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Abstract. The positive stabilization problem of discrete-time descriptor systems by
means of state-feedback control is studied here. Thus, conditions are developed for a
state-feedback controller to make the controlled descriptor system simultaneously stable
and positive. An illustrative example is provided to illustrate the proposed approach.

1. Introduction. There is growing interest in the control community to study descrip-
tor (also called singular) systems, since they have broad applications due to their natural
capability to describe physical systems [11, 21, 23, 29, 32]. Indeed, descriptor models rep-
resent systems described by differential and algebraic equations, so the representation of
systems provided by descriptor systems is more general than the representations currently
used for the analysis and design of control systems. Thus, descriptor systems models are
used in several areas of application such as electrical circuits, computer networks, biotech-
nology and economics [10, 11, 17, 19, 27]. This is mainly because some systems in these
areas cannot be precisely modeled by standard state-space systems, due to the presence of
algebraic constraints in the models [7]. Several concepts and results obtained for standard
state-space systems have already been extended to descriptor systems; for example, we
can cite the analysis and synthesis of state feedback, output feedback, pole placement or
robust controllers presented in [9, 10, 11, 20, 26, 29, 31]. In addition, many variables in
these systems involve quantities that are intrinsically nonnegative, such as concentrations
of substances, level of liquids, and number of proteins. Hence, the mathematical model
describing these systems must take into account this nonnegativity constraint. This leads
to the notion of positive descriptor systems [30]. Although positive systems have been
actively researched and many results have been reported, see for example [2, 3, 12, 24]
and references therein, the literature of positive descriptor systems is much more limited.
In particular, the fundamental issue of characterizing the stability of positive descriptor
systems has only been addressed in [1, 30]. In [30], assuming the non necessary condition
that the matrix that represents the projector on the set of admissible initial conditions
is nonnegative, the stability issue was addressed by using a generalized Perron-Frobenius
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type condition, so that a Lyapunov-type stability condition is derived. In [1] the stability
of positive descriptor systems was investigated without making unnecessary assumptions
and general necessary and sufficient conditions were proposed by means of Linear Pro-
gramming (LP). However, the crucial issue of stabilization still remains unexplored to
date. The aim of this paper is to present the first attempt to tackle this important
problem.
Thus, we present in this manuscript a novel approach to address the problem of effec-

tively computing a state feedback law that makes the descriptor system in closed-loop
to be positive and stable. This approach provides a numerically reliable computational
framework, as illustrated using an example at the end of the paper.
The remainder of the paper is structured as follows. Section 2 gives some preliminary

results and the necessary background required to develop the proposed approach. The
state-feedback stabilization problem is considered in Section 3. A numerical example is
presented in Section 4, and finally some concluding remarks are given.

2. Preliminaries. This section presents some basic results which will be needed in the
sequel.
The following class of descriptor systems is considered in this paper:

Exk+1 = Axk +Buk, (1)

where x0 ∈ Rn and the matrices E,A ∈ Rn×n and B ∈ Rn×p are time-invariant.
The problem dealt with in this paper is to find a feedback law uk = Kxk for the system

(1) such that the resulting closed-loop system is positive (in the sense defined below) and
stable, i.e., such that

Exk+1 = (A+BK)xk, x0 ∈ Rn
+, (2)

is positive and stable.
To this end, let us recall the basic background of this type of systems.

Definition 2.1. Let A,E ∈ Rn×n. The pair (E,A) is called regular if det(λE − A) 6= 0
for some λ ∈ C.

Remark 2.1. If the pair (E,A) is regular, then there exists a solution of (1), see [7].
Thus, we will assume regularity in the remaining part of the paper, and for simplicity, the
following notation will be used:

Ê := (λE − A)−1E

Â := (λE − A)−1A

Remark 2.2. The solutions of (1) will be described in terms of the so-called Drazin
inverse: for a matrix M this Drazin inverse is denoted MD. Further details on this
inverse can be found for example in [7].

Next, we define the positivity of the following autonomous descriptor system,

Exk+1 = Axk, x0 ∈ Rn
+. (3)

Definition 2.2. The descriptor system (3) is said to be positive if, for all k ∈ R+, we
have that xk ∈ Rn

+ for any consistent initial condition x0 ≥ 0, where the set of consistent
initial conditions, is described by

ÊDÊx0 ≥ 0.

Conditions under which system (3) is positive are presented in the following result.

Theorem 2.1. Consider the system (3) and assume that ÊDÊ ≥ 0. Then the following
statements are equivalent:
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(1) System (1) is positive.

(2) ÊDÂ ≥ 0.

