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ABSTRACT. In this paper, a general kind of observer-based controller is developed for
singular Markovian jump systems, which could bear perturbations under general transi-
tion rate matrices in terms of being known exactly, uncertain and partially unknown.
In order to solve such problems, some new techniques in terms of introducing new in-
equalities are proposed, while the cross terms are handled by two different techniques.
Sufficient conditions for such general observer-based controllers are developed as linear
matriz inequalities. Finally, the effectiveness and superiority of the proposed methods
are demonstrated by numerical examples.
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1. Introduction. Many practical systems such as power systems, solar receiver system
and aircraft control, have their structures changed randomly, such as component failures
or repairs, sudden environmental changes in their dynamics, sudden environmental dis-
turbances, changes in subsystem interconnections, modification of the operating point of
a nonlinear system. It is known that this kind of system is usually modeled into a kind
of stochastic systems driven by the Markov chains and is always referred to be Markov-
ian jump systems (MJSs). During the past decades, various kinds of MJSs have been
extensively studied, see, e.g., [1, 2, 3] and the references therein.

Practically, we usually encounter physical systems that cannot be modeled by the nor-
mal systems in terms of ordinary differential equations. Instead, these systems are referred
to be singular systems, implicit systems, descriptor systems, etc., which are described by
coupled differential and algebraic equations. It is said that they are more complicated
than the traditional state-space systems. It is because singular system includes three
types of modes, where two additional modes named as impulsive modes and non-dynamic
modes [4, 5] are included. When singular systems experience random abrupt changes, it
is natural and convenient to model them into singular Markovian jump systems (SMJSs)
[6, 7]. Over the past few years, a lot of attention has been paid to such systems, see, e.g.,
8,9, 10, 11, 12].

On the other hand, the state estimation is also a fundamental problem in control
systems and signal processing. Hence, over the past decades, the problem about observer
design has attracted a lot of attention. For more details, we refer to the references
[13, 14, 15, 16]. Some work has been carried out on singular systems [17, 18, 19]. However,
the observer design problem for SMJSs has not yet been fully investigated, and only few
results [20, 21] are obtained. By investigating the listed references, it is seen that there
are some limitations. For one thing, the desired observers cannot bear some disturbances,
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while the perturbations are impossible to be avoided in many applications. For another,
the transition rate matrix (TRM) in the afore-cited references should be known exactly. As
we know, due to many constraints of applications, it is impossible or higher cost to get the
TRM exactly. Instead, only uncertain or partially unknown TRMs are accessible. It has
been shown in [22, 23, 24] that such general TRMs can reduce the performance of a system
or even make a system instability. Based on these facts, it is claimed that it is significant
and necessary to study this kind of system under such general TRMs. In this sense, it is
said that the obtained results have the application scope limited. Especially, in reference
[20], it is known that the conditions for observer-based controllers are obtained as a series
of coupled LMIs, which cannot be solved directly and easily. Moreover, the computation
of the parameters of the desired observer-based controllers cannot be got simultaneously,
which will bring more conservatism. To best of our knowledge, the stabilization problem
of SMJSs by observer-based controllers has not yet been fully investigated, and there are
still challenges, which needs further more investigations. All the observations motivate
the current research.

In this paper, the main attention is focused on designing a kind of general observer-based
controller with parameter perturbations, where the TRM of the underlying system can
be known exactly, uncertain and partially unknown. Compared with the existing results
mentioned above, the main contributions of this paper are as follows: 1) The desired
observer-based controllers could bear some perturbations on the parameters, where the
degrees of such perturbations can be computed; 2) The corresponding TRM in this paper is
more general, which can be known exactly, uncertain and partially unknown respectively;
3) By the LMI approach, both gains of controller and observer are solved simultaneously,
where two different techniques are used to deal with the cross terms; 4) In order to get LMI
conditions ultimately, some new variables satisfying additional inequalities are introduced
appropriately.

