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ABSTRACT. This paper presents the Moment-Distribution Method (method of succes-
sive approzimations) for statically indeterminate beams using three different models: the
Model 1 considers the bending deformations and shear in the methodology, and also in
the fized-end moments, and this is the innovative part of this paper; the Model 2 takes
into account the bending deformations and shear in the methodology, and in the fized-
end moments considers only the bending deformations; the Model 3 is the classical model
called Hardy Cross method, which considers the bending deformations in the methodology
and also in the fized-end moments. Also a comparison is made between the three models
through three different problems for lengths of 5.00, 7.50, 10.00 m to observe differences.
The results show the differences between the three models, and when members tend to
be shorter, the differences are increased in proposed model (Model 1) with respect to the
other two models. Therefore, for the normal practice of using the Model 2 and Model 3,
these are not a recommended solution, when lengths are short between supports. Then,
the Model 1 (proposed model) passes to be the more appropriate model for structural anal-
ysis of continuous beams using the Moment-Distribution Method (method of successive
approzimations) and also is adjusted to the real conditions, since the shear forces and
moments are presented in any analysis of continuous beams, and the bending deforma-
tions and shear appear.

Keywords: Method of successive approximations, Statically indeterminate beams,
Three different models, Bending deformations and shear

1. Introduction. Structural analysis is the study of structures such as discrete systems.
The structures theory is based essentially on the mechanics fundamentals with which are
formulated the different structural members. The laws or rules that define the balance and
continuity of a structure can be expressed in different ways, including partial differential
equations of three-dimensional continuous mediums, ordinary differential equations that
define a member or the various theories of beams, or simply, algebraic equations for a
discretized structure [1].

Structural analysis can be addressed using three main approaches: a) Tensor formula-
tion (Newtonian mechanics and vector), b) Formulation based on the principles of virtual
work, ¢) Formulation based on the classical mechanics [2].

In the design of steel structures, reinforced concrete and prestressed concrete, the study
of the structural analysis is a crucial stage in its design, since the axial forces, shear forces
and bending moments are those who govern the design of rigid frames and for the case of
beams only the shear forces and the bending moments.

Structural systems analysis has been studied by diverse researchers in the past. Make
a brief historical review of progress in this subject.
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Benoit Paul Emile Clapeyron in 1857 presented to the French Academy his “Theorem
of Three Moments” for analysis of continuous beams, and in the same way Bertot had
published two years ago in the Memories of the Society of Civil Engineers of France, but
without giving credit. It can be said that from this time begin the development true of
“Theory of Structures” [3,4].

French Engineer Jacques Antoine Charles Bresse in 1854 published his book “Recherches
Analytiques sur la Flexion et la Résistance de Pieces Courbés” in which he presented prac-
tical methods for the analysis of curved beams and arcs [3,4].

In 1867 the “Influence Line” was introduced by the German Emil Winkler (1835-1888).
He also made important contributions to the Resistance of materials, especially in the
bending theory of curved beams, bending of beams resting on elastic medium [3,4].

James Clerk Maxwell (1830-1879) University of Cambridge published what might be
called the first systematic method of analysis for statically indeterminate structures based
on the equality of the internal energy of deformation of a loaded structure and the external
work done by applied loads, and equality had been established by Clapeyron. In his
analysis, it presents the Theorem of the Reciprocal Deformations, which by in its brevity
was not appreciated at the time. Another publication later presented his diagram of
internal forces to trusses, which combine in a single figure all the polygons of forces. The
diagram was extended by Cremona, what is known as the Maxwell-Cremona diagram
[3,4].

The Ttalian Betti in 1872 published a generalized form, the Maxwell’s theorem, known
as the reciprocal theorem of Maxwell-Betti [3,4].

