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ABSTRACT. In this paper, a three-species Lotka-Volterra food chain model with two dis-
crete delays is investigated, where the time delays are regarded as parameters. Its dynam-
ics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the
associated characteristic transcendental equation, it is found that Hopf bifurcation occurs
when these delays pass through a sequence of critical value. Some explicit formulae for
determining the stability and the direction of the Hopf bifurcation periodic solutions are
derived by using the normal form theory and center manifold theory. Finally, numerical
simulations supporting the theoretical analysis are carried out.
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1. Introduction. During the past decade, the dynamics of two-species predator-prey
models with delays or without delays has become a subject of intense research activ-
ity of mathematical fields due to their theoretical and practical significance. It is well
known that the interactions between two species have mainly three kinds of fundamental
forms: competition, cooperation, and prey-predation in population biology. Many excel-
lent and interesting results on the three fundamental forms predator-prey models have
been reported. For example, May [1] first proposed and discussed briefly the delayed
predator-prey model

{ #(t) = 2(O)[r1 — ana(t — ) — any(t)], (1)

y(t) = y(t)[—r2 + anx(t) — azy(t)],

where x(t) and y(t) represent the population densities of prey and predator at time t,
respectively; 7 > 0 is the feedback time delay of the prey to the growth of the species
itself; 1 > 0 denotes intrinsic growth rate of the prey and r, > 0 denotes the death rate
of the predator; the parameters a;; (i, j = 1,2) are all positive constants. In 2005, Song
and Wei [2] investigated further the Hopf bifurcation nature of system (1). Yan and Li
[3] considered the Hopf bifurcation behavior of the following predator-prey system

{ (t) = z(t)[r1 — anx(t — 1) — ar2y(t)], (2)

y(t) = y(t)[—r2 + anx(t) — agy(t — 7).
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Faria [4] dealt with the stability and Hopf bifurcation of the following predator-prey with
feedback control and two different discrete delays:

{ (t) = z(t)[r1 — apx(t) — apy(t — )], (3)
y(t) = y(t)[—r2 + anz(t — 1) — axny(t)].

Yan and Zhang [5] focused on the Hopf bifurcation analysis of the delayed Lokta-Volterra
predator-prey system as follows

(t) = z(t)[r1 — anx(t — 1) — apy(t — 7)), (@)
y(t) = y(t)[—r2 + anx(t — 1) — any(t — 7)].

Hu et al. [6] analyzed the stability and Hopf bifurcation of the following predator-prey

model with multiple delays
(t) = z(t)[r1 — anx(t — 1) — apy(t — 1)), (5)
y(t) = y(t)[=ra + anz(t — ) — any(t — 7)].

Gao et al. [7] studied the Hopf bifurcation and global stability of the following delayed
predator-prey system with stage structure for predator

{ i (t) = x(f)[r — Z;‘::l ayx(t — 715) — Z;Z:l bijy(t — pij)), (6)
y(t) = y(t)ra — 2250 anj(t — 7o5) — D250, by (t — poy)],

where 7,7 = 1,2, -+ ,m. Yuan and Zhang [8] investigated the following stability and global
Hopf bifurcation in a delayed predator-prey model

{ @(t) = x(t)[r1 — an ffoo F(t — s)x(s)ds — aiy(t)], (7)
y(t) = y(t)[—r2 + anz(t) — azy(t)].

Xu and Shao [9] discussed the bifurcation of a predator-prey model with discrete and
distributed time delay which takes the form

#(t) = a(t)[r —an [* F(t — s)a(s)ds — any(t — 7)),
§(t) = y(t)[—ra + az [1 F(t — 8)w(s)ds — any(t — 7)).

Xu et al. [10] considered the bifurcation behavior of the following predator-prey model
with two delays

(8)

{ l'(t) = l'(t)[?"l — CI,HZU(t — 7'1) — a12y(t — 7'2)], (9)
y(t) = y(t)[—r2 + anx(t — 11) — axny(t — m)].

Zhang [11] investigated the stability and bifurcation periodic solutions of the following
Lotka-Volterra competition system with multiple delays

() = u(t)[r — aqu(t — 7) = bo(t — 7)),
{ v(t) = v(t)[rs — bou(t — 72) — agu(t — 7)), (10)

where u(t), v(t) represent the population densities of the two competing species at time ¢.
r;, a;, b; are all positive constants. For more work on two-species predator-prey systems,
one can see [12-20]. In real natural world, there are maybe more species in some habitat
and they can construct a food chain. Therefore, we think that it is more realistic to
consider a multiple-species predator-prey system. In 2008, Baek and Lee [21] proposed
and studied the following three-species food chain system