Notation: R™ denotes the n dimensional Euclidean space, and R™*™ is the set of all
m X n real matrices. In symmetric block matrices, we use “*” as an ellipsis for the terms
induced by symmetry, diag{---} for a block-diagonal matrix, and (M)* = M + MT.

2. Problem Statement and Preliminaries. Consider a class of SMJS described as
Ei(t) = Apa(t) + Byu(t)
y(t) = Cy (1) (1)
x(t) = xo
where z(t) € R” is the state vector, u(t) € R™ is the control input, and y(t) € RP is
measurement output. Matrix £ € R"*" may be singular and assumed rank(E) = s < n.
x(0) = xy is the compatible initial condition, and 1 is the initial mode. A,,, B,,, C,, are
known matrices of appropriate dimensions. The operation mode {n;,¢ > 0} is a right-
continuous Markov process taking values in a finite space S = {1,2,--- , N} with TRM
IT = (\;;) € RY*N given by
Aijh +o(h) L #£ ] @
where h > 0, limy0+(0(h)/h) = 0, and Xy > 0, if i # j, Ay = — S0, ; Aj. In this
paper, we will design an observer with the following form:
Ei(t) = A& (t) + Byu(t) = (Ly, + ALy, ) (y(t) — Cp (1)) (3)

and the controller is

Pr{nn =jlm =i} = {

u(t) = (Ky, + ARy, )2(t) (4)
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where #(t) is the estimation of system state x(t¢), L,, and K,, are observer parameter
and control gain to be determined respectively. AL,, and AK,, are the corresponding
fluctuations and are described as follows:

where §; and J, are named as the degrees of the perturbations and are to be determined.
Letting e(t) = x(t) — #(¢) and combining (1), (3) and (4), we get

Eé(t) = [Ay, + (Ly, + ALy, )Cp,Je(t) (7)

For notational simplicity, in the sequel, for each 1, =i € S, we write A,, = A;, B,, = B;,
Cy, =i, Ly, = L;, K;, = K; and so on. Especially, II in this paper satisfies the following
three cases:

Case 1: II is known exactly and described by (2);

Case 2: II is uncertain and has an admissible uncertainty

I =11+ AIl

in which IT = (5\2-]-) is the estimation of II, and AIl = (Aj\ij) with AS\ij = \j — S\ij and
aij = Aij — €; is the estimated error with property (2) and A\, j # i, takes any value
in [—Ei]‘, Eij]- MOI‘GOVGI’, it is obtained that |A5\u| S —€i with €ii — — Z;'V:Lj;éi €ijs

Case 3: The TRM is partially accessible. For example, a partially unknown IT may be
expressed as

A 7 g 7
Aoy 77 7
77 7 Ay
7 A2 7 Au

Il =

Y

where “?” represents the unknown elements. Then, for any i € S, define S* = St | JS! with
St = {j: \ij is known} and S% = {j : \;; is unknown}
which are further described as

S;c: {kzla 7kin} and SZ = {Ei7 ’Eﬁ\f—m}

where k; € Z* represent the column index of the jth known element in the ith row of II,
and ki ; € Z" is the column index of the (N — j)th unknown element in the ith row of
I In addition, it is assumed that 7 = mineg; {\;} is known.

Lemma 2.1. [6, 7] Unforced SMJS (1) is said to be stochastically admissible if there exists
matriz P;, such that the following LMIs hold for each 1 € S:

E"P,=P'E >0 (8)

N
(ATP)* + ) A\E"P; <0 9)

J=1



1900 H. Y. BO AND G. L. WANG

3. Main Results.

Theorem 3.1. Given system (1) with Case 1, there exists controller (4) based on observer

(3) such that the resulting system is stochastically admissible if there exist matrices P, >0,
Q:, M; >0, N;, Z; >0, Y;, LZ, scalars &1 > 0 and 8, > 0 satisfying