The German Otto Mohr (1835-1918) made great contributions to the Structures The-
ory. He developed the method for determining the deflections in beams, known as the
elastic loads method or the conjugate beam. He also presented a simple derivation and
more extensive with the general method of Maxwell for indeterminate structures analysis
using the principles of virtual work. He made contributions in the graphical analysis of
deflections in trusses, complemented by Williot diagram, known as the Mohr-Williot di-
agram of great practical utility. He also earned his famous Mohr Circle for the graphical
representation of the stresses in a biaxial stress state [3,4].

Alberto Castigliano (1847-1884) in 1873 introduced the principle of the minimum work,
which had been previously suggested by Menabrea, and is known as the First Theorem
of Castigliano. Later, it presented the second Theorem of Castigliano to find deflections,
as a corollary of the first. Published in Paris in 1879 his famous book “Theoreme de
I’Equilibre de Systemes Elastiques et ses Applications”, remarkable by its originality and
very important in the development of the hyperstatic structures analysis [3,4].

Heinrich Miiller-Breslau (1851-1925), published in 1886 a basic method for indetermi-
nate structures analysis, but was essentially a variation of those presented by Maxwell and
Mohr. He gave great importance to Maxwell’s Theorem, of the Reciprocal Deflections in
the assessment of displacements. He discovered that the ”influence line” for the reaction
or an inner strength of a structure was, on some scale, the elastic curve produced by an
action similar to that reaction, or inner strength. Known as the theorem’s Miiller-Breslau
is the basis for other indirect methods of structural analysis using models [3,4].

Hardy Cross (1885-1959), professor at the University of Illinois, published in 1930 his fa-
mous moments-distribution method, which can be said that revolutionized the structures
analysis of reinforced concrete for continuous frames and can be considered one of the
greatest contributions for indeterminate structures analysis. This successive approxima-
tions method evades solution of equations systems, as presented in the Mohr and Maxwell
methods. Method’s popularity is declined with the availability of computers, in which res-
olution of equations systems is not a problem. The general concepts of the method were
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extended in the study of pipes flow. Later the methods of Kani and Takabeya became in
the most popular, also of iterative type [3,4].

In the early 50’s, Turner, Clough, Martin and Topp present the stiffness matrix method,
that may be called as the beginning of the application to structures, which have gained
popularity today. Subsequently, the finite element methods are developed, which have
allowed the systematic analysis of large numbers of structures and obtain the forces and
deformations in complex systems, such as concrete dams used in hydroelectric plants.
Among its authors are: Clough, Wilson, Zienkiewics and Gallagher [5].

Recently, a method of structural analysis for statically indeterminate beams and rigid
frames was developed, and the method takes into account the bending deformations and
shear to generate a system of equations in function of rotations and displacements [6-
8]. Also a moments-distribution method considering the bending deformations and shear
was presented [9]. These methods do not consider shear deformations in the fixed-end
moments.

Later, a mathematical model is presented to obtain the fixed-end moments of a beam
subjected to a uniformly distributed load and also to a triangularly distributed load taking
into account the bending deformations and shear [10,11].

As regards the conventional techniques of structural analysis of continuous beams, the
common practice is to neglect the shear deformations [12,13].

This paper presents the Moment-Distribution Method (method of successive approx-
imations) for statically indeterminate beams using three different models: the Model 1
considers the bending deformations and shear in the methodology, and also in the fixed-
end moments, and this is the innovative part of this paper; the Model 2 takes into account
the bending deformations and shear in the methodology, and in the fixed-end moments
considers only the bending deformations; the Model 3 is the classical model called Hardy
Cross method, which considers the bending deformations in the methodology and also in
the fixed-end moments. Also a comparison is made between the three models through
three different problems for lengths of 5.00, 7.50, 10.00 m to observe differences.

2. Methodology.

2.1. Model 1 (proposed model). This model considers the bending deformations and
shear in methodology and in the fixed-end moments.

FIGURE 1. Deformation of a beam member
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2.1.1. Theoretical principles. A deformed structure member is presented in Figure 1, and
shows the difference between the Timoshenko theory and Euler-Bernoulli theory: the first
“g,” and “dy/dz” do not coincide necessarily, while in the second are equal [6-11].