Proof: The equivalence of 1) and 2) follows from [30, Theorem 3.8].
For the notion of stability we now introduce the following standard definitions.

Definition 2.3. A scalar λ ∈ C is an eigenvalue of (E,A) if det(λE − A) = 0. The
finite spectral radius ρ(E,A) of (E,A) is defined as the maximum absolute value among
the eigenvalues of (E,A). The descriptor system (3) is said to be stable if ρ(E,A) < 1.

Next we recall the necessary and sufficient conditions for the asymptotic stability of
the system (3) in the case when the system (3) is positive.

Theorem 2.2. Let system (3) be positive. Then it is asymptotically stable if and only if
there exists a positive definite diagonal matrix Y such that(

ÊDÂ
)T

Y
(
ÊDÂ

)
− Y

is negative definite or equivalently if and only if ÊDÂ is a Schur matrix.

Proof: The first equivalence was first established in [30, Theorem 4.8] and the second
one follows from standard Lyapunov arguments.

The following result will be used in order to derive our main results in the next section,
see [2, Theorem 2.4].

Theorem 2.3. If ÊDÂ is a nonnegative matrix, then the descriptor system (1) is asymp-
totically stable if and only if there exists α > 0 such that(

ÊDÂ− I
)
α < 0. (4)

3. Positive Stabilization via Steady State Feedback. We now propose a new ap-
proach for solving the problem of positive stabilization of a given descriptor system, i.e.,
for finding a steady state feedback law in such a way that the resulting closed-loop system
is simultaneously positive and stable.

Making use of the ideas in [1] and Theorems 2.1 and 2.3, we present now a result on
the problem of the stabilization of system (4) by using the following class of controlled
descriptor systems: {

Exk+1 = Axk +Buk,
xk ≥ 0

(5)

where B ∈ Rn×p and the control signal is calculated from static state feedback u(k) =
Kx(k).

Theorem 3.1. Consider system (5) with (E,A) regular. Then, the following statements
are equivalent:

(i) There exists a stabilizing matrix K such that the state-feedback law u(t) = Kx(t) for
system (5) makes the closed-loop system positive and stable.

(ii) There exist λ ∈ C, x̄ = [x̄(1), . . . , x̄(n)]T ∈ Rn, y1, . . . , yn ∈ Rp such that the
following conditions are satisfied:
(a) (λE − A−BK)−1 exists;
(b) (

E
D
A− I

)
x̄+ E

D
B

n∑
i=1

yi < 0, (6)

x̄ > 0, (7)
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E

D
A
)
(i, j)x̄(j) + biyi ≥ 0, (8)

for i, j = 1, . . . , n, where

E = (λE − A−BK)−1E, (9)

B = (λE − A−BK)−1B, (10)

A = (λE − A−BK)−1A (11)

and bi are the rows of the matrix E
D
B.

Proof: Clearly, the closed-loop system is described by the formula Exk+1 = (A +
BK)xk. Define Ã := (λE − A − BK)−1(A + BK) = (A + BK). Thus, in the light of
Theorems 2.1 and 2.2, statement (i) is equivalent to the condition

E
D
A+ E

D
BK = E

D
Ã is nonnegative and Schur,

which is equivalent, by Theorem 2.3, to

E
D
Ã ≥ 0 and

(
E

D
Ã− I

)
x̄ < 0, (12)

for some x̄ > 0.
Thus, it is sufficient to show the equivalence between statement (ii) and the existence

of a gain matrix K such that conditions (12) are satisfied.
Define K = [ki]

n
i=1 = [x̄(1)−1y1 . . . x̄(n)−1yn] ∈ Rp×n. Since ki = x̄(i)−1yi for

i = 1, . . . , n, inequality (8) is equivalent to

E
D
A(i, j) + bix̄(i)

−1yi = E
D
A(i, j) + biki ≥ 0

m(
E

D
A+ E

D
BK

)
= E

D
Ã ≥ 0,

which amounts to saying that inequality (8) is equivalent to the positivity of the closed-
loop system. For stability, we work out Equation (6) to obtain,(

E
D
A− I

)
x̄+ E

D
B

n∑
i=1

yi =

[(
E

D
A− I

)
+ E

D
B

(
n∑

i=1

yi

)
(x̄−1)

]
x̄

=
[(

E
D
A− I

)
+ E

D
BK

]
x̄

=
(
E

D
Ã− I

)
x̄.

where x̄−1 = diag (x̄−1
i ) and Kx̄ =

∑n
i=1 yi. Hence, by Theorem 2.3, we have that x̄ > 0

and (
E

D
A− I

)
x̄+ E

D
B

n∑
i=1

yi =
(
E

D (
A+BK

)
− I
)
x̄

=
(
E

D
Ã− I

)
x̄ < 0

if and only if E
D
Ã is Schur. This concludes the proof.