21(t) = 1 (t)[a — bry (t) — cxa(t)],

IL’Q(t) = IQ(t)[—dl + Cll‘l(t) - 61.(E3(t)], (].].)
t3(t) = x3(t)[—da + eama(t)],
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where x1(t), x2(t) and x3(t) represent the population densities of the lowest-level prey,
mid-level predator and top predator at time ¢, respectively; the constant a > 0 is called
the intrinsic growth rate of the prey species; b > 0 measures the intraspecific competition
of the prey; ¢ > 0 and e; > 0 are the predation rate per capita of the mid-level and top
predator, respectively; ¢; > 0 and ey > 0 represent the conversion rates of the low-level
prey to the mid-level predator and the mid-level predator to the top one, respectively; d;
and dy denote the death rate of the mid-level and top predator, respectively.

Cui and Yan [22] argued that in model (11), the gestation periods and maturation time
of some species have been ignored. In fact, predator species need to take time to have
the ability to reproduce and capture food. Therefore, it is often reasonable to incorporate
time delays into system in order to consider the gestation periods and maturation time
of species. Motivated by the viewpoint, Cui and Yan [22] modified system (11) as follows

21 (t) = 21(t)[a — bry (t) — cxa(t)],
.Z'g(t) = l'Q(t)[—dl + clxl(t) - 61x3(t - 7'1)], (12)
IL’3(t) = T3 (t)[_d2 + €29 (t - TQ)])

where 71 > 0 denotes the time from birth to having the ability to predate for top predator
and 7, denotes the maturation time that the mid-level predator can be served as food
for the top predator, respectively. By regarding the sum 7 of two delay 71 and 7 as the
bifurcation parameter, they investigated the Hopf bifurcation nature of system (12).

It shall be pointed out that the hunting delay of mid-level predator to prey and the
delay in mid-level predator maturation in model (11) have been omitted. Motivated by
the viewpoint, we modified system (11) as follows:

#1(t) = w1 (t)a — bry () — exa(t — 7)),
( ) = 1'2( )[ dl + clxl(t - 7'2) - 61x3(t)], (13)
a3(t) = x3(t)[—d2 + e2w2(1)],

where 73 > 0 stands for the hunting delay of mid-level predator to prey and 75 denotes
the delay in the mid-level predator maturation. In order to establish the main results for
model (13), it is necessary to make the following assumption:

(Hl) T1+T2:T.

This paper is organized as follows. In Section 2, the stability of the equilibrium and the
existence of Hopf bifurcation at the equilibrium are studied. In Section 3, the direction
of Hopf bifurcation and the stability and periods of bifurcating periodic solutions on the
center manifold are determined. In Section 4, numerical simulations are carried out to
illustrate the validity of the main results. Some main conclusions are drawn in Section 5.

2. Stability of Positive Equilibrium and Local Hopf Bifurcation. In this section,
we discuss the local asymptotic stability of the positive equilibrium of system (13) and
the existence of local Hopf bifurcation near the positive equilibrium.

It is easy to see that system (13) has three boundary equilibria F(0, 0, 0), EQ(d—bl, 0,0),
Es(4 2c-4b ) and a unique positive equilibrium E*(z%, 23, 23) provided that the con-

c1’ cel
dition

(HQ) aesc; — docey — dibey > 0

holds, where

. ey —dyc p_ e

aeoCr — d2001 — d1b€2
[)62 €9 66162 .
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Under the hypothesis (H2), making the change of variables Z;(t) = z1(¢t) — xj(i = 1,2, 3)
and still denoting Z;(t) by z;(t), then system (13) can be rewritten as the following
equivalent form

l'l(t) = (ZCl(t) + x’{)[—bxl (t) — CZUQ(t — 7'1)],
l'Q(t) = (ZCQ(t) + x§)[clx1(t - 7'2) - 611‘3(t)], (14)
i3(t) = (w3(t) 4 25)eama(t),

which leads to
l'l(t) = —bx’{xl(t) — Cl'TZUg(t — 7'1) — bx%(t) + Cl'l(t)l'Q(t — Tl),
l'Q(t) = —61£U§l'3(t) + clx’gxl(t — 7'2) + Clib'l(t — 7'2) — elxg(t)xg(t), (15)
l'3(t) = £U§621'2 (t) + 62£C2(t)$3(t).
The linear system of (15) at E*(x}, x5, z3) takes the form:
11 (t) = —bxfa(t) — cxize(t — 1),
l'Q(t) = —61$;$3(t) + Cll';xl(t - 7'2), (16)
l'3(t) = $§62$2(t).