The main difference between the Euler-Bernoulli theory and Timoshenko theory is
that in the first the relative rotation of the section is approximated by the derivative of
vertical displacement, this is an approximation valid only for long members in relation to
the dimensions of cross section, and then it happens that due to shear deformations are
negligible in comparison with the deformations caused by moment. On the Timoshenko
theory, which considers the deformation due to shear, i.e., and is valid for the short
members and long, the equations of the elastic curve are given by the complex system of

equations:
dy V,
Gl—=-0.)=- 1
(dx ) Ay (1)

(2)-

where: G = shear modulus, dy/dx = total rotation around axis “Z”, 6, = rotation
around axis “Z”, due to the bending, Vj, = shear force in direction “Y”, A; = shear area,
df,/dx = d*y/dz*, E = modulus of elasticity, M, = bending moment around axis “Z”,
I, = moment of inertia around axis “Z”.

Deriving Equation (1) and substituting into Equation (2), it is arrived at the equation
of the elastic curve including the effect of shear stress:

d%y 1 dv, M,

42 - GA dr T EL (3)

Equation (3) is integrated to obtain the rotation in any point:
dy 'V, M,

i GA. T | BL

dx (4)

2.1.2. General description of moment-distribution method. The moment-distribution me-
thod can be used to analyze all types of statically indeterminate beams. Essentially it
consists in solving the simultaneous equations in the slope-deflection method by successive
approximations. In order to develop the method, it will be helpful to consider the following
problem: if a clockwise moment of “M4p” is applied at the simple support of a straight
member of constant cross section simply supported at one end and fixed at the other to
find the rotation “f,” at the simple support and the moment “Mpg,” at the fixed end, as
shown in Figure 2.

The additional end moments, “M4p
of “64” and “Og”, respectively. If “04;
according to Figure 2(b), and “0 42"
2(c).

The conditions required of geometry are [6-11,14-16]:
04 =041 —0Oa2 (5)

0=0p —0p (6)

The beam of Figure 2(b) is analyzed to find “f4;,” and “fp;” in function of “Mz":
It is considered that “V4 = Vg”, the sum of moments in B is realized to find value of
“M4g” in function of “V,”:

7

and “Mp4”, should be such as to cause rotations
and “fp;” are the rotations caused by “M,p”,
and “Opy” by “Mp,”, these are observed in Figure

9

Myp = V4L (7)
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Mgl 4 B (b)
C -4 _y&

FIGURE 2. Derivation of moment-distribution equations

Therefore, the shear forces and moments at a distance “x” are:

_ Myp
P ®)

M
M, = 2”3 (L — z) (9)
where: L = beam length, “V, = V}” and “M, = M,”.

Substituting “M,” and “V,” in function of “M/ 5" in Equation (4), and is separated
the shear deformation and bending to obtain the stiffness, is presented as follows:

e Shear deformation:
dy . MAB

= 10
dv  GAL (10)
The integral of Equation (10) is presented as follows:
M/
= _AB o1 Oy (11)

Y= GALL

The boundary conditions are substituted into Equation (11), when x = 0 and y = 0 to
obtain C; = 0. Then Equation (11) is presented:

Mg
— CAB 12
Y= aar”t (12)
e Bending deformation:
dy Mg
-7 = L—zx)d 1
dz EIZL/( z)dz (13)
The integral of Equation (13) is developed:
dy My x?
A Lor — 14
ir - BLL\" T3 T (14)

Subsequently Equation (14) is integrated to obtain displacement in the beam:

M’ Lz? 23
v= i (122 o) (15)
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The boundary conditions are substituted into Equation (15), when z = 0 and y = 0 to
find C3 = 0. Then Equation (15) is shown:

M’ Lx? 28
V= ErL (T e ' Cﬂ) (16)

Now the boundary conditions are substituted into Equation (16), when x = 0 and
y = L to obtain Cy = —L?/3. Then Equations (14) and (16) are presented:

dy Mg N P
-7 = Ly ———— 17
dr _ ELL\" 2 3 (7
M\ (Lz* 2* L?
_ U 18
YTELL < > 6 3" (18)

