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ABSTRACT. The k-means clustering algorithm is undoubtedly the most widely used par-
titional algorithms. Unfortunately, due to its gradient descent nature, this algorithm
is highly sensitive to the initialization of clustering. Initialization methods have been
proposed to address this problem. In this paper, we present an overview of initialization
methods of clustering for numerical data and categorical data respectively with an empha-
sis on their computational efficiency. We then propose a new initialization method for
mized data, which can obtain the good initial cluster centers using the MazAuvg distance,
and give the effective k-means clustering for mized data. Finally, the proposed method
is verified on three different real world datasets from UCI Machine Learning Repository,
and it is shown that the proposed method is effective and efficient for initializing and
partitioning mized data.

Keywords: Mixed data, MaxAvg distance, Initialization of clustering, k-means cluster-
ing

1. Introduction. Clustering is one of the most important tasks in exploratory data
analysis [1,2]. Its primary goals are to group the similar patterns into the same cluster
and discover the meaningful structure of the data. Clustering has a long and rich history
in a variety of scientific disciplines including anthropology, biology, medicine, psychology,
statistics, mathematics, engineering, and computer science [3].

Clustering algorithms can be broadly classified into five groups: hierarchical, partition-
ing, density-based, grid-based and model-based clustering. Hierarchical and partitioning
clustering algorithms are used widely in practice [4]. Hierarchical algorithm can be fur-
ther divided into bottom-up and top-down algorithms. Traditional partition clustering
algorithms include k-means, and k-modes. The k-means clustering is undoubtedly the
most widely used partitional clustering algorithm, and its sensitivity of initialization of
clustering has captured the attention of the clustering communities for quite a long time.

The rest of the paper is organized as follows. Section 2 presents some related works to
the initialization methods for numerical data and categorical data. Section 3 describes the
initialization of clustering for mixed data, which is our proposed methodology. Section 4
presents the experimental results for UCI dataset. Conclusion and remark are given in
Section 5.

2. Related Work. In this section, we review some common studies on initialization of
clustering.
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2.1. Review of initializing clustering for numerical data. Celebi et al. [5] com-
pared eight commonly used linear time complexity initialization methods on a large and
diverse collection of data sets using various performance criteria and found that popular
initialization methods often perform poorly and that are strong alternatives to methods.
Nie et al. [6] proposed an actively self-training clustering method, in which the samples
were actively selected as training set to minimize an estimated Bayes error, and then
explored semi-supervised learning to perform clustering. Reddy and Jana [7] presented
a novel method that selected the initial cluster centers with the help of Voronoi diagram
constructed from the given set of data points. The initial cluster centers were effectively
selected from those points which lied on the boundary of higher radius Voronoi circles.
Naik et al. [8] advanced the TLBO (Teaching Learning Based Optimization) to address
the problem of initializing centers of clusters, in which the search space of given dataset
was used to find out near-optimal cluster centers and taken use of reformulated c-mean
objective function to evaluate centers. Redmond and Heneghan’s method [9] first con-
structs a kd-tree of the data points to perform density estimation and then uses a modified
maximum method to select K centers from densely populated leaf buckets. The computa-
tional cost of this method is dominated by the complexity of kd-tree construction, which
is O(NlogN). Cao et al. [10] formalized Astrahan’s density based method within the
framework of a neighborhood-based rough set model. In this model, the e-neighborhood
of a point is defined as the set of points within e distance from it according to a partic-
ular distance measure. Based on this neighborhood model, the concepts of cohesion and
coupling are defined. The former is a measure of the centrality of a point with respect
to its neighborhood, whereas the latter is a measure of separation between two neigh-
borhoods. The method first sorts the data points in decreasing order of their cohesion
and takes the point with the greatest cohesion as the first center. It then traverses the
points in sorted order and takes the first point that has a coupling of less than e with the
previously selected centers as the ith (i = {2,3,...,k}) center. The computational cost
of this method is dominated by the complexity of the e-neighborhood calculations, which
is O(N?). Li and Wang [11] assume that there is at least one dense subset of data in a
cluster; and the dense subsets between different clusters are more distant than those in
the same cluster. A minimum spanning tree is built for the given data set. The dense
subsets can be found through the search from root trees, and their densities are obtained
by the estimation technique for data density. The initial cluster centers are picked out
from the dense subsets that are dense enough and distant enough from each other. Zhong
and Zhang [12] compared the influence of five initialization methods on unsupervised
classification algorithms respectively by means of various experiments in remote sensing
images.

