conventional algorithm, and
Figure 13(b) shows those obtained using the proposed algorithm. The credibilities of s,
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FIGURE 12. Sensor network corresponding to the exhaust gas purification system

TABLE 5. Simulation results of the proposed algorithm (results of detecting
“suspected faulty” sensors and excluding inaccurate test results)

i =, 5 N6 =% |n,|o. D, F S, EP(F) z‘i?:jiii
1 15,55} 523 53 1 1 {s}

2 18,85} 1533 53 1|1 {g}

3 155,55,85,.85} 18,8, 15,55} 2 [ 2 [{ss.5554551

4 182,538} {82,853} 1573 211 {g}

5 545587} 161 945858, 0] 3 16} (51525458} 5 T,

6 18454} 1o} 18455} 0] 2 {g}

7 18584} e} 18554} 02 {g}

8 1825387} 182,83} 1577 211 {0}

9 573 {g] 573 01 {g}

and s, in Figure 13(a) slightly change just after faults occur, but do not decrease below
the fault judgment value. On the other hand, those in Figure 13(b) decrease below the
fault judgment value after only 20 sampling iterations, i.e., the proposed algorithm can
correctly detect the faults of both s; and s without addition of redundant sensors.

6. Conclusion. In this paper, we discussed the reason for which the immunity-based
system diagnosis cannot detect faulty sensors, or its fault detection timing is delayed
using the conventional algorithm if multiple sensors break down simultaneously. Next
we proposed a new algorithm that efficiently detects multiple sensors in a local area of
the network break down simultaneously. The proposed algorithm identifies a local area
in which sensors suspected of having faults exist, and excludes the test results obtained
from these sensors from the calculation based on the dynamical model of each sensor’s
credibility. Because the algorithm for fault detection involving immunity-based system
diagnosis uses a mutual test together with other sensors, it is impossible in principle for the
diagnosis to detect faulty sensors which are greater in number than normal sensors. In the
first experiment, we set the simulation condition to be that the number of faulty sensors
should be one less than that of normal sensors. In the second experiment, we applied the
proposed algorithm to the diagnosis of the automotive exhaust gas purification system as a
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FIGURE 13. Simulation results for the proposed algorithm (behavior of the credibilities)

practical application. Both experimental results demonstrate that the proposed algorithm
can correctly detect faulty sensors without the requirement of any additional redundant
sensors under these conditions where the conventional algorithm cannot correctly detect
them. We therefore conclude that the proposed algorithm is more efficient than the
conventional one.

It is hoped that sensor networks for diagnoses that do not require any redundant sensors
and that are advantageous from a cost perspective can be realized using our proposed
algorithm. Especially, it is hoped that the proposed algorithm is applied to diagnosis of
the systems which have possibility of occurrence of multiple sensor faults due to being used
under severe conditions, for example, automotive engines, steelworks and power stations.
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