International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 6, December 2014 pp. 1969-1981

LANGUAGE MODELING USING AUGMENTED
ECHO STATE NETWORKS

ARNAUD RACHEZ AND MASAFUMI HAGIWARA

School for Open and Environmental Systems
Faculty of Science and Technology
Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi 223-8522, Japan
arnaud.rachez@gmail.com; hagiwara@z7.keio.ac.jp

Received December 2013; revised April 2014

ABSTRACT. Interest in natural language modeling using neural networks has been grow-
ing in the past decade. The objective of this paper is to investigate the predictive capabil-
ities of echo state networks (ESNs) at the task of modeling English sentences. Based on
the finding that ESNs exhibit a Markovian organization of their state space that makes
them close to the widely used n-gram models, we describe two modifications of the con-
ventional architecture that allow significant improvement by leveraging the kind of rep-
resentation developed in the reservoir. Firstly, the addition of pre-recurrent features is
shown to capture syntactic similarities between words and can be trained efficiently by
using the contracting property of the reservoir to truncate the gradient descent. Secondly,
the addition of multiple linear readouts using the mixture of experts framework is also
shown to greatly improve accuracy while being trainable in parallel using Fxpectation-
Mazimization. Furthermore it can easily be transformed into a supervised mizture of
expert model with several variations allowing reducing the training time and can take
into account handmade features.

Keywords: Language model, Recurrent neural network, Gradient descent, Expectation-
maximisation, Multiple readout, Echo state

1. Introduction. Simple models such as the n-gram model can be trained efficiently us-
ing smoothing techniques [4] and allow quick building of an accurate language model that
can then be used as a sub-part in a more complex system. However, these simple language
models are criticized for they only capture superficial linguistic structures and are unable
to take into account long term dependencies that occur in natural languages. Moreover,
n-gram models suffer from the curse of dimensionality: for a vocabulary containing |V/|
words, there are |V|" possible different sequences of words and thus n-grams require |V|"
parameters. Since most of the possible combinations of words are never seen during the
training phase, the parameters cannot be estimated properly using maximum likelihood.
Although different smoothing techniques allow facing this data sparsity, they usually rely
on simple notions of similarity to generalize. For example back-off n-gram models rely on
the frequency of shorter sequences as described in [10].
Neural language models have been proposed to palliate some of these shortcomings.

e In [1, 5], time-delay neural networks are fed with a vector of & concatenated words.
These models are close to n-grams since they take into account only a finite context
but can develop very complex distributed representations and automatically perform
smoothing.
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e Recurrent neural networks used in [6, 11, 12] can take an arbitrarily long context
into account when predicting the next word and perform at the state of the art level
in word recognition in speech processing [11].

e Recursive neural networks learn compositional representation of words and phrases
by applying recursively the same neural network and obtain excellent results on sev-
eral natural language processing tasks despite having been introduced very recently
(15, 16].

Echo state networks are a rather recent development in the field of recurrent neural
networks belonging to a collection of techniques called Reservoir Computing [19]. The
philosophy adopted in Reservoir Computing is to consider the recurrent layer as a large
reservoir of nonlinear transformations of the input data and decouple the learning of pa-
rameters inside and outside the reservoir. In echo state networks, since all the connections
but those from the recurrent layer to the output units are fixed, learning is easy and can
be realized only by inverting the design matrix. Echo state networks have already shown
promising performance on time series prediction tasks but have seldom been used in more
abstract settings such as natural language modeling. However, the contracting dynamic
of their recurrent layer implies that they construct a representation of the input that is
Markovian as was already explained for a broader class of networks in [17] and closely
mirror n-gram clustering [14]. Furthermore, [18] showed that ESNs are able to perform
at a level of accuracy similar to that of recurrent neural networks although they require
a number of recurrent units far superior.