Under the condition (H1), then the associated characteristic equation of (16) is

A+ mpA? + my A+ mg +ni e =0, (17)
where my = ejexbzizixs, my = ejeaxirh, mo = bxj,ny = —ccyxjzy. Clearly, A = 0 is not
a root of (17). When 7 = 0, the characteristic Equation (17) becomes

)\3 + m2)\2 —+ (m1 + nl))\ + my = 0. (18)

It follows from the Routh-Hurwitz criteria that all roots of (18) have negative real parts
if the following condition
(H3) m2(m1 + nl) > my
holds.
Let A = iwg, T = 79, and substitute this into (17), for the sake of simplicity, denote wy
and 1y by w, 7, respectively. Separating the real and imaginary parts, we have

njw sin wr = mow? — my, (19)
niw cos wT = w® — myw. (20)
According to sin? wr + cos®> wr = 1, we obtain
(n1w)? = (Maw? — mg)? + (W* — mw)? (21)
which leads to
6 1 2 _
W’ + riw” + row” +1r3 =0, (22)

2 2 2, .2
where ry = mj — 2my, re = m7 — 2memeg — Ny, 3 = My,
Let 2 = w?, and then (22) becomes

h(z) = 2* +r22 +roz + 13 = 0. (23)

Since 73 > 0, then following Wang et al. [23] and Guo et al. [24], we have the following
results on the roots of (23).

Lemma 2.1. [23] If ro > 0, then (23) has no positive real parts.

Lemma 2.2. [24] Define A = oLr§ — Lrird + Lrirs — 2riror; + 1. Then the necessary

and sufficient conditions that the cubic Equation (23) has one simple positive real root for
z are

(i) either ro >0 and r? > 3ry, or ro < 0; and

(11)) A <0; and

(iti) z* = % (—7“1 + /1 — 37“2) and h(z*) < 0.
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It follows from Lemma 2.1 that we have the stability result on system (13).

Lemma 2.3. If (H1), (H2), (H3) and o > 0 are satisfied, then system (13) is asymptot-
ically stable for all T > 0.

From (20), the conditions of Lemma 2.2 imply that there is an unique positive wy
satisfying Equation (22), namely, the characteristic Equation (17) has a pair of purely
imaginary roots of the form +iwy. From (20), we get

1 2 _
Tp = — [arccos (M) + 2n7r] (n=0,1,2,---). (24)

Wo nq
Theorem 2.1. In addition to (H1)-(H3), if (Hj) (aes — doc)? > 2beydy(aesc) — docey —
dibey) holds, then system (13) undergoes a Hopf bifurcation at the positive equilibrium

E*(x3, x5, 2%) when 7 = 1,, n = 0,1,2,---; furthermore, E*(x}, x}, %) is asymptotically
stable if 0 < 7 < 719 and unstable if T > 7.
(ReA

Proof: Now we will show that < |T 7, > 0 which implies that there exists at least
one eigenvalue with positive real part for 7 > 7,. Differentiating Equation (17) with
respect to 7, we obtain

dA
[3A% + 2ma A + my + nye” ™ —nyAre™] = nA2e™ .

-
Then
d\]7" 3A% 4+ 2ma\ + my 1 T
{E] T T e T xn
3N2 4 2ma\ + my 1 7
S Y R vy Wy S VR &
Thus

, dA] !
sign { Re [E]

In the sequel, we rewrite the numerator as follows. Let § = w2, and then

g(0) = 2n36* + (m2n? — 2m n)6% — n?ma.

1 s 2ntws + (min? — 2myn?)wg — nim?
= —sign :
i wp [(mo — maw)? + (M1 — w§)?](n1wo)?

It is easy to obtain

dg(d
ZES ) [3n152 (an1 — 2m1n3)5]
dz—(;) has two real roots, which take the form
m2 — 2m aey — doc)? — 2besds(aescy — docey — dyibe
5 =0, 6y = — 26 1 (aey —dye) 2;156%21 scc; — dy 2)<0.

Then we can conclude that d“il—(f) monotonously increases in (d1, +00) (i.e.,(0,+00)), that

is, g(0) monotonously increases in (0, +00). Since ¢g(0) = 0, we have g(4) > 0 for all 6 > 0.

Thus we derive
signq Re [d)\] = signy Re [d)\} > 0.
dr T=Tn dr A=iwp

Therefore, the transversality condition holds and Hopf bifurcation occurs. Equation (17)
has negative real parts, i.e., the equilibrium E*(z7, 25, 3) is locally stable for 7 = 0, while
Tp is the minimum 7,, at which the real parts of these roots are zero. Thus E*(z7, x5, %)
is locally asymptotically stable if 7 € [0, 7)) and unstable if 7 > 7.
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3. Direction and Stability of the Hopf Bifurcation. In the previous section, the
stability and positive equilibrium E*(z7%, 3, z3) of system (13) and the existence of Hopf
bifurcations near the positive equilibrium E*(z7%, 23, x3) are presented. In this section,
we shall investigate the properties of Hopf bifurcations obtained in Theorem 2.1 and the
stability of bifurcating periodic solutions occurring through Hopf bifurcations by using
the normal form theory and the center manifold reduction for the retarded functional
differential equations due to Hassard et al. [25]. Throughout this section, we assume that
71 < To.

