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ABSTRACT. This paper proposes a novel set membership identification method for models
nonlinear in their parameters. A mapping which can approximate the homeomorphism
between the feasible parameter set (FPS) boundary and the n— 1-sphere (n is the number
of parameters) is constructed. First, a data set consisting of vectors uniformly sam-
pled from the FPS boundary is mapped into a data set contained by the n — 1-sphere.
This is achieved by locally linear embedding followed by data nmormalization. Then, a
non-parametric method based on the two data sets is used to build a mapping which ap-
prozimates the homeomorphism between the FPS boundary and the n — 1-sphere. Once
this mapping s established, it can be used to map the n — 1-sphere into an approrima-
tion of the FPS boundary. Moreover, a strateqy is proposed to improve the boundary
approzimation. Examples show that the proposed method exhibits superior performance
compared with other nonlinear set membership identification methods.

Keywords: Set membership identification, Nonlinear models, Parameter estimation,
Locally linear embedding

1. Introduction. System identification has attracted significant attention of the inves-
tigators and many identification methods have been developed. The classical methods,
such as least squares or maximum likelihood, are based on stochastic assumptions. The
noise corrupting the data is assumed to be a random variable with a known statistical
property. Unfortunately, statistical properties of the noise are not available when the
number of the observed data is insufficient or when the noise is of a deterministic nature.

As an alternative method, the set membership identification [1-3] considers a more
realistic description of the error in the form of bounds on its instantaneous values. The
purpose of this approach is to characterize the set of all the parameter vectors consistent
with the data, model structure and noise bounds. This set is called the feasible parameter
set (FPS). When the model is linear, the FPS is a convex polytope. However, in many
applications the models are usually nonlinear in their parameters. In this case, the FPS
is generally nonconvex or even nonconnected. Exact description of the FPS is an arduous
task. Therefore, the key issue in nonlinear set membership identification is to find an
approximate description of the FPS, which is easy to interpret and which leads to a
satisfactory balance between the computation burden and precision.

The existing approaches for approximate description of the FPS in nonlinear set mem-
bership identification can be roughly classified into three categories. The first calculates
a single convex set containing the FPS, such as a box [4], an ellipsoid [5,6], or a simplex
[7]. This approach can give a guaranteed outer bound of the FPS, but the obtained result
may be too conservative. The second gives a guaranteed inner or outer bound of the FPS
with an arbitrary precision by a union of boxes [8,9]. Unfortunately, its complexity grows
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exponentially with the dimension of the parameter vector. Besides, it is quite difficult to
construct the minimal inclusion function for complex models. The excessive conservatism
of the boxes caused by the inability to find the minimal inclusion function will result in a
slow convergence of the algorithm. Finally, the third characterizes the FPS by computing
the points on or near its boundary [10-13]. This approach can deal with complex models
for which it is difficult to construct the minimal inclusion function.

This paper proposes a novel set membership identification method for models nonlinear
in their parameters. A mapping which can approximate the homeomorphism between the
FPS boundary and the n — 1-sphere (n is the number of parameters) is sought. If this
mapping is established, it can be used to map the n — 1-sphere into an approximation
of the FPS boundary. To construct this mapping, the following technique is used. First,
a data set consisting of vectors uniformly sampled from the FPS boundary is mapped
into a data set contained by the n — 1-sphere. This is achieved by locally linear embed-
ding (LLE) [14,15] followed by data normalization. Then, a mapping which approximates
the homeomorphism between the FPS boundary and the n — 1-sphere is derived by a
non-parametric method based on the two data sets. Besides, a strategy for improving
the boundary approximation is proposed. This strategy discards the points with unsatis-
fied approximation errors and from them searches for new points which are on the FPS
boundary.

The paper is organized as follows. In Section 2, the problem of set membership iden-
tification is formulated. The method for approximating the FPS boundary is proposed
in Section 3. In Section 4, three examples are given to illustrate the performance of the
method. The paper draws to a close with a section of conclusions.

2. Problem Formulation. Consider a nonlinear model defined by

Yk = f(xkap) + €k, (1)

where y; € R is the observable output, =, € R" is the regression vector, p € R" is
the parameter vector to be estimated, f(-,-) is a vector function and e; € R is the
unobservable error. Here, f(xy,p) is nonlinear with respect to parameter vector p. It is
assumed that the error e is bounded for each sample time £, i.e.,

lex| < ey for all k, (2)

where ¢, is a known constant.