Starting from the results of [18], the objective of this paper is not only to improve the
accuracy of language models using echo state networks but also to reduce the number
of recurrent units used in the reservoir. Moreover we try to keep a reasonable training
time and construct distributed representation of linguistic features. Based on the obser-
vation that the organization of the reservoir is Markovian we describe two modifications
of conventional Echo State Networks. Firstly, the introduction of a pre-recurrent feature
layer is shown to improve the accuracy of the language model and allow to re-organize
the activation pattern in the recurrent layer. To learn the features, we justify the trun-
cation of the back-propagation through time algorithm using the echo state property of
the network and provide a rigorous mathematical analysis of the effect of the echo state
property on the decay of the gradient. Secondly, using the mixture of experts paradigm
to add multiple readouts to the network is also shown to increase the performance while
the training time remains acceptable when Expectation-Maximization is used to train the
experts in parallel. Finally a simplification of the mixture of experts paradigm where the
gating units are observed is investigated and its relation with the hierarchical probabilistic
language model of [13] as well as other variations are discussed. As discussed in the last
part of the paper, the models investigated here can serve as a basis for the elaboration of
more complicated models.

2. Conventional Echo State Networks. Here we describe the traditional implemen-
tation of Echo State Networks (ESNs) used in [18]. This model serves as a baseline
model against which we compare our improvements. As described in [8] ESNs are simple,
discrete-time recurrent neural networks with three layers:

e an input layer u € R/,
e a recurrent layer x € R also called reservoir,
e an output layer y € R? extracting information from the reservoir.

The core component of an Echo State Network is the reservoir: a large collection of
randomly connected units, each of which computes a nonlinear transformation of the
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input signal. A readout function is then used to extract the information contained in the
representation of the input sequence constructed by the reservoir. The dynamic of the
network is described by the following system of equations:

x' = E(u’,...,u") (1)
= g(W™mu" + Wx' 1) (2)
y' = h(x"), (3)
— WOUtXt, (4)

where g = tanh and h are respectively the activation of the recurrent layer and the readout
function. W € RP*! W ¢ RP*P | Woul ¢ RO*D are respectively the input, reservoir
and output weight matrices. FE is the echo state function. It is to be noted that the

echo state function has a growing number of input variable. E(u’,...,u’) is actually an
alternative way of expressing x (the activation of the reservoir at time ¢) making explicit
the dependency on the input sequence (u’, ..., u').

In order to keep the complexity of the system minimal, we chose not to admit back-
propagation of the output units to the recurrent layer nor direct connection of the input
units to the output layer. In a sense, this allows the network to be closer to the well
known feed-forward architecture, a characteristic that is used later.

All the weight matrices W™, W, W are usually initialized randomly and are kept
fixed except for the output matrix which is learned. A sufficient condition on the reservoir
weights matrix W that ensures the Echo State Property is that its largest singular value
(W) should be less than 1. In practice, although it does not always ensure the echo
state property, the necessary condition on the reservoir weight matrix, i.e., p(W) < 1, is
commonly used as a good heuristic to construct the reservoir.

Learning the parameters by minimizing the loss function in the linear readout case is
relatively easy. Denoting by X and Y the row matrices of (respectively) input vectore
and output vectors are:

Wweut — argvlilnaXL(Y, h(X)) (5)
= argmax(Y — WX)T(Y - WX) (6)
=YX (XX"), (7)

where X7 denotes the transposition of X.

3. Augmented Echo State Network. In this section, we propose two modifications to
the traditional ESNs that allow improving their modeling power while capturing interest-
ing syntactic and semantic properties. We also introduce the techniques used to perform
learning with these modifications and keep the training time acceptabe. The main result
of this section is a rigorous analysis of the impact of the echo state property on the decay
of the gradient through time that is dual to the Markovian organisation of the reservoir
space [14]. More sophisticated readout function and their training are also investigated.

3.1. Pre-recurrent features. The system of equations describing the network aug-
mented with a feature layer shown in Figure 1 is:

Xt:E(f(uo),...,f(ut)) (8)
= g(f(u"),x"1) (9)
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Ficure 1. Comparison of the two architectures. Only the weights corre-
sponding to dashed arrows are learned.

where f is the function extracting features from the input u. Following the idea presented
in [1] and also used in [5], f is a linear projection of the input vector u on a vector space
whose dimensionality F' can be chosen as:

f(u) = W/, (11)

where W/ € R™F  Since the input vectors u are one-hot representations of words, the
feature of a word is just the recopy of one column of the feature matrix into the feature
layer.