In Section 2, we know that system (13) undergoes a Hopf bifurcation at the positive
equilibrium E*(z7, 3, x3) when 7 =7,, n =10,1,2,---. For fixed n € {0,1,2,---}, there
exist 7y, and 7y, such that 7y, + 7, = 7,,. Now we consider the problem above in the
phase space C' = C([—To,, 0], R3). Linear part of system (13) at the positive equilibrium
E*(x3, x5, x%) is given by

t
l'Q(t) = —611'21'3(
T3(t) = z3eaw2(t)

) — caiae(t — 1),
t) + 011'2.1'1 (t - 7'2) (25)

and non-linear part is given by

—ba2(t) + cxy () w2 (t — 1),
fz) = —e122(t)xs(t) : (26)
€2T9 (t).fb'g (t)

Denote
C*~Ton, 0] ={|¢ : [~Ton, 0] = R? each component of ¢ has k order

continuous derivative}.

For convenience, denote C[—Ty,, 0] by C°[—7,, 0].
For ¢(0) = (01(0), pa(0), 03(0))T € C([—Tan, 0], R®), define a family of operators

L,p = Bp(0) + Bio(—T1, — pt) + Bao(—Toy) (27)
and
—bp3(0) 4 cp1(0)p2(—11)
G(p,p) = —e102(0)¢p3(0) ; (28)
ea4p2(0)¢p3(0)
where
bt 00 0 —czt 0 0 00
B = 0 0 —e17% , B = 0 0 0 , By = cax; 00
0 T3€9 0 0 0 0 0 0 0

and L, is a one-parameter family of bounded linear operators in C'([—Ta,, 0], R?) — R3.
By the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions (6, y1) in [—73,, 0] — R*, such that

0
Lug= [ dn®,u)e(0). (29)
In fact, choosing
B, 6 =0,
77(97 /l’) = 316(9 + Tin + /'L)a NS [_Tln — M 0)7 (30)

_BQ(S(Q + T2n)a 0 e [_7—21’1,7 —Tin — H)a
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where 0(f) is Dirac function, then (29) is satisfied. For (o1, 02, ¢3) € (C'[—7o,, 0], R3),

define
dip(0)
) —Top, < 0 <0,
Alpp =4 db 2 (31)
f,mn d?’](S, H)SO(S); 0=0
and
0 —T2n <0<0
Ro=1y - 32
Then (13) is equivalent to the abstract differential equation
By = A(p)x, + R(p) e, (33)

where © = (21, 2o, 23)T, 24(0) = x(t + 0), 0 € [~To,,0].
For ¢ € C([—72n, 0], (R?*)*), define

* _ _dw(;)a 5 € (0;7-277,]7
Als) = { 1O a4, 0y(—1), s=0. (34)

For ¢ € C([—72n,0], R?) and ¢ € C([0, T2,], (R3)*) define the bilinear form

(6, 6) = B(0 / Mw (€ — 0)dn(0)(€)de, (35)

where 7(8) = n(0,0). We have the following result on the relation between the operators
A= A(0) and A*.

Lemma 3.1. A = A(0) and A* are adjoint operators.
Proof: Let ¢ € C'([—7a,,0], R?) and ¢ € C'([0, 72,], (RB?*)*). It follows from (35) and
the definitions of A = A(0) and A* that
0o 0
(¥(s), A(0)¢(0)) = 1(0)A(0)$(0) —/ (& — 0)dn(0) A(0)p(&)dE

£=0
=00 [y 0 / / B (€ — 0)dn(8) A(0) 6 (€)de

T2n =

5(0) / dn(0)6(6) / WD(E — 0)dn(O) SOy

T2n —T2n

/ ) /g Od“ ) ano)(¢)de

SR / /g e e D antoyotepe

— A% (0)6(0) — / AP (E — 0)dn(0)(€)de

—T2n J€=0
= (A%Y(s), 6(0))-

This shows that A = A(0) and A* are adjoint operators and the proof is complete.