Suppose that a data set {zy, yx}pr_, has been obtained. The set of all the parameters
consistent with the model (1), the observed data set {zy, yx}r_,, and the bounded error
assumption (2) can be expressed as

Py={p€R": |y, — flzx,p)| <ex,k=1,2,--- N} (3)
The set Py is called the feasible parameter set. Equation (3) can be rewritten as
Py ={pe R": |V — F(p)|IZ < 1}, (4)
where
Y = [y, ynlT, (5)
F(p) = [f(@1,p), f(@2,p),- -, flan,p)]", (6)
E =[e1,69, - ,en]". (7)

The weighted oo norm ||ul|” is defined as ||u||”. = max; [u;/¢;|. The boundary of the FPS
Py can be expressed as

Bpy ={p€ R":|[Y = F(p)|s, = 1}. (8)
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The term ey, represents the effect of modeling errors, disturbances and noise. The sto-
chastic methods assume that the probability density function of the error ey is (partially)
known. However, the stochastic assumptions may be questionable. The statistical prop-
erties of the error e, cannot be justified when the available data are limited. Besides,
the main contribution to error e; may be of a deterministic nature. The set membership
identification considers a more realistic bounded error description (2). The purpose of
this method is to characterize the FPS Py. When the model is nonlinear, the FPS Py is
extremely complex. Exact description of the FPS Py is an arduous task. An alternative
solution is to find an approximate description of the FPS Py. This can be achieved by
three types of approaches which have been discussed in Section 1. Supposing that the
FPS Py is bounded and connected, a method for approximating the FPS boundary Bp,
is proposed in the next section.

3. Set Membership Identification by Locally Linear Embedding.

3.1. Approximation of the FPS boundary. According to the theory of geometry
and topology, the FPS boundary Bp, is homeomorphic to an n — 1-sphere S"~', which
is the set of points in n-dimensional Euclidean space that are at a fixed distance r from
a central point of that space, where r is a positive real number. A homeomorphism is
a continuous function that has a continuous inverse function. Homeomorphisms are the
isomorphisms in the category of topological spaces. They are the mappings that preserve
all the topological properties of a given space. Two spaces with a homeomorphism between
them are called homeomorphic, and from a topological viewpoint they are the same.

Therefore, the FPS boundary Bp, can be transformed from the n— 1-sphere S"!, once
a homeomorphism ¢(-) between them is established. However, since the shape of the FPS
Py is complex, it is not easy to find an expression for the homeomorphism ¢(-). Alterna-
tively, this paper will seek a mapping ¢(-) which can approximate the homeomorphism
¢(+) between the FPS boundary Bp, and the n — 1-sphere S"~!. Once the mapping ¢(-)
is established, it can be used to map the n — 1-sphere S™ ! into a set BPN approximating
the FPS boundary Bp,. Constructing the mapping ¢(-) which is illustrated by Figure 1
consists of the following three main steps:

1. Obtain a data set consisting of vectors ;, + = 1,--- ,[, uniformly sampled from the
FPS boundary Bp,. Suppose that the number of the data is sufficient. Map the
data set {6;}._, C Bp, into a data set {p;}!_, C R™ by means of LLE.

2. Map the data set {p;}'_, C R" into a data set {n;}}_, c S*~L.

3. Using the data sets {6;}!_, and {n;}!_,, derive a mapping ¢(-) which can approximate
the homeomorphism ¢(-) between the FPS boundary Bp, and the n—1-sphere S"~!.

3.2. Construction of the mapping. LLE is a conceptually simple yet powerful man-
ifold learning method. It maps the input data into a single global coordinate system of
lower dimensionality. And the local geometry of input data is well preserved in the low
dimensional space. Besides, LLE requires few parameters to be set and it avoids local
minima inherent to many iterative techniques.

Actually, the FPS boundary Bp, is an n — 1 dimensional manifold. However, it is not
easy to embed the sampled data 6;, i = 1,---,[ into n — 1 dimensions by LLE, because
the FPS boundary Bp, is ‘circular’, i.e., has noncontractible loops [16]. Therefore, the
data have to be embedded into n dimensions here.