3.2. Learning with gradient descent. The features matrix W/ and output matrix
Weul are learned by minimizing the squared sum of error function C' of every sequence
s = (u’...,u’) in the training set S. At each time step the prediction of the network

y! is compared to the actual next word in the sequence u‘*!,

Ts—1

¢= % Do (e —uH) (v —ulth). (12)

seS t=1

When learning the matrix W%, since all the parameters are situated after the recur-
rence, it is possible to use the least mean square algorithm to perform one shot learning.
For the feature matrix W/, however, back-propagation through time must be used. Since
the echo state property is responsible for the vanishing gradient effect described in [2], it is
possible to discard part of the gradient while retaining a good approximation. Informally,
since the influence of the feature f(u') is attenuated due to the contracting behaviour of
the network, it has only a very limited impact on the state of the recurrent layer x/*" if n
is a sufficient time difference. The update of the feature representation f(u') conditioned
on the prediction of u’*! can thus be several orders of magnitude bigger than the update
caused by the prediction of u'™.

In order to make the derivation of the learning procedure clearer, we briefly derive the
matrix formulation of back-propagation through time. We consider that the Echo State
Network fed with a sequence of length L @ = u',...,u” is unrolled in time. It has a
structure equivalent to a feed-forward network with shared parameters at every instance
x! of the recurrent layer at time ¢. The system of equations describing the unrolled echo
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state network is:

f' = W/u' (13)
al = Wx'"' + Wl for1<t<L (14)
x' = g(a") (15)
yt — Woutxtfl (16)

We are interested in the update of the feature f' caused by the prediction error e =
(¥t —u")T(y"=! — u’) at time L — 1 that corresponds to only one term in the cost
function of (12). The gradient of e with respect to f

0 de da;
e _ 61 “11 (17)

0 f]f - da; Of,

de ..
= : aal Wi,k7 (18)

can be expressed in matrix form:

Vie = (WMT§! (19)
where §' = %. Moreover the error &' at layer (or time) [ can be expressed relatively to

ol for1 <1< L:
_ Oe

!

5p = 54 (20)

o 0 I+1 0 [
- 28 lil gzz axzj (21)

ij a; Ty 0ay
= 5W g (ah), (22)

or in matrix form:

6l _ WT61+1 . gl(al) (23)

Finally 6“~" at the last layer is:

de OL(yE 1 — ul)T(yb ! — ub)
6L71 _ — _2 — Wout T(sL 24
al Sal (W) (24)
where 6" = (y“~'—u’). Using (19), (23) and (24) we can recursively calculate the update
of f'. However, first let us see the form of the error §':

o' =WTs%. ¢'(a?) (25)
=W (W78 g/(a")) - /() (26)
: (27)
=W (WT ((...(W™)T§"..) - ¢'(@%) - ¢'(a%)) (28)

We can use the fact that ¢’ = tanh’ < 1 to find an upper bound on the Euclidean norm
of this error

188 < IWIEHI W) [l ].
We can rearrange this inequality to make explicit the role of 5(W), where the largest

singular value of W is:
181 ~ 5 (W)*[[8"], (29)
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and use the sufficient condition for the echo state property described as: (W) < 1.
Hence, for an Echo State Network ||6'(| = a(W)Z||6"|| — 0 for L — 4o0.

In summary, after the error has been back-propagated through the recurrent layers
n times, the magnitude of the gradient error used to update the word feature f(u,)
conditioned on the prediction of u;y, tends to decrease geometrically. It is thus possible
to approximate the gradient by taking into account only a limited number of time-steps.
In fact we chose to compute the gradient only taking into account one pass through the
recurrent layer. This allows reducing the computational burden of the feature update and
makes the architecture of the proposed network close to a simple feed forward network
with memory.

3.3. Multiple linear readouts. The second improvement that we propose is to adapt
the form of the readout to the Markovian organisation of the reservoir. Since activations
tend to cluster in regions corresponding to n-grams, using a readout capable to adapt
its resolution to increasingly precise regions which is expected to greatly improve the
accuracy of the model.