By the discussion in Section 2, we know that +iw, are eigenvalues of A(0), and they are
also eigenvalues of A* corresponding to iwy and —iwy, respectively. We have the following
result.
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Lemma 3.2. The vector
q(0) = (1,a1,a2)" €, 0 € [~72,, 0],

is the eigenvector of A(0) corresponding to the eigenvalue iwg, and
¢*(s) = D(1,a%,a})e™, s € [0, T,

is the eigenvector of A* corresponding to the eigenvalue —iwg, and moreover, (¢*(s), q(9))
=1, where
1

1+ C_‘LlCLT + C_lQa/; + aicleTZn + dlchTlTL .

D

(36)

Proof: Let ¢(f) be the eigenvector of A(0) corresponding to the eigenvalue iwy and ¢*(s)
be the eigenvector of A* corresponding to the eigenvalue —iwy, namely, A(0)g(0) = iwyq(0)
and A*q(s) = —iwpq*(s). From the definitions of A(0) and A*, we have A(0)q(#) =
dq(0)/df and A*q(s) = —dq*(s)/ds. Thus, ¢(f) = q(0)e™°’ and ¢*(s) = q(0)e™°s. In
addition,

0 —bx; 0 0 0 —cai O
| o= 0" 0 —ew Jao+ {0 0 0 ) gl
~on 0 afe; 0 0 0 0
(37)
0 00
+ | azi 0 0 | g(—72n) = A(0)q(0) = iwoq(0).
0 00
That is
—bx} — aycrie 0T iwo
cirie™™0mn —goeixl | = | daywe | . (38)
a1 x5es 109wy
Therefore, we can easily obtain
iwo + bx] ries(iwy + br?)
GG =——— a3 = —— . :
crie wWoTin wocxr]ewoTin
On the other hand,
0 —bxt 0 0 0 0 0
/ q*(—=t)dn(t) = 0 0 e | ¢*(0)+ | —cxy 0 0 | ¢"(—71n)
2 0 —ewt 0 0 0 0
(39)
0 czi 0
+1 0 0 0 )¢ (—mm) =A% (0) = —iwyqg™(0).
0 0 0
Namely,
iwy — bx} + c1xialeomn 0
iwoa} + xheq — cxiaie™™n | = | 0 (40)

Woay — €1T50] 0
Therefore, we can easily obtain

* - * * -
. bx} — iwp . er 25 (brt — iwp)
L cprteiworn’

*

N

iwycy Tt ewoTen
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In the sequel, we shall verify that (¢*(s),¢(#)) = 1. In fact, from (35), we have
(0" (). q(0)) = D(1 apag)(l ar, az)"

/ DL, b, a)e €O dn(0)(1, ar, as)" o de
—Ton § 0

0
=D [1 + a1aj + axal — / (1, at, a3)0e™0dn(0)(1, a, ay)”

—T2n
= D [1 + ald’{ + agdz + (]., C;T, d;) (—TlneiinTlnBl - TgneiionInt) (1, ai, CLQ)T]
= D[l + aya* + apal + ate,ximo, + ajcxit,] = 1.

Next, we use the same notations as those in Hassard et al. [25], and we first compute
the coordinates to describe the center manifold Cy at 4 = 0. Let z; be the solution of
Equation (13) when p = 0.

Define
2(t) = (¢, m), W(t,0) = z(0) — 2Re{z(t)q(0)} (41)
on the center manifold Cy, and we have
W (t,0) = W(z(t), (1), 0), (42)
where
22 z?
W(Z(t), Z(t), 9) = W(Z, Z) = WQUE + WHZZ + W[]Q? + - (43)

and z and z are local coordinates for center manifold Cj in the direction of ¢* and ¢*.
Noting that W is also real if x; is real, we consider only real solutions. For solutions
x; € Cy of (13),

(t) = (q"(s),20) = (q*(s), A(0)z¢ + R(0)x)

= (q"(s), A(0)ze) + (q"(s), R(0)z:)
= (A"¢"(s), z1) + ¢*(0) R(0)z,
0 0 (44)
- [ e o0 R0z €
= (iwoq"(s), me) + q*(0) (0, 2:(0) = iwoz(t) + ¢*(0) fo(2(2), Z(1))
That is
2(t) = iwoz + g(2, 2), (45)
where ) L
9(z,2) = 920% + gnzz + 902% + 921% +- (46)
Hence, we have
9(2,%) = 7(0) fo(2,2) = f(0, ) (47)