In order to well sample the FPS boundary Bp,, there should be sufficient uniformly
sampled points ;. In [10], a method for computing the points on the FPS boundary was
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FIGURE 2. Sampling the FPS boundary Bp,

proposed. However, this method suffers from the low efficiency. By this method, the num-
ber of the points to be computed is extremely large. This will increase the computational
load of LLE. Furthermore, the obtained points are not uniformly distributed. This may
deteriorate the performance of LLE. To overcome these difficulties, a simple but efficient
strategy for sampling the FPS boundary Bp, is proposed here. The strategy illustrated
by Figure 2 consists of the following:

1. Obtain a box containing the FPS by prior knowledge or by the method given in [4].

2. Define a uniform grid covering the obtained box.

3. Find the intersections of the FPS boundary with the edges of the boxes of the grid
by a no-derivative line search method.

Mapping the data set {#;}._, into a data set {p;}._; by LLE consists of the following:

1. Find K nearest neighbors of each point 6;, i = 1,--- ,[. The Euclidean distance is
used as a similarity measure.
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2. Compute the weights W;; that best reconstruct each data point 6; from its neighbors
by minimizing the cost function

o (W) ZZ

I
=1

2

, (9)

l

0 — > Wb,

J=1

2

subject to constraints:
!

Cow=a (10)
and W;; = 0 if 0; and 6; are not neighbors.
3. Compute the embedding p;, i = 1,---,[ best reconstructed by the weights W;; by
minimizing the cost function
2

o9(P) = , (11)

l
=1

z
pi— Y Wiip;
j=1

2

under constraints

[
S =, (12
i=1

!

1

7 ZPz‘PiT =1, (13)
i=1

where P is defined as P = [p1, p2, -+, o] and I € R™ ™ is a unit matrix. To find the
matrix P under these constraints, a new matrix is constructed using the matrix W:
M = (I —W)Y(I —W). LLE then computes the bottom n + 1 eigenvectors of M,
associated with the n+1 smallest eigenvalues. The first eigenvector whose eigenvalue
is zero is discarded. The remaining n eigenvectors yield the final embedding P.

The embedding of LLE is optimized to preserve the geometry of nearby inputs, but its
shape is irregular. The constraints (12) and (13) require the embedded data to have zero
mean and unit covariance. Hence, in order to obtain a data set with regular shape, the
data set {p;}'_, is mapped into a data set {n;}\_; € S"7 ' n; = pi/|lpillyy i =1, -+, L.

After the first two steps, each vector §; € Bp, corresponds to a vector n; € S"'.
However, in order to construct the mapping ¢(-), the computation of the vector 6 cor-
responding to a new vector n € S™ ! is needed here. To cope with this problem, a
non-parametric method based on the data sets {6;}!_, and {n;}._, is used. This method
computes the vector # corresponding to a new vector n € S ! by the following:

1. Identify the K nearest neighbors of n among the vectors n;, i =1,--- ,[.
2. Compute the linear weights w; that best reconstruct n from its neighbors by min-

subject to the constraints:
2

Zi.:l w; =1 and w; = 0 if 7; is not one of the K nearest neighbors of 7.

3. Compute the vector § = 22:1 w;0;, where the sum is over the vectors corresponding
to the neighbors of 7.

imizing the cost function o3(w) = Hn— S w;

It is obvious that the construction procedure has only one free parameter to be deter-
mined: the number of neighbors K. Here, a method for determining this parameter is
presented.

Denote by ¢k (-) the obtained mapping after the implementation of the above construc-

tion procedure. Obtain a data set consisting of the vectors 7;, © = 1,---,[, uniformly
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FIGURE 3. Searching for the new points on the boundary

sampled from the n — 1-sphere S™~'. Suppose that the number of the data is sufficient.
Introduce a variable §(K') describing the boundary approximation error:

8(K) = max|[|[v = F(0:)]| 2 ~ 1

, (14)

where

The smaller §(K), the better the boundary approximation. Hence, the optimal number
of neighbors K* should be arg ming d(K). Finally, the constructed mapping ¢(-) is set to
be P (-).

3.3. Improvement of the boundary approximation. It is not difficult to find that
the mapping ¢(+) is only an approximation of the homeomorphism ¢(-) between the FPS
boundary Bp, and the n—1-sphere S"~!. However, once the mapping ¢(+) is constructed,
it can be used to map the n — l-sphere S"~! into a set BPN approximating the FPS
boundary Bp, .

