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ABSTRACT. Multi-instance multi-label learning (MIML) is proposed to tackle the prob-
lem represented by a bag of instances and associated with multiple labels which appears
in a wide range of real-world tasks. Transforming the MIML problem into an equivalent
problem is a very popular way to solve such learning work. However, such transformation
may lose useful information encoded in training examples. In this paper we propose a
new lazy learning algorithm — Instance-Based K-Nearest Neighbor (IB-KNN) which trans-
forms MIML to multi-label learning (MLL), but makes full use of information between
instances. Specifically, unlike most existing KNN methods for MIML problem which use
the distance between bags, IB-KNN uses the distance between instances to discover the
neighbor instances. Then, the neighbor instances vote to generate the preliminary re-
sults. After that, the problem becomes a standard MLL problem, and KNN method is
used again to make the final prediction. We test the proposed algorithm on the COREL
image data set and compare it with classical KNN based methods. The results show that
IB-KNN achieves better performance.

Keywords: Multi-instance multi-label learning, Lazy learning, K-Nearest Neighbor,
Image annotation

1. Introduction. In traditional supervised learning, an object is represented as a single
instance and associated with a single label as shown in Figure 1(a). Let X be the input
space and ) be the set of class labels. Traditional supervised learning aims to learn a
function f: X — Y from a data set {(x1,41), ..., (Tm,Ym)}, where z; € X represents an
instance and y; € Y the label of x;. Traditional supervised learning has been successful
in many areas; however, it may not be appropriate when the object contains a number
of instances and is associated with a number of labels. For example, in image classifi-
cation, an image usually contains several different patches, and each can be represented
by a feature vector as an instance; moreover, an image can belong to many categories
simultaneously. There is the similar scenario in text categorization task. For example, a
document usually consists of multiple sections, each of which can be represented as an
instance; in addition, a document usually belongs to multiple topics.

In order to solve the above tasks, multi-instance multi-label learning (MIML) framework
[17] has been proposed recently. In MIML framework, each training example is represented
as multiple instances and has multiple labels as shown in Figure 1(b). Obviously, a
traditional supervised learning problem can be regarded as a problem degenerated from
MIML problem. Therefore, some researchers have proposed methods by transforming an
MIML learning task into a problem under other learning frameworks.

In this paper, we propose an Instance-Based K-Nearest Neighbor (IB-KNN) algorithm
for MIML learning problem, which could make full use of the information of instances. In
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FIGURE 1. (a) Traditional supervised learning; (b) multi-instance multi-
label learning

this method, we organize the neighbor information in a new way. Specifically, given a test
example, IB-KNN firstly finds neighbors based on instances instead of bags in training
data. After that, it generates counting vectors based on these neighbor instances, i.e., to
count the number of neighbors of each label; then, in order to consider the “Minor Being
Winner” problem in multi-instance learning task, we further proposed a Deep KNN step to
process the counting vectors and get the final prediction. Experiments show that IB-KNN
outperforms other existing bag level KNN learning algorithms. It has good potentials with
application to many areas, e.g., automatic image annotation, image rank optimization,
web annotation and other problems which can be represented as MIML learning task.

The rest of this paper is organized as follows. Section 2 reviews related works including
multi-instance learning, multi-label learning and K-Nearest Neighbor based algorithms for
such problems. Section 3 describes the details of IB-KNN approach. Section 4 gives the
experimental results of IB-KNN and several compared state-of-the-arts. Finally, Section
5 concludes this paper.

2. Related Work. Before MIML learning, multi-instance learning (MIL) and multi-
label learning (MLL) have been proposed. MIL, proposed by Dietterich et al. [4], studies
the problem where a real-world object described by a number of instances is associated
with one class label. For multi-instance learning, many methods have been proposed.
For instance, Maron and Tomads [9] proposed the DD algorithm which aims to detect
a point with the maximum diverse density; Zhang and Goldman [13] proposed EM-DD
algorithm which combines DD and EM algorithms together. A lazy learning method
named Citation-KNN was proposed by Wang and Wang [11]. Citation-KNN is a variant
of the K-Nearest Neighbor algorithm (KNN) which uses Hausdorff distance to measure
the distance between bags and adds citation information to determine the label.
Multi-label learning tasks are also ubiquitous in real-world problems. In MLL, each
sample is represented as a single instance associated with a set of labels. For this task,
Zhang and Zhou [15] proposed ML-KNN method which is also derived from the classi-
cal KNN algorithm. This method firstly identifies the top K nearest neighbors of an
instance in the training set and then gains statistical information based on the labels
of these neighbor instances. For an unseen instance, the label set is determined by the