Substituting = 0 into Equation (17) to find the rotation in support “A” due to
bending deformation “f,1,”, we give:
M\ zL
3E1,

Now substituting # = L in Equation (17) to obtain the rotation in support “B” due to
bending deformation “fgy,”, we find:

Oary = — (19)

Mz L
6F1,

The rotations are positive when the curvature radius is found in the following part
of beam, and negative when the curvature radius is presented in the top of beam. The
rotations are:

931[, — (20)

M\ gL

Oarp =+ 21

AL 3BT, (21)
ML

=+ 22

U0 6F1, (22)

”

The rotation due to shear deformation “64;,” and “fp;,” taking into account the cur-

vature radius is:
!
dy B Mg

Oms =50 = GA,L (23)
dy M,,4B
Op1s de GA,L (24)

The sum of the shear rotation and bending rotation in the support “A” is obtained:
041 = Oa1p + Oass (25)
Equations (21) and (23) are substituted into Equation (25):
MypL | Mg
- 26
* 3EI, + GA,L (26)

The common factor of the moment “M’ ;" is obtained of Equation (26), this is as

041

follows:
Mgl 12E1,
b= 38T, (4 GASL2> (27)
and @ is [6-11,17):
12E1,
= (28)

- GA,L?
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The value of “G” is obtained as follows:
E

G = 29
2(1+v) (29)
where: @ is form factor, v is Poisson’s ratio.
Substituting Equation (28) into Equation (27) is obtained:
M gL
0y =-"2L"(4+0 30
w1 = Topr, 11 9) (30)
The sum of the shear rotation and bending rotation in the support “B” is presented:
Op1 = Op1p + Op1s (31)
Equations (22) and (24) are substituted into Equation (31):
MyzL M
0 _ AB~ AB 392
BT YSEL T GALL (32
The common factor of the moment “AM’,5” is obtained of Equation (32), and this is as
follows: L 9ET
Op1 = 2= (2— - 33
PLT 2B ( GASL2> (33)
Substituting Equation (28) into Equation (33) is presented:
M\ zL
0p1 = 2= (2—2 34
m = Topr, 27 9) (34

Analyzing the beam of Figure 2(c) to find “04,” and “Opy” in function of “MJ, ,” of the
same way as was done in Figure 2(b), we obtain the following:

My, L
g ="2"(2—0 35
nw=1opr 2-9) (35)
My 4L
= 44+ 9 36
B2 = Topr, 11 9) (36)
Now, substituting Equations (34) and (36) into Equation (6), it is as follows:
MupL MpaL
0= 2—-9)— 44+ 9 37
12E1, ( ) 12E1, (4+2) (37)
The moment “Mp,” is found in function of “M45":
2-o
Mpy=|——|M 38
mi= (352 ) Man (39
Also, Equations (30) and (35) are substituted into Equation (5):
MuagL MpyL
= 44 ) — 2—-g
4= Tgpr, W9~ 5pr, @ 9) (39)
Substituting Equation (38) into Equation (39), it is obtained:
MagL 2 -0 L(2 - 2)
04 = 44 o) — — | M —_— 40
A 12EIZ( +2) {<4+@> AB} 12F1, (40)
The moment “M 45" is found in function of “64”:
4+ 9\ EL,
Mpyp=|—— 0 41
w=(1r2) Eo (41)

Thus, for a span “AB” which is simply supported at “A” and fixed at “B”, a clockwise
rotation of “04” can be affected by applying a clockwise moment of M5 = [(4+@)/(1+
@)|(EI,/L)f4 at “A”, which in turn induces a clockwise moment of Mp, = [(2—2)/(4+
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&)|M4p on the member at “B”. The expression, [(4 + &)/(1 + @)](EI,/L) is usually
called the stiffness factor, which is defined as the moment required to be applied at “A”
to cause a rotation of 1 rad at “A” of a span “AB” simply supported at “A” and fixed
at “B”; the number [(2 — @)/(4 + @)] is the carry-over factor, which is the radio of the
moment induced at “B” to the moment applied at “A”.