Suppose that there are sufficient points 7;, © = 1,--- N uniformly sampled from the
n — l-sphere S"~!. By the mapping ¢(-), a set of the points ¢(7;), i = 1,-+-,1 on or
near the FPS boundary Bp, can be obtained. This set can thus be used to approximately
characterize the FPS boundary Bp, . Here, a simple strategy is presented to further better
the boundary approximation. The strategy consists of the following:

1. Find the points ¢(7;) whose approximation errors |[|Y — F(¢(7:))||Z

~ — 1| are bigger
than a prespecified threshold ~.

2. For each point found in step 1, if it is outside the FPS, then within a small neigh-
borhood of it, find a point on the FPS boundary, else, from it in several randomly
chosen directions, search for the points on the FPS boundary and then search in the
opposite directions as well. (This step is illustrated by Figure 3.)

3. Discard the points found in step 1. Use a set of all the remaining points (including

the ones found in step 2) to approximately characterize the FPS boundary Bp, .

4. Examples.
4.1. Sine function. Consider the regression model

Yp = sin(pizy) + p2 + ey, (16)
where p; and p, are the elements of the parameter vector. Two measurements are ob-
tained: for z; =1, y; = 1; for 3 = 3, yo = 0.5. Suppose that |ex| < 0.5, k = 1,2. From
the error bounds, it is obtained that £ = [0.5 0.5]T. Besides, a prior knowledge about
the parameters is assumed to be available: p; € [2.8,4.2] and p, € [0, 2.2].
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A uniform grid covering [2.8,4.2] x [0,2.2] is defined. A set of 64 points is obtained
by computing the intersections of the FPS boundary with the edges of boxes of the grid
which are parallel to ps-axis. Figure 4 illustrates the sampled data. A set of 400 points
uniformly sampled from 1-sphere S' (I = 400) is used in Equations (14) and (15) for
obtaining the best number of neighbors K. Since argming 6(K) = 5, set K to be 5.
Figure 5 shows 0 versus K. Figure 6(a) shows the embedding given by LLE. Figure
6(b) illustrates the normalized data. From the figure, it can be observed that not only
the sampled points can be mapped into the points on the 1-sphere, but also the local
geometry is well preserved. Figures 7(a) and 7(b) show the approximations of the FPS
boundary given by the proposed method and the support vector machine (SVM) method
[12], respectively. For the latter, a set of 117 points uniformly sampled in [2.8,4.2] x [0, 2.2]
is used, and an LS-SVM with the RBF kernel whose width is equal to V0.2 is utilized to
obtain the best result. It can be observed that the proposed method can give a better
approximation than the SVM method. Besides, it is apparent that a single convex set
containing the FPS is very pessimistic.

F1GURE 4. Points sampled from the FPS boundary
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FIGURE 5. Error § versus the number of neighbors K
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FIGURE 6. Results of LLE and data normalization: (a) the embedding
given by LLE; (b) the normalized data

4.2. Exponential function. Consider the regression model

Y = P2 exp(—p17k) + ey, (17)

where p; and p, are the elements of the parameter vector. Two measurements are ob-
tained: for x; = 1, y; = 0.15; for x5 = 5, y» = 0.03. Suppose that |e;| < 0.1 and
lea] < 0.01. From the error bounds, it is obtained that F' =1[0.1 0.01]*.

A box [0,0.65] x [0,0.5] containing the FPS is obtained by the method in [4]. A
uniform grid covering this box is defined. A set of 68 points is obtained by computing the
intersections of the FPS boundary with the edges of boxes of the grid which are parallel
to py-axis. Figure 8 illustrates the sampled data. A set of 400 points (I = 400) is used to
obtain the best number of neighbors K. Since arg ming 6(K) = 4, set K to be 4. Figures
9(a) and 9(b) show the approximations of the FPS boundary. For the SVM method, a
set of 441 points uniformly sampled in [0,0.65] x [0,0.5] is used, and an LS-SVM with
the width of RBF kernel equal to 1/0.01 is utilized to obtain the best result. It can be
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FIGURE 7. Approximations of the FPS boundary given by (a) the proposed
method and (b) the SVM method. Solid line: exact boundary. Dashed line:
approximation of the boundary.

observed that the proposed method has better approximation accuracy. And a single
convex set containing the FPS is apparently pessimistic.