INSTANCE-BASED K-NEAREST NEIGHBOR ALGORITHM 1863

maximum a posteriori (MAP) principle. Besides the ML-KNN, BOOSTEXTER [10],
ADTBOOST.MH [3], RANK-SVM [6] are also popular methods for the MLL tasks.
From the definitions of MIL and MLL, we can find that both of them can be treated as
special cases of MIML. Thus, some methods have been proposed to tackle the MIML prob-
lem by degenerating it into MIL or MLL problem, e.g., MIMLBOOST and MIMLSVM
[12]. In the first step of MIMLBOOST, the MIML task is transformed into MIL task
by changing each MIML sample to several multi-instance bags with single-label. Af-
ter that, it employs the MIBOOSTING algorithm [12] for the transformed MIL problem.
MIMLSVM firstly converts each MIML sample into one instance with multi-label and uses
MLSVM algorithm [2] to solve the transformed MLL task. Lazy learning is an important
type of machine learning methods for many tasks, e.g., classification, and clustering [1].
Thus, lazy learning based methods have also been proposed to solve MIML problems.
For instance, Jin et al. [7] proposed an algorithm to learn a distance metric from multi-
instance multi-label data, and combined this algorithm with Citation-KNN for MIML.
Specifically, this method optimizes the Mahalanobis distance between bags to minimize
the distance between bags in the same classes, and maximizes the distance between bags
from different classes. Based on the optimized distance, their method finally employs
Citation-KNN to MIML task. In addition, inspired by the idea of Citation-KNN, Zhang
[14] proposed MIML-KNN algorithm. Different from the Citation-KNN using minimal
Hausdorff distance, this method employs average Hausdorff metric [16] to measure the
distance. However, the computing of minimal or average Hausdorff distance may lose
some useful information contained in instances. In order to take advantage of such in-
formation, in this paper, we propose the instance-level K-Nearest Neighbor algorithm for
the multi-instance multi-label learning problem, which is detailed in the following section.

3. Algorithm. For MIML learning, given a data set D = {(X;,Y;) | i = 1,2,..., M}
where X; C X contains all instance vectors in the ith bag. Each X; = {xg-z) | j =

1,2,...,N;}, :cg-i) € X. Y; C Y contains the labels of the ith bag. Without loss of

generality, Y; can be treated as a column vector, e.g., ¥; = (ygi),yéi), e ,y(Li))T where
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FIGURE 2. Multi-instance multi-label image has less negative instances
than single-label image.
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yl(z) = 1 indicating bag X; is assigned to class ¢, otherwise yl(l) = 0. Here, N; is the
number of instances in X; and L is the number of all possible labels. For a new bag X,
the task is to predict its label vector Y;.

The traditional assumption for MIL is that the labels of key instances trigger the bag
labels [8]. As shown in Figure 2(a) whose label is “plane”, the key instance containing
plane determines the image label, while other instances, e.g., those containing clouds
and sky, are negative instances. Therefore, the Hausdorff distance between bags may be
suitable. However, in Figure 2(b), when it is considered as a multi-label image, both cloud
and sky become its labels. Here most of the instances are positive, so most of the instances
will be beneficial to label prediction. Based on above observation, we can find that, for
MIML problem, most instances contain useful information. Therefore, using instances
as the basic voting unit may be better than using bags. Motivated by this, unlike some
existing KNN methods which consider bag as the basic voting unit, our approach makes
all instances in the bag participate in voting.

3.1. Counting vector generation algorithm. In IB-KNN, the neighbors of every in-
stance are firstly found out; then these neighbors vote to generate the statistic vector of
labels which we call it “counting vector”. Thus, the counting vector contains statistic
label information of all the nearest neighbors of the instances in the bag.