2.2. Review of initializing clustering for categorical data. Currently, most meth-
ods of initialization cluster centers are mainly for numerical data. However, these methods
used in cluster centers initialization for numerical data are not applicable to categorical
data due to a lack of geometry for the categorical data. In this paper, we propose a new
methodology to overcome this issue. Bai et al. [13] proposed a novel initialization method
for categorical data, in which the distance and the density were adapted together to select
initial centers and overcame shortcomings of the existing initialization methods for cate-
gorical data. In [14], they could not only obtain the good initial cluster centers but also
provide a criterion to find candidates for the number of clusters ([14]). Sun et al. [15],
introduced an initialization method which is based on the frame of refining. This method
presents a study on applying Bradley’s iterative initial-point refinement algorithm ([16])
to the k-modes clustering, but (its time cost is high and) the parameters of this method
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are plenty and need to be asserted in advance [16]. Arthur and Vassilvitskii [17] proposed
a careful seeding for initial cluster centers to improve clustering results. However, due to
a lack of intuitive geometry for categorical data, the techniques used in cluster centers
initialization for numerical data are not applicable to categorical data. Huang [18] sug-
gested to select the first k distinct objects from the data set as the initial £ modes or to
assign the most frequent categories equally to the initial £ modes. Though the methods
are to make the initial modes diverse, a uniform criterion is not given for selecting k initial
modes. Barbara et al. [19] used the MaxMin distances method to find the &£ most dis-
similar data objects from the data set as initial seeds in Coolcat algorithm. However, the
method only considers the distance between the data objects, by which outliers may be
selected. The distance and the density were integrated together to propose a cluster cen-
ters initialization method respectively in [20,21]. The difference between the two methods
is the definition of the density of an object and Cao et al. defined the density of an object
based on frequency of attribute values [20]. Besides, there are many other researches on
initializing partition, such as specifying initial values by finding a large number of local
modes and then obtaining representatives from the most separated ones [22].

3. Proposed Methodology. In this section, we first present the general method of
DCD (Distance for Categorical Data), and then introduce our proposed DCD.

3.1. Distance methods for categorical data. Huang [23] presented a cost function
for measuring the distance of clustering for mixed data, and it can be shown in (1).

Idj ) =D (i —c)® +p Y O, cw)? (1)
i=1 i'=mp+1

Here, m, stands for the number of numerical attributes. Suppose that numerical attributes
i (could) start from 1 to m, and categorical attributes i’ (could) start from m, + 1. The
parameter £ represents the correlation coefficient, and its range is (0,1]. In previous
researches, it is supposed that: §(p,q) = 0 when p = ¢ and §(p,q) = 1 when p # q.

In this research, we prove that the distance cannot be expressed clearly by d(p,q) = 1
when p # ¢. We then, introduce the relationship degree n into the distance.

The relationship degree (RD) is definite in this paper as follows: suppose that z; and
z; are two arbitrary data objects, including m, categorical attributes, and RD(z;, x;) is
number that z;; = x; when 1 =1,2,...,m.

From the definition of relationship degree, we know that the maximum value of rela-
tionship degree is the number of categorical attributes. Therefore, we state Theorem 3.1
as below:

Theorem 3.1. Suppose that x; and x; are two arbitrary data objects, including m, cat-
egorical attributes, if RD(xz;,x;) = 0, then for any object x,, satisfying RD(xj,x5) = a
and RD(zy,x5) =b (a,b > 0), RD(z;,x;) can be modified as RD(x;,x;) = min(a, b)/2.

The proof of Theorem 3.1 will be given after that for the definition for DCD.
Distance for Categorical Data (DCD): Let x; and z; be any two objects, includ-
ing m, categorical attributes, and then the distance §(x;, z;) between z; and =z, is given
as in (2).
§(xj, ) = me. — RD(xj, xy) (2)
Proof: In what follows, we prove that ¢§ is a distance, since it satisfies below of distance
space characteristics.
1) Reflexivity:
6 >0, and 0(zj,2;) =0 & x; =2y (3)
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2) Symmetry:

6(xj, z1) = (x4, 75) (4)
3) Transitivity:
6(xj, xp) < 0(zy, w5) and §(xy, x5) < 6wy, x5) = 0(5, 1) < 324, T5) (5)
4) Triangle theorem:
(S(I,Ej,flit) S 5($j,$s)+6(l‘s,l't) (6)

It is obvious that the reflexivity, symmetry and transitivity are established, and we
only need to prove the triangle theorem(s).

Proof for triangle theorems: Let z;, z, and x; be any three different objects, and
supposing all of them have m, categorical attributes, if RD(z;, ;) = 0, RD(z;,25) = a
and RD(x¢,xs) = b, then RD(x;, ;) = min(a,b)/2, and this distance can be updated as
follows.

§(xj, ;) = m. — RD(xj, ;) = m, — min(a, b)/2 < m,

d(xy, xs) + 8z, 5) = (me — RD (x4, z5)) + (me — RD(x4,x5)) = (me — a) + (me —b) =
me + (me —a —b)

Due to RD(xj,z;) = 0, RD(xj,z) = a and RD(x¢,x5) = b, we can get (m.—a—>b) > 0,
S0 5(xtﬂx5) + (5(55}, xs) > M.