V2B X Wy

* -1 0 0

* * —0,I, 0 <0 (10)
* * * W9
¢ V2I Qf  var cf
x . 560, 0 0 | <0 (11)
* * _52[77. 0
* * * -1
—7; YiT
{ . 7 } <0 (12)

where

X;=PE" +UQ;V, Q= M;E+VTN,UT

N
@i = (AXi+ BY)* + N XTET, @ = (ATQi + CTL)* + Y Ny E"ME

7=1
i = [ VA X Bre -\ [hig 0 X Br (Ao X7 B - /A X B
Wi = —diag{ERPIER; Y ERPiflER; ERPiJrlER; Y ERPNER}
Then, the parameter of observer (8) is given by

Li=Qi"L{ (13)
and the gain of controller (4) is computed as
K; =YX ! (14)

Proof: Considering systems (1) and (7), we choose the following Lyapunov function:
V((t),e(t),me = i) = & (VE" Pa(t) + e’ () B Qe(t) (15)

where P; and @); satisfy (8). Letting £ be the weak infinitesimal operator of the stochastic
process {(z(t),e(t),m),t > 0}, we have

£V (x(t),e(t),n =) = 27 (t) |(ATP, + K'B'P,+ AKT BT P)* + Z)\UETP (1)
7=1
N
+eT(8) | (ATQi + CTLT Qi + CTALTQ)* + D N;ETQ; | e(t)
7j=1
— 227 (1) Pl By (K; + AK;)e(t)
(16)

First, the cross term is dealt with as follows:
=227 (1) P By(K; + AK)e(t) < 27 (t)PF B;Bf Pix(t) + €' (t)(K; + AK;)T (K; + AK;)e(t)
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Taking into account (5), (6), (16) and (17), we have
£V(£U(t), e(t)a ne = Z)

< o"(t) |(AT P+ KT BT P, + AKT BT P)*

N
+PIBBI'P+Y M\ E" P,

i=1

z(t)

+e" (1) | (AT Qi + CT LT Q; + CTALT Q)%

N
+ (K + AK)T (K + AK;) + ) A ETQ;

i=1

e(t) (18)

< a'(t)

N
(ATP; + KT BT P)* + 61, + 2P B;BT P, + > \;ET Py | a(t)

j=1

+e" (1) [ (AT Qi + CT LT Qi) * + 6,:Q] Q;

N
+CTCy+ 2K K + 20,1, + > A\ E" Q| e(t)

J=1

=& (1) 1i&(1)

w-[]4-[4 3]

N
I = (ATP,+ K] BI'P)* + 6,1, + 2P/ BBl P+ ) \,;E" P,

j=1
N
T2 = (ATQi + CTLTQi)* +6,:Q] Qi + CTC; + 2K K; + 20,1, + Y _ MjETQ;
7=1

Then, if

N
JI = (A] P+ K] B[ P)* + 6,1, + 2P/ BiB] P, + >\ E"P; < 0 (19)

i=1

N
T2 = (ATQ; + CTLTQi)* + 6,:Q7 Qi + CTCy + 2KT K + 20,1, + Y _ MiyETQ; < 0 (20)

j=1
one has J; < 0 for all i € S. Letting Y; = K; X}, it is obtained that (19) is equivalent to

N
(AiX; + BY;)* + 6, X[ X; + 2BB + ) A\ X[ E"PiX; < 0 (21)

j=1
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with X; = P7'. Letting §, = &;', by the Schur’s complement, inequality (21) implies
that
3, VIB, XT
s -1 0 |<0 (22)
* * —0o1,

where
N
Oy = (AX; + BiY;)* + Y\ X E"PX;
7=1
Letting
P,=PE+V"QU" (23)

where P; > 0, |Q;| # 0, V € R®=9)*" is any matrix with full row rank and U € R**("=)
is any matrix with full column rank, VE = 0 and EU = 0 are satisfied. Then, one
has ETP,E;, > 0, where matrix E is decomposed as F = ELEL with E; € R™* and
Er € R™* are of full column rank. Moreover, it is obvious that matrix P; satisfies (8).
Via the method in [25], it is known that

X; 2 BET +UQ;V = P! (24)

where P, = P, and 1Q;] # 0. Meanwhile, we have ET P,E;, = (E}P;Er)~". Then, we get