3.3.1. Mizture of experts. The mixture of experts model [3, 7] is a well known model
in which the input data is first partitioned into soft clusters, each corresponding to an
“expert domain”, before being processed by specialized sub-models. Each expert can be a
linear regression, a multinomial logit or any simple model for classification or regression.
Model definition. In the mixture of experts model the conditional probability P(y|x)
of generating y is expressed as a mixture of expert densities P(y|x,z). The mixing
coefficients P(z|x) are multinomial probabilities depending on the input data x. The
total probability has the form:

P(ylx) = Y P(z[x)P(y[x,2) (30)

=Y P(y,zx). (31)

The marginalization over the latent variable z is used to construct a complex (multi-
modal) distribution P(y|x) by combining simpler (unimodal) expert distributions P(y|x,

The term P(z|x) is called a gating model. Its task is to decide which expert is going to
be applied to the prediction of y according to x. The gating part of the model constructs
a soft partition (see Figure 2) of the input space and assigns different experts P(y|x, 2)
to different regions. For example, when words are input to the Echo State Network,
the reservoir constructs a representation of the history of words in its activation space.
The role of the gates in that case will be to cluster the reservoir activation space and
assign a different expert predictor to each region. This clustering is soft in the sense that
each region is assigned every expert with different probabilities. Figure 3 compares the
architecture of an ESN with a mixture of experts readout to a conventional ESN.

The multinomial mixing coefficients of the gate model and the experts distributions are
parameterized by a multinomial logit function:

. exp(©g;x)
P(z=ilx) = i , 32
( ) >k eXp(Gg,kX) (32)
where ©,; are parameter vectors and
exp(©T.x
P(ylx,z=1) = P(Oe:x) (33)

N >k eXP(G;F,kX) ,
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where ©,; is a vector. Both the gating and expert distributions could be chosen to be
gaussian: the sub-model would then simply be linear regressions.

Since, the activation of the reservoir x is a representation of the past history of a
sentence, it is expected that the gating model will be able to extract interesting linguistic
features. Since the features introduced in the previous section are intended to re-organize
the activation of the recurrent layer, the gating model is expected to give a higher level
information on the kind of representation developed as discussed in 4.3. Those features
will be extracted automatically during the training phase to maximize the likelihood of
the data. The mixture of experts model and its extension the hierarchical micture of
experts are thought to be good readout candidates since the activation of the reservoir is

Region 1

argmax p(z|x)=1

Region 3

argmax p(z|x)=3

Region 2

argmax p(z|x)=2

(a) Mixture of experts (b) Experts’ regions
model

FIGURE 2. The mixture of experts model and the way it clusters the input
space into regions assigned to experts

(a) A conventional echo state network un- (b) The mixture of experts model applied to
rolled in time an echo state network

FIGURE 3. The input u, is omitted for clarity. (a) At each time-step the
reservoir activation x; is read directly by a linear regression. (b) At each
time-step the reservoir activation x; is read by a different expert according
to the value of the latent variable z;.
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FIGURE 4. Supervised mixture of experts

fractal [14]. The gating nodes allow the model to have a better precision by focusing on
a specific region of the activation space. By stacking many layers as in the hierarchical
mixture of experts the fractal precision of the reservoir can thus, in principle, be attained.
Learning with Expectation-Maximization. The parameters © of the model are learned by
maximizing the log-likelihood of the data. The samples (x,,y,) € X are assumed to be
independent':

K
UX,0) =1n Y p(2[xa)p(¥a, 2[%0). (34)

z=1
Although the gating and experts models? p(z|x) and p(y, z|x) can be learned easily
when they are used as standalone models (by learning a simple linear regression model
or a logit regression), the summation inside the logarithm that appears in the Mixture of
Experts model renders the learning of the parameters more complex. However, using the
Maximization-Expectation algorithm allows to express a lower bound on the log-likelihood

in which the different sub-model can be estimated independently as described in [9].

3.3.2. Supervised mixture of experts. The mixture of experts model can be simplified by
specifying which expert should predict the next word in a supervised way. Instead of
letting the model cluster be the input space according to features it discovers itself, we
can specify the expert that the model must rely on for the prediction of the next word
by assigning a value to the 2! for every ¢. This actually simplifies the learning properties
of the algorithm: the training is now totally supervised in the sense that instead of a
partially observed dataset X = {X,Y} the algorithm can now have access to the fully
observed dataset X = {X,Y,Z}.

However, we have to choose a way to automatically specify the expert. This amounts
to restricting the kind of feature that the algorithm is paying attention to by actually
choosing the features. For example, we could choose to assign a different expert according
to the position of the current word in the sentence. Thus, one expert could be a specialist
at predicting the beginning of a sentence while another would be responsible for sentences
endings. Many other linguistic characteristics could be used to choose between experts;
this allows adding hand crafted features for selecting experts.