2.1.3. Fized-end moments. The fixed-end moments for beams considering the bending
deformations and shear are presented in Figure 3 [10,11].

2.2. Model 2. This model takes into account the bending deformations and shear in the
methodology, and in the fixed-end moments considers the bending deformations.

The equations for this model are same as that case previous, i.e., the stiffness factor
is [(4 4+ 2)/(1 + @)](FI,/L) and the carry-over factor is [(2 — @)/(4 + &)] [9], but the
fixed-end moments are shown in Figure 4 [12-16].

wlL? wlL?
Mpap =+——— (1 — ) MFBA:_T (1-92) (42)

EI constant i

Pab(2b + Lo) Pab(2a + L)
Mpap = =— 43
FAB = T T 2) Fea 202(1 + @) (43)

(b)
‘ I L_.--
[~ l
ET constant
wL?(4 + 52 — 52?) wL?(6 — 50 — 52?)

Mpap = = 44
FAB = T 000 + o) FBa 120(1 4 2) (44)

(c)

FIGURE 3. Fixed-end moments: (a) uniformly distributed load, (b) con-
centrated load, (c) triangularly distributed load



MOMENT-DISTRIBUTION METHOD FOR STATICALLY INDETERMINATE BEAMS 1773

wL? wL?
Mpap = +ﬁ Mrpa = TR (45)

| EI constant |

Pab? Pa*b
Mpap =+ 2 Mppa = — 2 (46)
(b)
EI constant
wL? wL?
M =4— M = —— 47
FAB =+ 30 FBA 50 (47)

(c)

FIGURE 4. Fixed-end moments: (a) uniformly distributed load, (b) con-
centrated load, (c) triangularly distributed load

2.3. Model 3. This model is the classical model called Hardy Cross method, which
considers the bending deformations in the methodology and in the fixed-end moments,
i.e., shear deformations are neglected totally.

The equations for this model are: the stiffness factor is “4E1,/L” and the carry-over
factor is 0.5, but the fixed-end moments are shown in Figure 4.

2.4. General procedure of method. Procedure to the analysis of statically indeter-
minate beams is presented:

1. Determine the fixed-end moments at the ends of each span, using the expressions as
shown in Figures 3 and 4, according to the case.

2. Determine the carry-over factors and stiffness factors at the ends of each span, using
the equations corresponding, according to the model.

3. Determine the distribution factors “DF;;” at the ends of each span, using the fol-
lowing equation:

Kij

> Ki

DF;; =
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where: K;; is stiffness factor of span “ij”, > K, is the sum of all rigidities that arrive to
the joint “7”.

4. Establish the table: The Moment-Distribution Method consists in successively lock-
ing and releasing the joints; the first locking moments are the fixed-end moments due
to the applied loading, after the first balancing; the successive locking moments are the
carry-over moments which are induced to act at the other ends of the respective spans by
the balancing moments.

5. The same process can be repeated for as many cycles as desired to bring the balancing
or carry-over moments to very small magnitudes. Thus, any degree of accuracy can be
obtained, and the work required decreases as the required accuracy decreases. The final
end moments or total are obtained by adding all numbers in the respective columns.

6. Through the free-body diagram of each beam is performed static balance to obtain
shear forces.

7. Draw the diagrams shear forces and moments.

3. Application. The structural analysis of a steel beam in three different problems is
presented in Figure 5, and the example is developed for three different models: the Model
1 considers the bending deformations and shear in the methodology and in the fixed-
end moments; the Model 2 takes into account the bending deformations and shear in
the methodology, and in the fixed-end moments considers the bending deformations; the
Model 3 is the moment-distribution classical method, which considers the bending de-
formations in the methodology and in the fixed-end moments. The data considered are:
w = 34.335 kN/m; L = 10.00 m, 7.50 m, 5.00 m; F = 20019.6 kN/cm? v = 0.32.
Properties of the beam W24X94 are: A = 178.71 cm?; A, = 80.83 cm?; I, = 111966 cm*.