N N
S N XE"PX; =M XTE" + ) Ny X/ Er(E] PEL)ERX;
i=1 j=1i#i

N (25)
=NiX[E"+ Y N X[ Er(ERPER) T ERX,
j=1,#i

Taking into account (23)-(25), it is known that (22) is equivalent to (10). Now, we consider
how to transform the condition .J¢ < 0 into the LMI form. Letting Q; = M;E+VTN,UT,
with M; > 0 and |N;| # 0, one has ETQ; = QTE > 0. To solve such a problem, we
introduce an inequality

KI'K; < X;TZ; X! (26)
for any Z; > 0. Letting L; = LT Q;, we have

(ATQ; + CTLTQ)* + 51QT Qs + CTCi + 2051, + S0 \yETM;E  V2X7" 0

* —ZZ-_1 <

(27)

It is known that —X;Z; ' X < —X; — X[ + Z; with any Z; > 0. Simultaneously, letting

6,1 = 6, by the Schur’s complement, inequality (27) implies (11). On the other hand, it

is seen that (26) plays an important role, which is equivalent to (12). This completes the

proof.

In the proof of Theorem 3.1, we deal with the cross term —2x7 (t) PT B;(K; + AK;)e(t)

by (17). Moreover, it can be done by another method. Then, one has the following
theorem.

Theorem 3.2. Given system (1) with Case 1, there exists a controller (4) based on o0b-
server (3) such that the resulting system is stochastically admissible if there exist matrices
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]5i > 0, Qi, M; >0, N;, Y;, L;, scalars 6, > 0 and 5, > 0 satisfying

[ ®; V2BY; B; V2B; XI' Uy |
x  —(Xp)F+1 0 0 0 0
* * I 0 0 0
N N 6,1, 0 0 <0 (28)
* * * —0o1, O
| x * * * W9 |
D3 QF  CF
x —01, O (29)
* * -1

where

N

7j=1
The others are defined in Theorem 3.1. Then, the parameters of L; and K; can be com-
puted by (13) and (14) respectively.

Proof: Similar to the proof of Theorem 3.1, another technique is used to deal with the
cross term. That is

=227 ()P B;(K; + AK;)e(t) < 2" (t) P! Bi(K; + AK;)(K; + AK;) "Bl Pa(t) +e” (t)Ie(t)
(30)
Based on (5), we also have
AKAK] < 651, (31)
Taking into account (5), (30) and (31), we obtain

£V (e(t),m = 1)

< 2T(t) |(ATP, + KI' BT P)* + PTB;BT P, + 6,1,

N
+ 2P BiK;K] BI' P, + 26,PT BB P + Y \;E" P,

j=1

z(t) (32)

N
(ATQi+ CTLIQ)* +6:Q] Qi + C Ci+ T+ Y \;E"ME

Jj=1

+ e’ (1)

e(t)

= &1 () Jig (1)
Then, we conclude that .J; < 0 for all 7 € S, is guaranteed by
JP = (AT P+ KI'B]'P,)* + PI'B;B] P, + 6,1,

N
33
+ 2P/ B, K] BI' P + 26,P' BB P+ Y\ E"P; < 0 (33)

i=1

N
J = (ATQi+ CTLIQ)* +6,:Qf Qi+ CTCi+ T+ Y M\GETM;E <0 (34)
j=1
It is known that (33) and (34) imply (28) and (29) respectively. The next process is
similar to the proof of Theorem 3.1, which is omitted here. This completes the proof.
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Remark 3.1. It is remarked that, at the current formats of Theorems 3.1 and 3.2, it is
difficult to make a conclusion that which one is less conservative. Inequalities (17) and
(30) are seen as two respective techniques for dealing with the cross terms. From this
fact, it is said that both of them are effective to design an observer-based controller for
SMJSs. Especially, different from the existing methods such as in [20], both parameters of
the observer-based controller can be computed simultaneously. Instead of solving them one
by one, it is said that Theorems 3.1 and 3.2 are less conservative, whose conservatism s
demonstrated by a numerical example. Moreover, all the conditions for the existence of
the desired observer-based controller are established within LMI framework, which could
be solved directly and easily.