= D(1,a7,a3)(f1(0, 1), f2(0, 1), f3(0,24))",
where
f1(0,2) = —bx7,(0) + cx1,(0) w9y (—71),
f2(0,2,) = —e122,(0)25,(0),
f3(0,2¢) = eax9(0)234(0).
Noticing that
2,(0) = (21:(0), 22:(0), 23,(0))T = W (t,0) + 2q(0) + 2G
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and
q(g) - (17 ay, a?)Teiwoga

we have
WO - WD) a5+ D (0) 2
l‘lt(o):Z+Z+ 20 (0)?‘*‘ 11 (O)ZZ"— 02 (0)5+'.' y

2 52

291(0) = a1z + @12 + WZ%)(O)% + WD (0)2z + WU(;)(())% 4oen
O O (s 1 B Z

23:(0) = agz + asz + Wy, (0)5 + W (0)z2z + W, (0)5 4o

~ ~ z
Toy(—T1p) = are” 0z 4 g™z + W2(§)(_7'1n)5 + WI(IQ)(—TM)ZZ

52

+ W (i) S+
From (46) and (47), we have
9(2,2) = 7' (0)fo(2,2) = D[f1(0,2,) + a1 f2(0, 21) + @3£5(0, z.)]

=D [—b + ca;e” o ajaiaser + d;a1a262] 22
+D [-2b + 2ca;Re{e ™°™"} — 2aiRe{a1as}e; + 2a5Re{aras}es] 22

+D [—b + ca €™ — @laiaze, + asaidzes] 2
_ 1
+0 -0 (W0 + 20 ©) + ¢ (3 ) + W (1)
1 (1) —WoTin 1 (1) e WoTin
1 1
—ate <a1Wff)(0) + 5ahwgg’)(o) + a, WP (0) + 5OLQWZ)%)(O)>

1 1
—a W (0) 4+ as WP (0) + 5@%‘3(@))] 254

+ d;eg <G1W1(f) (0) + 5

Then we have

g0 = 2D [—b+ care™™°™" — @ajaze; + asaiazes]

gir = D |: b + calRe{e Zwon"} - d’{Re{aldg}el + &;Re{aldg}@] y

go2 = 2D [—b+ ca; e — @aaze; + asardzes)

=20 |0 (W0 + 20D (0) + ¢ (3 ) + W ()
1

# W Ome g S e

1
—aye; <G1W1(f)(0) + §@1W2(§)(0) + G2W1(11)(0) + §@2W2(3)(0)>

1 1
+ Ghes <a1W( )(0) + 2a1W( 10) + a; WD (0) + 5amg&?(o))] .

In the sequel, we compute the following values

Wi (0), W (0), Wi (=71), WD (=11), Wi (0), W (0)
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in go;. From (33) and (34), we get

= J AW = 2Re{7°(0) foq(0)}, —Ton < 0 <0,
AW —2Re{7*(0) foq(0)} + fo, 0 =0.
AW + H(2,2,0),
where
_ Z2 _ 22
H(Z; Z, 9) = H20(0)5 + HH(G)ZZ + HOZ(H)E 4

Comparing the coefficients, we obtain
(A — 2iwg)Woy = —Ha(0),
AW11(0) = —H;1(6).
We know that for 6 € [—7y,,0),
H(z,2,0) = =7"(0) foq(0) — ¢*(0) foa(0) = —g(2,2)a(0) — (2, 2)7(9).

Comparing the coefficients of (49) with (52) gives that

Hyo(0) = —g209(0) — 5023(0),

Hyi(0) = —g119(0) — §1.1q(0).
From (50), (53) and the definition of A, we get

W (0) = 2iwoWao (0) + g204(0) + go2(0).-

Noting that ¢(#) = ¢(0)e™°?  we have

i .
W (6) = 2 2a(0)e" + 27

Zgﬁq(o)efiwog + E162iw00,

1757

(56)

where E; is a constant vector. Similarly, from (51), (54) and the definition of A, we have

W11(9) = guq() + 9114(0),

0 . 1g .
Wia(0) = =2 q(0) + Thq(0) ™ + B,

(57)

(58)

where E5 is a constant vector. In what follows, we shall seek appropriate E; and Fs in

(56) and (58), respectively. It follows from the definition of A, (53) and (54) that

/0 dn(g)WQO (9) = 2inWQO (0) - HQO (0)

and
/ dn(0)Wh(9) = —Hi, (0),

—T2n

where 7(6) = 1(0,60). From (50), we have
—b+ cae” ot
Ha(0) = —g209(0) — 6027 (0) + 2 —a1az€;
a10a92€9

By (51), we have

—b + ca;Re{e womn }
HH(O) = —gnq(O) — 911(0)67(0) + 2 Re{a1d2}61
Re{a1d2}62

(59)

(60)

(61)

(62)
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From (50), (51) and the definition of A, we have

{ BWQ()(O) + BIW20(_Tln) + BZ(_TQH) = QiWUWQU — HQU(O),

BWH(O) + BIWII(_TITL) + Bg(—TQH) = —HH(O)