{4

Ficure 5. Continuous beam on four equal lengths with uniformly dis-
tributed load

Use Equation (29) to obtain the shear modulus as follows:

E 20019.6 2
G = = = 7583.182 kN
2(1+v)  2(1+0.32) fem
By Equation (28) is found the form factor:
For beams of L = 10.00 m is:

12E1,  12(20019.6)(111966)

= — 0.04388325783
GA,L?  (7583.182)(80.83)(1000)2

Dap =9Bpc =Ycp = 9DpE =

For beams of L = 7.50 m is:

o e — g 12FL_12(20019.6)(111966)
GA,L?  (7583.182)(80.83)(750)?

For beams of L = 5.00 m is:

= (.07801468059

12E1,  12(20019.6)(111966)

Bap = Dpe = Bep = Bpp = = = 0.1755330313
AB T EBO =D = EDE T GA L2 T (7583.182)(80.83)(500)2
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The fixed-end moments for beams with uniformly distributed load considering the bend-
ing deformations by Equation (45) are:
For beams of L = 10.00 m is:

wl?  (34.335)(10.00)2

Mpap = Mppc = Mpcp = Mppr = o + T = +286.125 kN-m
L? 34.335)(10.00)2
Mrppa = Mpcg = Mppc = Mrep = _u)12 = —( 1)5 ) = —286.125 kN-m

For beams of L = 7.50 m is:

L? 4. 50)?
wl® | (34335)(T.50)° _ e 045 kNom

MFAB = MFBC = MFC’D = MFDE =

12 12
L? 34.335)(7.50)?
Mppa = Mpcp = Mppc = Mrep = _u)1_2 = —( 1)2( ) = —160.945 kN-m
For beams of L = 5.00 m is:
wL? 34.335)(5.00)?
Mpap = Mppc = Mpcp = Mppr = D = +( 1)2( ) = +71.531 kN-m
L? 34.335)(5.00)?
Mppa = Mpcp = Mppe = Mrep = _11)1_2 = —( 1)2( ) = —71.531 kN-m

The fixed-end moments for beams with uniformly distributed load, taking into account
the bending deformations and shear by Equation (42) are:
For beams of L = 10.00 m is:

wL?
Mpap =Mppc = Mpcp = Mppr = ?(1 )
34.335)(10.00)2
=+ ( 1)5 ) (1 — 0.04388325783) = 4+273.569 kN-m
wlL?
Mprpas =Mpcp = Mppc = Mpgp = _T(l - 9)
34.335)(10.00)2
= — ( 1)§ ) (1 — 0.04388325783) = —273.569 kN-m
For beams of L = 7.50 m is:
wlL?
Mpap =Mppc = Mpcp = Mppr = ﬁ(l — )
34.335)(7.50)2
=+ ( 1)2( ) (1 — 0.07801468059) = +148.389 kN-m
wL?
Mprpas = Mpcp = Mppc = Mpgp = —ﬁ(l — 9)
34.335)(7.50)2
= — ( 1)2( ) (1 — 0.07801468059) = —148.389 kN-m
For beams of L = 5.00 m is:
wL?
Mpap =Mppc = Mpcp = Mppr = ?(1 — @)
34.335)(5.00)?
= + ( 1)2( ) (1 — 0.1755330313) = +58.975 kN-m
wL?
Mppa =Mpcp = Mppe = Mpgpp = —?(1 — 9)

34.335)(5.00)?
= - ( 1)2( ) (1 —0.1755330313) = —58.975 kN-m
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Calculation of the value of “E'I,” for all beams is:
EI, = (20019.6)(111966) = 2241514534 kN-cm? = 224151.453 kN-m?