When TRM satisfies more general conditions such as in Cases 2 and 3, the established
results in [20, 21] will be failed. Up to now, very few results report this problem. Based
on Theorems 3.1 and 3.2, we can obtain the corresponding results whose conditions for
an observer-based controller of SMJS are established within LMI frameworks.

Theorem 3.3. Given system (1) with Case 2, there exists a controller (4) based on ob-
server (3) such that the resulting system is stochastically admissible if there exist matrices
P, >0, Q;, M; >0, ,N;, Z; >0, M; >0, N; >0, T; >0, S; >0, Y;, L, scalars 6, > 0
and 8y > 0 satisfying

by V2B, X M; Uy

* —I 0 0 0
* x  —0l, 0 0 |<0 (35)
* * * =T; 0
* * * x Wy
[ D5 V2I Qf  var cf N ]
* * -0 1, 0 0 0
N N . 50, 0 0 <0 (36)
% * * * -1 0
| x * * * x =5 |
—XTET — M; XTER
g /) i < . .
E"M;E — E"M;E —N; <0, j#i (38)
—7; YiT
[ %Y } <0 (39)

where

. 1
Dy = (A4;X; + BY;)* + 0 X[ ET — ;M + ZGZTZ

N
_ o - 1
q)z-5 = (AZTQZ + CZTLZ)* + ZaijETMjE — GMNZ + 1612152
j=1
U3 = [\/ailXiTER' : '\/ai(i—l)XiTER \/az’(i-l—l)XzTER' . '\/aiNXiTER]
Then, (13) and (14) are used to get the parameters of observer (3) and controller (4)
respectively.
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Proof: Based on the proof of Theorem 3.1 and Case 2, ®;; < 0 is rewritten to

N
. 1
(A X; + BY;)* + § i ; X ETPjX; — e M; + —eT; + M;T, * M,

Jj=1 4
N (40)
+ ) (AN +e)(X]E"PX; - X]TET - M;) < 0
J=1j#i

It is known that (40) is guaranteed by

N
, 1
(A X; + BY:)* + ) 0y X E'PX; — e M; + 4euT + MT;'M; < 0 (41)
J=1

X'E"PX;— XE" —M; <0, j#i (42)

Based on this, one has (41) equivalent to (35). In addition, by (23), it is obtained that
(42) implies (37). Analogously, we get (36) and (38). The next process of the proof is
similar to Theorem 3.1, which is omitted here. This completes the proof.

Theorem 3.4. Given system (1) with Case 2, there exists a controller (4) based on ob-
server (3) such that the resulting system is stochastically admissible if there exist matrices
b > 0, Ql,M >0,N;, M; >0, N; >0,T,>0,5;,>0,Y;, L;, scalars 6; > 0 and 65 > 0
satisfying

[ &, V2BY; B V2B, X! M, Uy ]
x —(Xp)F+1 0 0 0 0 0
* * -I 0 0 0 0
« x x —0l, 0 0 0 |<0 (43)
* * * * —0o1, O 0
* * * * * =T; 0
| x * * * * x Wy |
o5 QT T N,
x —0l, 0 0
* * —I 0 <0 (44)
* % x =5
—XTET — M; XTEg
g 7 i < . .
E"M;E — E"M;E — N; <0, j#i (46)
where
al 1
g = (A7 Qi + CIL)* + 1+ ) 0y B ME — € Ni + 26,5,
j=1

Then the corresponding parameters can be computed by (138) and (14).

Proof: Similar to the proofs of Theorems 3.2 and 3.3, one can get Theorem 3.4 directly.
The proof is omitted here. This completes the proof.