Specifically, for each instance z;, the distance function between two instances is defined
as:

Ldis (s, 05) = ||z — ]| (1)

Assume that xg-m) is one nearest neighbor of ;™ where m and n represent the identifier

of the bag. Let Y,, be the label vector of the mth bag. For representation convenience,
we use Yy to represent the label vector of the bag that instance x; belongs to. Let IC}“

be the set of nearest neighbors of ;). Then, we define the following function I K L(-) to
sum all the label vectors of bags that the neighbors of instance xl(") belong to:

K

IK L") = Y., (2)
7=1

z; €K, and K} = {z;[j =1,2,..., K1} (3)

where K is the number of neighbors of z™.

To calculate the counting vector of a bag X,,, we firstly sum I K L(-) for all instances in
X, which means that every instance makes a contribution to the counting vector of the
bag by its IKL(-). Let Sy denote the counting vector which is an L-dimensional vector.
Then, the counting vector of bag X, is calculated by:

N
ox, = Y IKL (") (4)
=1

To make the counting vector represent the percentage of votes for each possible label,
we further normalize the counting vector as follows:

~

Ox

Ox, = m (5)

n
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3.2. Deep KNN. Based on the counting vector, we can make prediction for a bag.
However, Paper [11] shows that there is a contradiction in MIL: Minor Being Winner
(e.g., for unseen bags whose three nearest neighbors are two positive and one negative,
if it is predicted as negative rather than positive, the overall prediction accuracy will be
much higher). In traditional supervised learning, the contradiction will not happen. The
contradiction in multiple-instance learning may be explained by the fact that positive
bags contain both “true positive instances” and “false positive instances”, and the latter
may attract negative bags. Apparently, in MIML, such contradiction still exists. So the
number of votes may not correctly reflect the probability of labels. In order to consider
this problem, we firstly generate counting vectors for all training bags; then find the
nearest neighbors from these counting vectors for every test bags. After that, we analyze
the entropy of the neighbors’ counting vectors to generate their weights. Based on this, we
weaken the weight of the counting vector which may bring more noise and strengthen those
more regular. Finally, these nearest neighbors vote again to decide the final prediction
with different weights. We call this method “Deep KNN”.

Let D be the training data set. For each (X;,Y;) € D, i =1,2,...,n, we calculate the
counting vector dyx, according to Equation (3). Then, these counting vectors constitute a

new features set Da = {dx,,0x,,...,0x, }. The distance of two bags can be measured by
calculating the FEuclidean distance between the counting vectors:
Bdis(Xi, Xj) = [0x; = 0x;]] (6)

Suppose that Xt is a new test bag and dg, is its counting vector. IC} is further defined
t
as a set which contains K5 nearest neighbors of § 3, in Da. It can be represented as:

K% = {6x,]j = 1,2,..., K, and 0y, € Ds} (™)

where dx; is the jth nearest neighbor of 0.

It is well known that different neighbors usually make different contribution to predict-
ing the labels of X;. Thus, it is expected that we can get more accurate results if we could
get the weight of each neighbor according to its importance for predicting.

To get such weights, we introduce the entropy in information theory into the computing
process, which can usually be used as a measure of the number of specific ways in which a
system may be arranged, e.g., disorder; the higher the entropy is, the higher the disorder
is. For a counting vector, if the votes are concentrated on several labels, its prediction
will be more credible and it also means that it has a smaller entropy. For each dx; in IC%Q,

its entropy is calculated by:

1
H;, =

L
;= T 2 ), O €K, "
=1

where 5lXj is the /th value of dx;. Then, for )Zt, all the weights of its neighbors in K%t can
be represented as a vector:

W)?t = (w5X1 s ’U)5X2, ey w5XK2> (9)

where

Wey. = J (10)

Let E§~( be the matrix in which each column is the label vector of its corresponding
t

nearest neighbor, i.e.,

Ei}:t = (YXI,YX2,...,YXK2) (].].)
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Once we have E%t and Wy , the label probability of X, can be calculated by:
P(X;) = L% « W, " (12)

Based on this probability, we can further predict the labels of X,. For example, we
can firstly get a threshold; then, the label will be assigned to X, if its corresponding
probability is larger than the threshold and vice versa.