According to the proof mentioned above, we know that it is a distance space and could
be used to obtain the distance between any two categorical data.

Proof for Theorem 3.1: Let RD(xj,z;) = x, we know that (m, — a) + (m, — b) >
(m. — z) due to triangle theorems, which can be shown in Figure 1. Next we can grasp
x > a+b— m,, at the same time to meet |(m, — a) — (m. —b)| > (m. — ). Supposing
b > a, we obtain x < m. — (b — a).

From the definition of relationship degree, we can establish the structure of relationship
degree based on RD(xj,x;) = 0, RD(z;,xs) = a and RD(zy, z5) = b, which can be shown
as Figure 2.

Then we know that relationship degree satisfies the characteristics of geometric struc-
ture from Figure 2.

Me-d ma-b

m.-x

FiGURE 1. Triangle theorems

FIGURE 2. Structure of relationship degree among objects
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b/m. = x/a, can be transformed to m. = ab/x, substituting m. = ab/x into z >
a+b—me, we get £ > a+b—ab/z, and we know that < a according to x < m.— (b—a).

Thus, in this paper, we let + = a/2. So RD(zj,x;) = min(a,b)/2 meets the require-
ments.

We will give an example for relationship degree in Table 1.

TABLE 1. Categorical data

Object al a2 a3 a4
T Al B1 C1 D1
X Al B1 C2 D2
Xy A2 B2 C2 D2

From Table 1, we know that RD(x;,z,) = 2 and RD(z,zs) = 2, and then we can
get the distance RD(x;, ;) = 0 by traditional function and RD(z;,x;) = 2/2 = 1 by
relationship degree mentioned above.

3.2. Distance methods for mixed data. In this paper, we define the distance for
mixed data (DMD) as follows:

m—me

W, z) = Y (w6 — 253)° + po(xr, ;) (7)

=1

Here, z;, z; are two objects including m, categorical attributes (m — m,) numerical
attributes, and ¥(x;, z;) is the distance between x; and ;. From the equation, we know
that the DMD includes two parts, the former one is the Euclidean distance of z; and z,
for numerical data, and the latter one is their DCD for categorical data, and p reflects
the impact of categorical attributes.

Dataset should be normalized before they were used in order to be dimensionless. We
adopt the Min-Max method, which can be shown as (8).

Tj; — MIN Ty
. = ¢ (8)

7' maxxy — min xy
t t

Then, we obtain that the value of z; will be in [0, 1] for any j.

We also add some parameters into (7) while the influence of attributes for results of
clustering is different. Then we use the new weighted distance for mixed data (WDMD)
as (8).

I (we, v5) = Z wi(zy — x5;)° + po (x4, ;) (9)
i=1
Here,
Oz, ) = Z Wi — Z wiRD (x4, ;) (10)
1=m—me+1 1=m—me+1

m
where w; denotes the impact of the ith attribute for clustering, and ) w; = 1.
i=1



1878 T. LI, Z. JIN, Y. CHEN AND A. D. MENGA EBONZO

3.3. Initialization of clustering for mixed data. Above all, we integrate methods
of density and grid to get high-density sub area, and then use the method of MaxAvg
distance to address the issue of initializing the centers of the clusters, in which we explore
the DMD distance.

MaxAvg distance is presented in (11).

o= {xt|Avg(l —-1,t) = max, Avg(l -1 j)} (11)

where
|
Avg(l —1,7) = 1 > (e, x)) (12)
=1

Here, [ = 2,3,...,k and 7 = 1,2,3,..., h. [ is the number of initial centers that we have
obtained and z; is the representative point of the jth grid. ¢; is the [th center and meets
¢ # ¢;41 for any [. The sum of distance among x; and all centers can be shown in Figure
4.

The computation of the initialization can be shown as follows:

Input: m, u, k, z, and m is the number of attributes, p is impact factor, k is the
number of cluster desired, = is dataset.

Output: C' = {¢y,¢oy ..., C}.

Let [ = 1 and m; denotes the number of values of the sth attribute for categorical data.

Begin
Forl=1tok
Fori=1tom
If | == 1 && the ith attribute is categorical
c;; = value that turns up most frequently in the ith attribute.
Else If | == 1 && the ith attribute is numerical
Ci; = ijji/n
Else
Get the ¢; according to (11) and (12).
End If
End For
End For
End

3.4. The k-means clustering for mixed data. In this section, we adopt the objective
function of clustering as shown in (13).

min F(w, 7, ¢) Zm ( > wilan — i) +/ﬂ9(cz,%‘)) (13)

=1

WhereZTl]—l 1<j<n,n;€{0,1}, Zwlz—l 0<w; <1,1<[<k.
=1
Here, if 77; = 1, it means that the jth obJect belongs to the [th cluster, and vice versa.