Another way of selecting the experts is to rely on the word to be predicted. For example,
using the representation developed in the feature layer, we can cluster words and assign an
expert to each cluster of words. In fact, this trick is used in [13] to speed up the training

I This is not the case for Echo State Networks but we make this simplification nevertheless in order to
decouple the samples and make the training easier.

2TIn order to keep the notations uncluttered we often omit to specify explicitly the dependency of the
different probability distribution on their parameters.
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of a neural language model: each expert is assigned to a subset of the vocabulary. The
probability of the next word is computed according to

P(w™ w' . ow') =Y plzw|w’ .. wh)p(w]zm, w' .. w') (35)
weV

with the supplementary condition that p(w|z,) = 0 if w # w’. Each expert has to focus
on a subset of the vocabulary. To minimize the dimensionality of the system and reduce
the training time, each one of the \/m experts may focus on 4/|V| words. Thanks to
this trick, when the size of the vocabulary grows like |V|, it is possible to train the gating
and experts models on vector of size only \/m The gain in training time is very sensible
if the vocabulary is large and this trick allows to train a network efficiently on a huge
number of words in a reasonable time [11, 12].

Finally, it is also possible to keep the latent variable in the mixture of experts model
and add another level of nodes each focusing on a subset of the vocabulary. In fact
the architecture can be stacked by any number of time as in the hierarchical mixture of
experts model [9]. This has not been investigated in our experiments.

4. Results. This section discusses the performance of the different models against the
baseline model described in [18].

4.1. Settings. The models were trained on an artificial corpus generated using the Elman
grammar. The training set comprised of 5500 sentences of length 3 to 9 averaging 6.7
words. The perplexity of the model on another set of 5500 sentences was used to assess the
performance increase. Some sentences were common to the training and testing corpora
because of the random construction method although the size of the grammar productions
up to 9 words per sentence ensured that many sentences were unique in each corpus. In
all the experiment, the whole dataset was processed as a long sequence of words. The
state of the reservoir was not reset after each sentence. For this reason, we use perplexity
rather than cosine similarity to measure the performance of the different models.

Several trials were realized by changing the size of the recurrent layer while the size of
the features was kept constant and equal to two. The spectral radius was set to 0.97 in all
experiments for this value gave good results in preliminary testing. The input scaling of
the reservoir was 1. The model was trained to learn a feature representation of the input
on ten steps of gradient descent with a learning rate of 0.01 for the output weights and
0.05 for the features. After that the features were kept fixed and the best linear regression
was learned in a one-shot way. In the logistic and mixture of expert case, the features
were also learned first and the Newton-Raphson maximization was then performed to
learn the readout function.

4.2. Reservoir reorganization. The introduction of word features before the recurrent
layer in turn leads to a novel organization of the reservoir activation pattern. In Figure
5 the activation pattern of the same reservoir driven by one-hot word representation and
by distributed features can be compared. Since the real pattern lies in a 100 dimensional
space, we used principal component analysis to project it on a 2 dimensional space to be
able to visualize it.

Comparing the two activation patterns it seems that the word features allow separating
more sharply the activations corresponding to different words. The reservoir should thus
be easier to read. Also, the syntactic organization of the feature space described in [14]
(nouns and verbs tend to belong to different regions of the reservoir activation space) is
present in the reservoir activations although it is less marked than in the word features
space.
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FiGure 5. Comparison between the activation of the reservoir driven by
one-hot representations and the same reservoir driven by learned features.
w»

The activation of the words “who” and the sentence ending marker “.” have
been omitted in the figure for clarity.

4.3. Mixture of experts features. It was expected that the gating model would be
able to make use of the sharper separation induced by the feature layer in the reservoir
activation to perform a clever clustering. It is indeed the case that the gating model
partitions the reservoir space and assigns different regions to different experts, however,
the features discovered by the mixture of experts model seem to depend greatly on the
quality of the reservoir. Although in some cases it seems that the features discovered by
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FI1GURE 6. Comparison of the conventional echo state model and the model
augmented with a pre-recurrent feature layer. The blue lines correspond to
the first dataset while the red ones are the model tested on the second
dataset. The performance of the model with features is shown with dashed
lines.

the gates have a sensible interpretation in term of the linguistic structure of the sentences,
in some other cases it was difficult to link the clusters to a good interpretation. In several
instances of the experiment the clustering performed by the gating models seemed to take
into account the length of the sentences. Short sentences tend to be assigned to an expert
while longer sentences are assigned to another expert. Still the partition remains hard to
interpret with certainty.