Figure 10 shows the improvement of the boundary approximation. A set of 80 points
uniformly sampled from 1-sphere S' (I = 80) is obtained. The set of the images of these
points under the mapping ¢(-) is used to approximately characterize the FPS boundary.
Nine points whose approximation errors are bigger than a threshold 0.015 are found.
Seven of the nine points are in the FPS while the rest are outside. For each of the seven
points, three pairs of opposite search directions are randomly chosen. A set of 115 points
on or near the FPS boundary is obtained as the final result. For comparison, Figure
11 shows the result of the method in [10] when the number of the points on the FPS
boundary to be found is set to be 120. For this method, the origin of searching is initially
set to be [0.58 0.4]T, and three pairs of opposite search directions are randomly chosen
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Ficure 8. Points sampled from the FPS boundary

for each origin. It can be observed that the proposed method has higher efficiency than
Lahanier’s method.

4.3. Pharmacokinetic model. Consider the classical one-compartment open linear mo-
del with first-order absorption described by

Dose - K,
V(K, — K.)

where ;. is the observed drug concentration at time x, K, is the absorption rate constant
(K, = 1.1hr 1), K, is the elimination rate constant (K, = 0.2hr '), and V is the volume
of distribution (V' = 50L). A data set is obtained by measuring the drug concentration
in 12 plasma samples at instants 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12, 18, and 24hr using an
oral dose of 1000mg of a drug. The error e is truncated normally distributed with mean
0Omg/L and standard deviation 0.2/3mg/L. The error bound is 0.2mg/L. From the error
bound, it is obtained that £; = 0.2,2=1,2,---,12. K, and K, are the parameters to be
estimated.

A box [1.05,1.14] x [0.194, 0.208] containing the FPS is obtained by the method in [4].
A uniform grid covering this box is defined. A set of 78 points is obtained by the sampling
strategy. Figure 12 illustrates the sampled data. A set of 400 points (I = 400) is used
to obtain the best number of neighbors K. Since argming 6(K) = 27, set K to be 27.
Figures 13(a) and 13(b) show the approximations of the FPS boundary. For the SVM
method, a set of 441 points uniformly sampled in [1.05,1.14] x [0.194, 0.208] is used, and
an LS-SVM with the width of RBF kernel equal to v/1.4 x 107° is utilized to obtain the
best result. It can be seen that the proposed method has better approximation accuracy.

_Figure 14 shows the improvement of the boundary approximation. A set of 80 points
(I = 80) is used to approximately characterize the FPS boundary. Thirteen points whose
approximation errors are bigger than a threshold 0.0005 are found. Eleven of the thirteen
points are in the FPS while the rest are outside. For each of the eleven points, two pairs
of opposite search directions are randomly chosen. A set of 113 points on or near the FPS
boundary is obtained as the final result. Figure 15 shows the result of Lahanier’s method
when the number of the points on the FPS boundary to be found is set to be 120. For this
method, the origin of searching is initially set to be [1.1 0.2]", and two pairs of opposite

Yy = lexp(— K zr) — exp(—Kqzk)] + ex, (18)
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FIGURE 9. Approximations of the FPS boundary given by (a) the proposed
method and (b) the SVM method. Solid line: exact boundary. Dashed line:
approximation of the boundary.

search directions are randomly chosen for each origin. It can be seen that the proposed
method has higher efficiency than Lahanier’s method.

5. Conclusions. This paper proposes a novel set membership identification method for
models nonlinear in their parameters. This method can deal with complex models for
which it is difficult to construct the minimal inclusion function. This paper seeks a map-
ping which can approximate the homeomorphism between the FPS boundary and the
n — l-sphere (n is the number of parameters). A method for constructing this mapping is
presented. Once this mapping is established, it can be used to map the n — 1-sphere into
an approximation of the FPS boundary. Besides, a strategy for improving the boundary
approximation is proposed. This strategy discards the unsatisfied points and from them
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searches for new points on the FPS boundary. Three examples demonstrate the perfor-
mance of the proposed method. It can give a less pessimistic result than the methods
using a single convex set to characterize the FPS. Moreover, the proposed method can
give a better approximation than the SVM method. Compared with Lahanier’s method,
the proposed method needs to compute fewer points on the FPS boundary, i.e., it has
higher efficiency. This paper assumes the FPS to be connected. The future work will
concentrate on the extension of the proposed method to the description of nonconnected

FPS.
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FIGURE 11. Result of Lahanier’s method
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Dashed line: approximation of the boundary. Plus sign: True value of the

parameter vector.
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FPS. Big points: points obtained by searching.
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