(1w - | “0d(0) ) a(0) =0,

—b + ca;e womn

0
(—iwol - / eiwogdn(9)> q(0) = —aiase;

T2n a109€2

Noting that

and substituting (56) and (61) into (59), we have

—b + ca e WoTin

0
<2iwol —/ e2i“°9d77(9)> E, =2 —ajase;

T2n a1a9€9
That is
21wy + bx] cxiemMwomn () Efl) —b 4 ca e womin
—clx’{e*m“"m” 21Wo €175 Efz) =9 —a1as€;
0 T3€9 21wWo Ef?’) 10969
Hence
A A A
EEI) _ i, E§2) _ j, EF’) _ j,
Ay Ay Ay
where

2iwy + bzt cxtePwoTin ()
Ay = det | —ciate2womn 21wy e
0 T3€9 21wy

= cey(x])2e” 20T — (2iwgy + bat) (dwi + ereariay),

—b + caye 0Tin cxte2WoTin ()
AH = 2det —Q102€1 QiWO 61.1';
10969 T3€2 21wy

= 9 [4w§(b — caje OTM) 4 arage epcaie 20T

+ 2iwpa; agey e 20T e epxial (b — caje”0)
2iwy +bx]  —b+cae”0n 0
Ay = 2det [ —cizie?womn —ajaqe, e}
0 a1a9€9 2in

= —2[2iwpaiaser (2iwg + bxy) + ajasereary(2iwg + bay)

+ 2iwgerx} (b — caje 0TI )e T HOTn ]

],

2iwg + br}  cxiemHOTn —p 4 cq e WoTin

Az = 2det | —ciaje 2o 21wy —aa9€
0 T3€9 a109€9

= 9 [inoalageg(%wo + ba}) + crepriaie” 0™ (b — cay

+ aragesce; (7)?e 20 4 arage enw(2iwy + bx’{)] .

(&

—ionln)
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Similarly, substituting (58) and (62) into (60), we have
—b + ca;Re{e omn}

( / 0 dn(9)> By =2 Re{a;ay}e; | (68)

~T2n RG{GIELQ}eQ
That is
—bzt cxi 0 Eél) b — ca;Re{e ™0}
ar; 0 e E§2) =2 —Re{ajas}e . (69)
0 621'; 0 Eé?’) —Re{aldQ}eQ
Then A A A
gD 22 @) 22 p@) 223 70
2 A2 ) 2 A2 ) 2 AQ ) ( )
where
—bx} cxy 0
Ay = det oy 0 ez
0 ex; 0
= —bejesx 507,
b— caRe{e o™} ezt 0
Agl = 2det —Re{aldg}el 0 611';
—Re{aias}es exry 0

= =2 [cerzirsRe{ai@s }es + (b — caiRe{e ™°7'"}) ereaahay]

—bz} b— ca;Re{e “omn} 0

AQQ = 2det Cll'f —Re{a1d2}61 611‘;
0 —Re{aldg}eQ 0
= —2bejeqrizyRe{aras},
—bx} cxt b— cayRe{e ™0mn}
A23 = 2det Cle 0 —Re{aldQ}el
0 eya} —Re{ajas}es

= 2[(b — ca;Re{e ™" })cie 7}
+ cc1(2})’Ref{aras bes + besziaiRe{aras}eq] .
In view of (56), (58), (67) and (70), we can calculate go; and derive the following values:

|902|2 X @,
3 2

c1(0) = 2%)0 (920911 —2|gnf* -
\_ _Refe )
Re{X(70)}’
62 = QRQ(CI(O)),

T, — CIm{ci(0)} + mIm{X(Tg)}.

These formulae give a description of the Hopf bifurcation periodic solutions of (13) at
T = Tpn, on the center manifold. From the discussion above, we have the following result.

Theorem 3.1. For system (13), if (H1)-(H4) hold, the periodic solution is supercritical
(subcritical) if pus > 0 (po < 0); the bifurcating periodic solutions are orbitally asymp-
totically stable with asymptotical phase (unstable) if o < 0 (Ba > 0); the periods of the
bifurcating periodic solutions increase (decrease) if To > 0 (T < 0).
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Remark 3.1. The investigation on the stability and Hopf bifurcation behavior of system
(13) has important biological significance. By regarding the delays as bifurcation param-
eter, we can show what time delays have the effect on the dynamical behavior, that is to
say, how do the gestation periods and maturation time of species of system (13) influence
the stability and Hopf bifurcation behavior? It has practical significance in effective control
of biological systems and human services.