Theorem 3.5. Given system (1) with Case 3, there exists a controller (4) based on o0b-
server (3) such that the resulting system is stochastically admissible if there exist matrices
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]5i > 0, Qi, M, >0, N,, Z; >0, M; >0, N; >0, Y;, L;, scalars 6; > 0 and 65 > 0
satisfying

V2B; X' Wy ]
* —1I 0 0 . i
. R S <0, 1€, (47)
| x * * W9
[ ®is V2B X[ 0y |
* -1 0 0 . &
. R S <0, 1€, (48)
| x * * W9 |
9 V21 QY V21 CF
x  —(Xp)*+Z; 0 0 0 _
* * —oil, 0 0 | <0, €S8 (49)
* * * —02:1, O
* * * -1

Bug V2 QT V2 Cr

% % —ol, 0 0 <0, €S (50)
* * * —021, O
* * * 0 -1
—XTET - M; XT'Eg .
? ¢ (2% < . . i . .
[ . _EgijR]_O,ZES,jESk,j%Z (51)
ET'M;E — E"M;E - N; <0, i€S,j€S,, j#i (52)
—7; YiT
{ " } <0 (53)
where
®i; = (A X; + BY;)* Z A XTET =) N M;
JES,# jesi
O = (AiX;+ BY)*— Y N XTET— > NjM;— 1M,
ES}gj;éz ES}'c VD
Qg = (A] Qi + CTL)* + Y Mg(E"M;E — E"Q;) = > \is;
JESE j#i jest
Diro = (AT Qi+ CTL)* + Y Ng(ETMGE = ETQs) = 3 Aighi -
JeS i JESi,j#i

The parameters of L; and K; are computed by (13) and (14) respectively.

Proof: Similar to Theorem 3.3, for any M; > 0, it is obtained that ®;; < 0 is equivalent
to

(A;X; + B;Y;)* Z N (XTETPX; — XTE" — M;)
jeS i
+ Z N (X[ ETPX; — XTE" — M;) — \iiM; <0

JESI#i

(54)
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which is guaranteed by

(A X; + B;Y;)* Z N (XTETPX; — XFET — M;) — \iM; < 0 (55)
JESEj#i
and B
X'E"PiX, — XE" —M; <0,i€S, jeS,, j#i (56)
Based on this, we know that (56) implies (51), and (55) is guaranteed by
(AXi+BY)*+ Y N(XJE"PX; - XJE") =Y \jM; <0, i€S  (57)
]ES NE= jeS;’c
(A;X; + B;Y;)* Z N (XTETPX; — XFET — M) —7M; <0, i €S, (38)
JESjFi

Then, it is known that (57) and (58) imply (47) and (48) respectively. Similar to the
above proof, (49), (50) and (52) are obtained, and the next process is omitted here. This
completes the proof.

Theorem 3.6. Given system (1) with Case 3, there exists a controller (4) based on o0b-
server (3) such that the resulting system is stochastically admissible if there exist matrices

P, >0,Q; M;>0,N;, M; >0, N; >0, Y;, L;, scalars 8, > 0 and &5 > 0 satisfying

[ @7 V2BY; B V2B, X[ W |
« —(X)F+T 0 0 0 0
* * -1 0 0 0 . i
. . ¢ &ln 0 0 <0, €S (59)
* * * —0 0
| x * * * * W9
[ ®5  V2BY; B; V2B, XI W]
« —(X)*+1 0 0 0 0
% % I 0 0 0 i
. N R 0 <0, i €S}, (60)
% * * —0o1, 0
| x * * * * W9
[ D QF  CT ] .
« =01, 0 | <0, ieSt (61)
|x * -1 |
P QF O] B
« —6I, 0 |<o0,icSt (62)
|x * -1 |
—XTET - M; XTE, i
7 7 7 " < . . 7 . .
. _E}:,;PjER]_O,ZES,jESk,j%Z (63)
E"M,E — E"M;E — N; <0, i€S, €S}, j#i (64)
where
By = (ATQ; + CTL)* + 1 + Z Nj(E"M;E — E"Qi) = > Ay
jES NEZ) ]GSl

q)i12 = (AZTQZ +CZTL) +I+ Z )\z] ETM E— ETQ Z )\Z]N

JESLj#i JESE,j#i
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Then the corresponding parameters of (3) and (4) are computed by (13) and (14) respec-
tively.