4.4. Cosine similarity. Figure 6 shows the improvement in accuracy induced by the
introduction of a pre-recurrent feature layer. The baseline model corresponding to a
traditional ESN is used in [18]. The cosine similarity of the networks prediction with the
real next word probability is used to measure the performance and rescaled from 0 to
100. As can be expected the introduction of a feature layer is especially interesting for
networks with small reservoirs but remains significant even for large ones.

4.5. Perplexity. We now compare the accuracy of different models using perplexity. The
accuracy of an Echo State Network augmented with a pre-recurrent feature layer is shown
in Figure 7. Four different readout are compared: linear, multivariate logistic, a mixture
of experts model with 10 experts and finally a supervised mixture of 10 experts with each
gating node assigned to a subset of the vocabulary.

In terms of accuracy, it can be seen that the traditional linear readout performs worst.
Simply using a logistic regression as a readout already gives a good improvement. This
may be due to the fact that the output of the linear readout is not a real probability
distribution and must be renormalized appropriately. The mixture of experts model per-
forms extremely well and is close to the best perplexity even with a reservoir of only
25 units. The supervised mixture of experts model on the other hand performs slightly
worse than a mere logistic regression. In the case of the mixture of experts and super-
vised mixture of experts, the convergence of the training algorithms are more difficult to
attain. The mixture of expert model appears to be especially sensitive to the type of op-
timization that is used and could achieve satisfactory perplexity only with a second order
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FIGURE 7. Perplexity of the different models on the second training set
processed as a single sequences of words

optimization technique. Moreover, for small reservoirs, the inversion of the hessian used
in the Newton-Raphson method was relying on a truncated conjugate gradient whereas
for larger reservoir the conjugate gradient had to be run for many steps.

5. Conclusion. The echo state network model augmented with a feature layer and mul-
tiple readouts can serve as a basis for a variety of more elaborate language models. It
can be seen as a hybrid between a simple recurrent neural network (the part constructing
the sequence representation) and a feed-forward neural network (the part reading the
reservoir). These models are tested on simple datasets and show significant improvement
over the conventional architecture that was used in [18].

The particularities of the proposed models and their practical advantages are:

e When conventional echo state networks are augmented with a pre-recurrent feature
layer the activation pattern in the reservoir becomes sharper than in the absence of a
pre-recurrent processing of the input and the readout can extract information more
easily. This greatly improves the accuracy of the language model.

e In some cases the clustering of the reservoir activation patterns done by the gating
model of mixture of experts can be given an intuitive interpretation and the hierar-
chical architecture of the system in turns leads to a hierarchy of features. In other
cases however the features discovered are not easily interpretable.

e The features are learned using a truncated back-propagation through time algorithm
that can be justified based on the echo state property of the reservoir. This truncation
greatly speeds up the training time making the model potentially usable on large
datasets. This palliates potential limitation of traditional ESNs that require a large
number of units and cannot be trained on large datasets due to the excessive memory
footprint.

e The gating and experts model can be learned independently using the Expectation-
Maximization algorithm. This can be advantageous when training the algorithm in
a distributed environment or to make the best use of machines with several cores
though it was not tested for this study.

The great advantage of conventional echo state networks remains that it is possible to
train them in a very fast and efficient way using one shot learning when the training
dataset fits in memory. On the contrary, the parameters of the models we proposed are
estimated using iterative method thus requiring more effort to achieve convergence. In
particular, Newton-Raphson’s method becomes quickly impractical when the number of
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output dimensions increases. One solution to this dimensionality problem is to apply
the trick proposed in [13] that can be viewed as a special case of “supervised mixture of
experts”. In that case it is also possible to consider parameterizing every experts and
gating models to be linear regressions thus allowing each subsystem to be trained in one
shot.

The algorithms proposed have been tested on relatively small artificial datasets and
their performance on real data remains uncertain. Applying the augmented echo state
networks models to large datasets and comparing their performances to other neural
network language models is the next step in the study of their performance.
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