Using the last statement of Theorem 3.1 combined with Theorem 2.1, one can obtain
the following corollary.

Corollary 3.1. Let system (5) be given and assume that EDE ≥ 0. Then, system (5) is
positive and stable if there exist x̄ = [x̄(1), . . . , x̄(n)]T ∈ Rn, y1, . . . , yn ∈ Rn such that the
following conditions hold:
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(1) EA+ EBK = AE +BKE;
(2)

(EA− I)x̄+ EB

n∑
i=1

yi < 0, (13)

x̄ > 0, (14)

EA(i, j)x̄(j) + b>i yi ≥ 0, (15)

for i, j = 1, . . . , n, where bi are the rows of EB.

Corollary 3.2. It follows from Proposition 1 in [5] that if, instead of assuming ÊDÊ ≥ 0,
we have that EDE ≥ 0 and EA = AE, then system (1) is positive if and only if EDA ≥ 0.
This corollary then follows easily using Theorem 3.1.

Remark 3.1. Note that the condition (Eλ − A − BK)−1 in Theorem 3.1 amounts to

saying that E
D
A = AE

D
, or equivalently, that the pair (E,A) is regular. In addition, it

is not difficult to check that EDE > 0 implies that E
D
E > 0.

We must remark that the proposed method, via the conditions of Theorem 3.1 (and
Corollaries 3.1 and 3.2), is heuristic due to the non-convexity of the problem. Therefore, it
may not always be possible to determine whether the problem admits a feasible solution.
The modification of the proposed conditions is currently being researched, in such a way
that the conditions will be computationally more effective.

4. Example. A simple numerical example is now dealt with using the proposed approach
to illustrate its applicability.

Example 4.1. Consider the descriptor system in (5) with

E =

(
1 0
0 0

)
, A =

(
1/2 0
1 1

)
, B =

(
0
1

)
.

The objective is to design a state-feedback controller that makes the system simultaneously
positive and stable (observe that the original system is not positive: thus, we want to
impose positivity by feedback). For this, a suitable gain matrix K = [K1 K2] can be
obtained from Theorem 3.1. First, matrices A, B and E can be evaluated from (9)-(11)
by fixing (for instance) λ = 2,

A = (λE − A−BK)−1A =

(
−1/2(1 +K2) 0

1/2(1 +K1) + 3/2 3/2

)
,

B = (λE − A−BK)−1B =
−2/3

1 +K2

(
0
3/2

)
,

E = (λE − A−BK)−1E =
−2/3

1 +K2

(
−(1 +K2) 0
1 +K1 0

)
,

(where K2 <> −1 to ensure regularity). To evaluate the conditions in Theorem 3.1 the
Drazin inverse of E is needed, that can be seen to be

E
D
=

1

λ2
1

E =
−3

2(1 +K2)

(
−(1 +K2) 0
1 +K1 0

)
.
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The conditions of (6)-(8) of Theorem 3.1 turn out to be the following:

1

1 +K2

[
−1

2
(1 +K1)x1 − (1 +K2)x2

]
< 0, (16)(

x1

x2

)
> 0, (17)

−1

2
(1 +K1)(1 +K2) ≥ 0 (18)

Any combination of K1 and K2 that fulfill conditions (19) would provide positive stabi-
lization; it is easy to see that if (1 +K2) < 0 then K1 just needs to fulfill

1 +K1 ≥ 0 (19)

From the combinations of values that fulfill these conditions we select, for example,
K = [1 − 2]. Effectively, the closed-loop system, when K = [1 − 2], is given by

E =

(
1 0
0 0

)
, A+BK =

(
1/2 0
2 −1

)
,

which is clearly a positive and stable system, as it corresponds to the following dynamic
equations:

x1,k+1 =
1

2
x1,k, x2,k = 2x1,k.

5. Conclusions. In this paper, we have addressed the problem of finding (for a given
descriptor system) a steady state feedback law such that the resulting system is positive
and stable. We have presented a necessary and sufficient condition for the solvability of
this problem, which was illustrated by way of an example. Although the solvability of the
conditions proposed is not direct in a general case, they do provide some ideas for solving
the problem. In addition, the proposed approach might be extended to other particular
cases, such as the case in which the system matrices are uncertain, but bounded by known
matrices; or the case in which the state and the input vectors must satisfy additional
constraints.
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