Remark 3.2. Although many authors [1-10] dealt with the stability and Hopf bifurcation
nature of the predator-prey models, they focused on the two-species predator-prey systems.
In fact, there are more species in some habitat and they can construct a food chain.
Then multiple-species predator-preys are more realistic in real natural world. Thus the
investigation on multiple-species predator-preys system (13) has more important practical
significance.

Remark 3.3. Considering that there are the gestation periods and maturation time of
species, Cui and Yan [22] have incorporated time delays into system and investigated the
existence and Hopf bifurcation behavior of multiple-species predator-preys system (11).
Howewver, the hunting delay of mid-level predator to prey and the delay in mid-level preda-
tor maturation in model (11) have been ignored. Thus the model (13) investigated by us
has different biological implications. Moreover, the corresponding characteristic equation
of system (13) is different and the results in Cui and Yan [22] cannot be applicable to sys-
tem (13). This implies that the results of this paper are essentially new and complement
previously known results.

4. Numerical Examples. In this section, we present some numerical results of system
(13) to verify the analytical predictions obtained in the previous section. From Section 3,
we may determine the direction of a Hopf bifurcation and the stability of the bifurcation
periodic solutions. Let us consider the following special case of system (13).

l‘l(t) == .'L’l(t)[]_ — OSIl(t) — 041‘2(t — Tl)],
F3(t) = 23(£)[=0.6 + 1.225(1)].

Obviously, aesc; — doce; — dibes = 0.384 > 0 which implies that the hypothesis (H2) is
fulfilled and then system (71) has a unique positive equilibrium E*(1,0.5,0.8). By direct
computation by means of Matlab 7.0, we get wy ~ 0.8541, 7y &~ 1.55, X' () ~ 1.2437 —
3.4122i, ¢,(0) ~ —2.9542—22.2355i, j1p &~ 0.5642, By &~ —4.4636, Ty ~ 22.1327. We obtain
the conditions indicated in Theorem 2.1 are satisfied. Furthermore, it follows that js > 0
and f; < 0. Choose 7 = 0.65, 5 = 0.65, and then 7 = 71 + 7 = 1.3 < 79 &~ 1.5512. Thus,
the positive equilibrium E*(1,0.5,0.8) is stable when 7 < 7y which is illustrated by the
computer simulations (see Figure 1). When 7 passes through the critical value 75 ~ 1.55,
the positive equilibrium E*(1,0.5,0.8) loses its stability and a Hopf bifurcation occurs,
i.e., a family of periodic solutions bifurcates from the positive equilibrium E*(1,0.5,0.8).
Choose 1 = 0.8, 75 = 0.86, and then 7 = 74 + 75 = 1.66 > 79 &~ 1.5512. Since pus > 0
and [y < 0, the direction of the Hopf bifurcation is 7 > 7y, and these bifurcating periodic
solutions from the positive equilibrium E*(1,0.5,0.8) at 7 are stable which can be shown
in Figure 2.

Remark 4.1. Sincea=1,b=0.8,c=0.4, d; =0.4, ¢; = 0.8, e = 0.5, dy = 0.6, e; =
1.2, then all coefficients of system (71) satisfy the parameter conditions of system (12)
and have actual biological significance, and we think that the system (71) is a convincing
practical example.
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FIGURE 1. Dynamical behavior of system (71): times series of z; (i =
1,2,3). A Matlab simulation of the asymptotically stable positive equilib-
rium to system (71) with 7, = 0.65, o, =065 and 11+, =7 =13 < 7y &
1.5512. The initial value is (0.95,0.55,1.13).
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FIGURE 2. Dynamical behavior of system (71): times series of z; (i =
1,2,3). A Matlab simulation of a periodic solution to system (71) with
71 =08,17%=0.86and 71 + 7 =7 = 1.66 > 19 ~ 1.5512. The initial value

is (0.95,0.55, 1.13).
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5. Conclusions. In this paper, we have investigated local stability of the positive equilib-
rium E*(z7, 25, %) and local Hopf bifurcation in a three-species Lotka-Volterra food chain
model with two discrete delays. We have showed that if the conditions (H1), (H2), (H3)
and 75 > 0 hold, the positive equilibrium E*(z7, 23, x5) of system (13) is asymptotically
stable for all 7 € [0,7)) and unstable for 7 > 75. We have also showed that, if the con-
ditions (H1), (H2), (H3) and (H4) hold, as the delay sum 7 increases, the equilibrium
loses its stability and a sequence of Hopf bifurcations occurs at the positive equilibrium
E*(zf, 25, x%); in other words, a family of periodic orbits bifurcates from the positive
equilibrium E*(z7, 23, 2%). The direction of Hopf bifurcation and the stability of the bi-
furcating periodic orbits are discussed by applying the normal form theory and the center
manifold theorem.
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