Next, we mod1fy the centers in order to get better results.
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Input: T, s and T is the times of iteration.
Output: C' = {¢y,¢9,. .., C}.
Let A be the set that includes all values of some categorical attributes and a; denotes
the number of the hth value of the sth attribute.
Begin
Fort=1to T
For j=1ton
If I(c;, x5) < V(c,, x;) forany 2z (1 <z < k)
le =1
Else
le =0
End If
End For
Forl=1tok
Fori=1tom
If the ¢th attribute is numerical
Ci; = 1
y=20
Forj=1ton
Cli = Cii + T %y
End For
i = ¢/ X5
Else
A=0o
ap, = 0 for each h
h=20
For any 7; = 1
h=h+1
Ap = {zji}
ap = ap + 1
Else If Tj; € A
HA,« = Ty;
a, =a, +1
End If
End For
c; = A, if a, is max
End If
End For
End For
End For
End

4. Experimental Studies. In this study, we use the Diagnosis dataset, Iris dataset from
the common UCI datasets to check our proposed methodology.

4.1. Diagnosis dataset. In this experiment, we suppose that all data are categorical
and study two parts of records. We choose lumbar pain {No, Yes} and urine pushing
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{No, Yes} as the decision attributes for the first sample data and occurrence of nausea
{Yes, Yes} and lumbar pain {No, Yes} as the decision attributes for the second sample
data. From their values we use the initialization of clustering for mixed data and the
k-means clustering for mixed data proposed in this paper, the results are shown in Table

2.
TABLE 2. Inflammation of urinary bladder dataset
No Sample 1 Sample 2
First attribute lumbar pain occurrence of nausea
Second attribute urine pushing lumbar pain
Range of value {No, Yes} {No, Yes}
Number of data 60 60
Initial centers (Yes, No) (No, Yes) | (Yes, Yes) (No, Yes)
Final centers (Yes, No) (No, Yes) | (Yes, Yes) (No, No)
Times of clustering of proposed method 1 2
Times of clustering of traditional method 5 8

Yes

Urine
pushing |

Ho Lumbar pain e

FIGURE 3. Results for Sample 1

Yes

Lumbar |
pain

No

No ' Yes
Occurrence of nausea

FIGURE 4. Results for Sample 2
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FIGURE 5. Results for Iris dataset

Therefore, the method of initialization proposed in this paper is effective.

Based on the analyses presented in the previous section, we know that the traditional
methods of initialization for single numerical or categorical data are ineffective and un-
reliable since they often result in slower k-means convergence. The methods proposed in
this paper produce very good initial clustering (see Table 2, Figure 3 and Figure 4), which
makes it possible to use them as initial algorithms for categorical data.

4.2. Iris dataset. Here, we will verify the proposed methods for numerical data using
Iris dataset, which includes 4 numerical attributes and totally 150 objects. Figure 5 gives
the results of clustering using proposed methods in three clusters and its precision can be
shown in Table 3.

TABLE 3. Precision for Iris dataset

Algorithms Random initialization | Proposed initialization
Traditional k-means 88% 91.67%
EWKM algorithm [4] 90.33% 94%

IWEKM algorithm [24] 91.67% 95.33%
Proposed method 91.33% 95.67%

From Table 3, we know that the results of proposed methods have higher efficiency and
precision than that of traditional k-means clustering.

4.3. Zoo dataset. Here, we verify the proposed methodology using Zoo dataset with 16
attributes, and its results are shown in Table 4, from which we can see that the proposed
methodology is more effective.

TABLE 4. Precision for Zoo dataset

Algorithms Random initialization | Proposed initialization
Squeezer 79.2% 81.2%
GAClust 77.2% 79.2%

ccdByEnsemble 75.2% 76.2%
CEMD 88.1% 91.1%
EWKM 85.1% 87.1%
IWEKM 84.1% 88.1%

Proposed method 89.1% 91.1%




1882 T. LI, Z. JIN, Y. CHEN AND A. D. MENGA EBONZO

5. Conclusions. Mixed data are ubiquitous in real-world databases, especially in de-
cision making databases. However, its performance of clustering algorithms strongly
depends on an initial set of cluster centers. In this paper we presented an overview of
initialization methods of clustering for numerical data and categorical data respectively
with an emphasis on their computational efficiency. We then proposed a new initializa-
tion method for mixed data and gave its process of computation. Next, we presented the
k-means clustering for mixed data, including its computation. Finally, we tested the pro-
posed method using diagnosis dataset, Iris dataset and Zoo dataset, real world datasets
from UCI Machine Learning Repository. The experimental results were analyzed and il-
lustrated that the proposed method is effective and efficient for initializing and classifying
mixed data.
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