4. Experiments. To show the performance of IB-KNN, we test it on COREL image data
set. In our experiments, only the top 20 most popular keywords are considered because
many keywords only annotate a few images. Consequently, we get a total of 3,947 training
images and 444 test images. The features we use are the same as those proposed in [5].

4.1. Evaluation metrics. The performance is evaluated by five metrics [10], which are
popular for multi-label models; specifically, they are hamming loss, one-error, coverage,
ranking loss and average precision. For a given test MIML data set D = {(X;,Y;) | 1 <
i < p}, they are described as follows.

(1) Hamming loss:

It evaluates the mean of how many times a label pair is misclassified.

1 1
hlossp (h) = ];Z mm(xi)mq (13)
i=1

where h(X;) returns the predicted label. The operator A calculates the number of differ-
ence between two sets. The smaller the value of hlossp (h) is, the better the performance
is.

(2) One-error:

It evaluates how many times of top-ranked label is annotated with wrong label.

12
one-errorp(h) = §;<[arg max hXi,y)] € Vi) (14)
where for predicating 7, (r) equals 1 if 7 holds and 0 otherwise. The smaller the value of
one-errorp(h) is, the better the performance is.
(3) Coverage:
It evaluates how far in rank list we need to coverage all true labels.

12
h) = - k (3] 1 15
coveragep( ) ZE 1 I;lea;( ran h(X y) - ( )

where rankp,(X;,y) is the predictable rank index of label y for example X;. The smaller
the value of coveragep(h) is, the better the performance is.

(4) Ranking loss:

It evaluates the number of misordered label pairs.

I~ 1
rlossp(h) = — — - |R;| (16)
p ; Vil
Ri = {(y1, y2)|M(Xs,y1) < h(X, 1), (y1,92) € Yi x Y;}, where Y is the complementary
set of Y; in Y. The smaller the value of rlossp(h) is, the better the performance is and
max value is 1.
(5) Average precision:
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It evaluates the average precision of labels ranked above a particular label y € Y.

|Pil
avgprecp(h Z Z mnkh X0 (17)

where P; = {|y/| rank,(X;,y") < mnkh(Xi,y), y' € Y;|}. The bigger the value of
avgprecp(h) is, the better the performance is.

TABLE 1. Experimental results of IB-KNN without Deep KNN step and
Citation-KNN methods on the COREL data set (Citation-KNN with ML
means Citation-KNN with metric learning).

Compared Algorithm
Evaluation metrics | IB-KNN without Citation-KNN Citation-KNN
Deep KNN with ML without ML

Hamming loss 0.086 N/A N/A
One-error 0.457 0.570 0.633
Coverage 4.221 5.574 6.000
Ranking loss 0.137 N/A N/A
Average precision 0.611 0.535 0.490

4.2. Instance level and bag level comparison. Most previous algorithms try to find
neighbors on bag level. In order to show that instance level KNN based method has an
inherent advantage over bag level KNN based method, in this section, we firstly compare
IB-KNN without Deep KNN step with bag level KNN methods, i.e., Citation-KNN [11]
and Citation-KNN with metric learning [7]. Citation-KNN is a classic bag level KNN
method for multi-instance learning which uses not only neighbors information but also
citation information; Citation-KNN with metric learning [7] introduces distance metric
learning for optimization into the Citation-KNN. For fair comparison, we cite the result in
[7] (in which only One-error Coverage and Average precision are considered, and the same
features are used). The results are listed in Table 1, from which, we can see that even
without the Deep KNN step IB-KNN obtains better results than the bag level methods.

Note that there is a parameter K; to be considered in IB-KNN without Deep KNN
step. We use cross-validation to determine its best value K; = 14. To further investigate
the impact of K; on the performance of IB-KNN, Figure 3 shows the result on COREL
data set with different K. We can find that, for different evaluation metrics, the best
result appears in the different K. In general, IB-KNN with K; = 14 obtains the best
average precision on all metrics.