Proof: Similar to the proofs of Theorems 3.2 and 3.5, one gets Theorem 3.6 directly.
The proof is omitted here.

4. Numerical Example.

Example 4.1. Considering an SMJS with three modes, the detailed matrices are given

as follows:
[ —25 —1+dp 0.3
AIZ- 1 _15 :|,B1:|:_01:|,01:[1 05]
[ —1.7 06 —0.1
Ay = ! _1‘5}, By, = { 0.9 ] Co=[-03 —12]
-1 05 —0.4
Ay = B _1_5}, By = { 0.1 ] C;=[01 —0.2]
where dyo is time-varying, and dj, is the mazimum value of diy. Singular matriz E is
given as
10
#=[0 0]
First, the TRM is assumed to be known exactly and is given by
-1 06 04

II=1]05 =22 17
09 08 -—-1.7

For this ideal case, based on [20], it is known that there is no solution to a controller (4)
based on observer (3) no matter what value dyy takes. By Theorem 3.1, the corresponding
parameters are obtained as

K, = [ —6.7481 —7.8615 ] , Koy = [ 2.7764 0.5298 ] , K5 = [ 4.6785 0.4934 ]

I —7.2306 [, [ 01850 [ 0.1569
V7 52,5806 |0 7?7 | 2.3726 | 2 T | 0.3056

with dj, = 5.456. Letting the initial condition o = [ 0.5 -1 0.2 0.5 ]T, the state
response of the closed-loop system is shown in Figure 1, where the simulations of es-
timation Z(t), system mode 1, and error e(t) are illustrated in Figure 2, Figure 3 and
Figure 4. From such simulations, it is seen that the resulting system is stable, which also
demonstrates the proposed results in this paper having less conservatism.

Similarly, by Theorem 3.2, one has the corresponding parameters

Ky = [ —16.9921 —9.9870 |, K, = [ 22.6551 3.3636 |, K3 = [ 2.8302 0.3533 |

I 0.8828 I —0.5862 I 9.4539
L= 196772 | 27| —31.4084 |’ 37| 71.5967

with dj, = 5.483.
When 11 is assumed to satisfy Case 2, the uncertainties are given as
_ _ ~ - -1 06 04
ANij <6 201N,V #i€S, T2 (\;) =] 05 —22 1.7
09 08 -—1.7
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==
\
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g lb £5 2‘0 2‘5 30 0 g lb £5 2‘0 2‘5 30
t(s) t(s)
FIGURE 2. The response of es-

FIGURE 1. The response of timation % (t)
state x(t)

05 - |

mode 1 N
error e(t)

05 1 1 1 1 1 15 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

t(s) t(s)

FIGURE 4. The response of er-
FIGURE 3. The simulation of ror e(t)
mode 7,

By Theorem 3.3, the corresponding parameters of the observer-based controller are given
as

Ky =] -7.5334 —7.0483 ], Ky = [ 3.5214 0.6709 |, K;= [ 5.0032 0.5107 |

[ | 0-2457 [, | 08916 ]  _ [11.9037
V71 201704 |0 T2 | 23.6634 |0 3 T | 33.5873

with dj, = 5.420. By Theorem 3.4, it is known that

K, = [ —16.8861 —9.9885 ] , Koy = [ 22.8399 3.4658 ] , K3 = [ 2.8275 0.3521 ]

I 0.1442 I —0.7771 I 12.0257
17 119.6918 | 72 7 | 23.4830 |’ 73 | 34.0764

with df, = 5.470.
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When TRM is partially unknown, it is given as

-1 7 ?
=105 7 ?
0.9 08 —-1.7

with T = —2.2. By Theorem 3.5, we have
Ky =[ —7.0736 —6.8690 |, K, =[3.2499 0.6156 |, K3 = [ 5.8479 0.5611 ]
1.9734 —1.0503