4.3. Impact of Deep KNN. To show the impact of Deep KNN step on the performance
of IB-KNN, Table 2 shows the comparison results between IB-KNN with Deep KNN step
and without Deep KNN step. In Section 4.2, we find that 14 is an appropriate value for K;
when this is no Deep KNN step. However, with Deep KNN, there is the other parameter
K, that needs to be considered. Thus, we have to find an appropriate combination of K
and K so that the IB-KNN can obtain good performance. We also use the cross-validation
to determine their values, and find that when K; = 52 and K, = 38, IB-KNN obtains
the best results. In Table 2, the results of IB-KNN with another pair of parameters are
also listed, i.e., K1 = 14 and K5 = 43. From this table, we can find that IB-KNN with
Deep KNN step obtains better performance than that without Deep KNN step. This also
confirms that IB-KNN benefits from the Deep KNN step.
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FiGURE 3. The performance of IB-KNN without Deep KNN changes with
the different value of K; on COREL.

TABLE 2. Experimental results of IB-KNN with and without Deep KNN
on the COREL image data set.

Compared Algorithms
Evaluation metrics IB-KNN with Deep KNN IB-KNN without Deep KNN
Ky =52, Ke=38 K, =14, Ky =43 | K| =14, K, =52

Hamming loss 0.082 0.084 0.086 0.089
One-error 0.385 0.430 0.457 0.509
Coverage 4.088 4.135 4.220 4.502
Ranking loss 0.127 0.128 0.137 0.145
Average precision 0.669 0.643 0.611 0.582
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FIGURE 4. The performance of IB-KNN with Deep KNN changes with
different values of K, and K; = 52 on COREL data set.

To further investigate the impact of K, on the performance, we show the results of
IB-KNN with different values of Ky when K; = 52 in Figure 4. From this figure, we can
see that with the increasing of K5, the values of different evaluation metrics (except one
error) rapidly increase and become stable. When K, is in an appropriate range of values,
IB-KNN with Deep KNN step always exceeds the best result of IB-KNN without Deep
KNN step. This further shows that IB-KNN can benefit much from Deep KNN step.

In addition, we compare IB-KNN (with Deep KNN step) with other MIML methods,
such as MIMLBOOST and MIMLSVM. The results are listed in Table 3. From this table,
we can also find that IB-KNN gets the best performance on all of the five metrics.

In order to further show the performance of IB-KNN, in Figure 5 we list the top 8
images got by IB-KNN and traditional KNN. In this experiment, the traditional KNN
uses Hausdorff distance between bags to find the neighbors of a bag. From this figure,
we can see that, compared with traditional KNN, IB-KNN can find more meaningful
neighbors for the test examples.
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TABLE 3. Experimental results of different algorithms on the COREL im-
age data set

Evaluation metrics Compared Algorithm
IB-KNN Citation-KNN MIMLBOOST MIMLSVM
Hamming loss 0.082 N/A 0.103 0.090
One-error 0.385 0.570 0.462 0.439
Coverage 4.088 5.574 7.130 5.975
Ranking loss 0.127 N/A 0.304 0.224
Average precision | 0.669 0.535 0.590 0.614

Top 8 nearest neighbors returned by traditional KNN
test image 1 ; ‘-q:- g | —ewag k. ‘
. .- [>T
o B! | | 4

Top 8 nearest neighbors returned by IB-KNN

testimage 2

Top 8 nearest neighbors returned by IB-KNN

FiGure 5. Top 8 images found by IB-KNN and traditional KNN

5. Conclusions. In this paper, we propose a lazy learning method IB-KNN for MIML
problem. Different from some existing algorithms which use Hausdorff distance to find
nearest neighbors of bags, IB-KNN uses Euclidean distance to find the nearest neighbors
of instances. With the information of these instance nearest neighbors, we introduce the
Deep KNN step into IB-KNN which can tackle the “Minor Being Winner” problem in
multi-instance learning, to some extent. In this step, we use entropy theory to analyze the
degree of confusion and assign different weights for counting vectors for revoting. From
the experimental results on the real-world data set, we find that IB-KNN can obtain
better results than some popular methods.
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