= { —140.6200 ] ek { 10.9990 ] L= {
where diy = 5.245. By Theorem 5.6, it is obtained that
K = —16.2601 —9.9977 |, K, = [ 19.4350 2.2398 |, K3 = [ 3.0039 0.3452 ]

—0.2628 —1.5766
b= {337.5767 ] L= { 15.0741 ] b {

with di, = 5.393. In addition, when matriz A, is assumed to be

=17 55

we could get the corresponding parameters with some index dj, by Theorems 3.1-3.6. The
detailed comparison results are listed in the following tables.

2.4279
3.8006

8.7106
40.2816

—2.5

TABLE 1. Result comparison on the first method

Theorem 3.1 | Theorem 3.3 | Theorem 3.5
diy 5.456 5.420 5.245
ds, —7.817 —7.68/ —6.999

TABLE 2. Result comparison on the second method

Theorem 3.2 | Theorem 3.4 | Theorem 3.6
diy 5.483 5.470 5.393
ds, —17.829 —7.671 —6.999

From the comparison results in such tables, one cannot conclude which method is less
conservative. It means that both methods are effective to deal with such problems respec-
tively.

Example 4.2. Consider the DC motor with a random load generated from [7] and given
in Figure 5. The switching is driven by a continuous-time Markov process {n,t > 0}
taking values in a finite set N = {1,2}. That is, for any time t > 0, if the switching is
on 1, we have n; = 1, otherwise one has n, = 2. When the DC motor inductance L, is
neglected, let i(t), w(t) represent electric current, and the speed of the shaft at time t and
u(t) denote the voltage, respectively, based on the basic electrical and mechanic laws:

S(1) = —bjiw(t) + %i(t) )

u(t) = Kow(t) + Ri(t)
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where R s the resistor and K, K; respectively denote the electromotive force constant
and the torque constant, thereinto, J; and b; are defined by:

Jci

n (66)
bi = bm + —

n

where J,, and J. represent the moments of the motor and the load. b, and b, are the
damping ratios with gear ratio n. Now we let x1(t) = w(t), xo(t) = i(t), and one has

1 0], kK 0

00 z(t) = op z(t) + 1 u(t) (67)
where the referred parameters are selected as J,, = 0.3kg-m, J. = 100kg - m, Jo =
50kg - m, b.y = 200, by = 150, R = 0.8Q, b,, = 1, K, = 2Nm/A, K, = 1Vs/rad and
n = 15. Without loss of generality, the TRM is assumed to be

—0.53  0.53
= { 0.31 —0.31]

The related matriz C,, of the measurement output is given as C, = [ 1.2 0.5 ] and

Cy = [ —-0.6 —-1.0 ] By Theorem 3.1, we can design an observer-based controller whose
parameters are given by

Ky =1[0.0772 —0.3206 ], K> = [ 0.0246 —0.4720 |

I — 0.5907 I —1.1084
L= 1 -0.2892 |* 727 | —20.2085

Letting the initial condition xo = [ 25 =3 ]T, the simulations of state response, esti-
mated state and estimated error of the resulting system are illustrated in Figure 6. Based
on such simulations, it shows that the desired observer-based controller is effective.

FiGurE 5. The block diagram of a DC motor

5. Conclusions. In this paper, the stabilization problem of SMJSs via a general obser-
ver-based controller has been studied, where the observer-based controller could bear
perturbations. Sufficient conditions for the existence of such a controller are formulated in
terms of LMIs, where two different techniques for dealing with some cross terms in addition
to new inequalities are introduced to get the LMI conditions ultimately. Moreover, more
general cases such as TRM being uncertain and partially unknown are considered, whose
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-0.5 -
| | | | | | | | |
0 1 2 3 4 6 7 8 9 10

5
t(s)

F1GURE 6. The simulations of the resulting system

conditions are also given by the LMI approach. Finally, two numerical examples are used
to illustrate the effectiveness of the results in this paper.
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