The stiffness factors of each beam considering the bending deformations for all cases

are:
4F 1,

L

The stiffness factors of each beam taking into account the bending deformations and
shear by Equation (41) are:

Kij —

To 10.00 m is:
~ (440.04388325783\ EI,  3.873884582E1,
Y \1+40.04388325783 ) L L

To 7.50 m is:
~ (440.07801468059\\ EI,  3.782893456E1,
Y \140.07801468059 ) L L

To 5.00 m is:

 (4+0.1755330313\ EI, _ 3.552033775E1,
Y \140.1755330313) L L

The distribution factors of each beam considering the bending deformations are:

DFAB = DFED == ]_0

DFBA — DFBC — DFCB - DFCD - DFDC - DFDE - 05

The distribution factors of each beam taking into account the bending deformations
and shear are:

DFAB = DFED == ]_0

DFgy = DFge = DFeop = DFeop = DFpe = DFpg = 0.5
The carry-over factors of each beam considering the bending deformations for all cases
are:
M;; = 0.5M;;
The carry-over factors of each beam taking into account the bending deformations and

shear by Equation (38) are:
To 10.00 m is:

~(2-10.04388325783
I\ 4+ 0.04388325783

) M;; = 0.4837223573M;;
To 7.50 m is:

- 2 — 0.07801468059
I\ 4 4 0.07801468059

) M;; = 0.4713041688 M,

To 5.00 m is:

2 —0.1755330313
Mj' - (

M;; = 0.436942291 M;;
4+ 0.1755330313) ! !

Tables 1 to 9 presented the results by the moment-distribution method.
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TABLE 1. Model 1 for L = 10.00 m

Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236
vl FEM +273.560 | —273.569 +273.569 —273.569 +273.569 —273.569 +273.560 | —273.569
yele 1 —o7 —273.569 0 0 0 0 0 0 +273.569
co 0 —132.331442 0 0 0 0 1132.331442 0
Cyele 2 —x71 0 +66.165721 | +66.165721 0 0 —66.165721 | —66.165721 0
CO | +32.005839 0 0 1+32.005839 | —32.005839 0 0 —32.005839
Cyele 3 g1 —32.005839 0 0 0 0 0 0 +32.005839
co 0 —15.481940 0 0 0 0 +15.481940 0
Cycle 4 —7r 0 +7.74097 +7.740070 0 0 —7.740070 | —7.740070 0
B co +3.744480 0 0 +3.744480 | —3.744480 0 0 —3.744480
Cyele 5 —7 —3.744480 0 0 0 0 0 0 +3.744480
cO 0 —1.811289 0 0 0 0 T1.811289 0
Cycle 6 g, 0 +0.905644 | +0.905644 0 0 ~0.905644 | —0.005644 0
qe7l_CO +0.438080 0 0 1+0.438080 | —0.438080 0 0 —0.438080
Cycle 7 Bal. —0.438080 0 0 0 0 0 0 +0.438080
Total Moments 0 —348.381336 | +348.381336 | —237.380601 | +237.380601 | —348.381336 | +348.381336 0
TABLE 2. Model 2 for L = 10.00 m
Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458 | 3.87388458
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236 | 0.48372236
Crele 1 _FEM +286.125 | —286.125 1+286.125 —286.125 +286.125 —286.125 +286.125 | —286.125
yele 1 —g—T586.1%5 0 0 0 0 0 0 T986.1%5
co 0 —138.405061 0 0 0 0 +138.405061 0
Cycle 2 —p 0 +69.202530 | +69.202530 0 0 —69.202530 | —69.202530 0
CO | +33.474811 0 0 +33.474811 | —33.474811 0 0 —33.474811
Cyele 3 g1 —33.474811 0 0 0 0 0 0 +33.474811
co 0 —16.192515 0 0 0 0 +16.192515 0
Cyele 4 — 0 +8.096257 | +8.096257 0 0 —8.096257 | —8.006257 0
, co +3.916341 0 0 +3.916341 | —3.916341 0 0 —3.016341
Cyele 5 —r, —3.016341 0 0 0 0 0 0 +3.916341
CcO 0 —1.804422 0 0 0 0 11.894422 0
Cycle 6 —r; 0 +0.947211 | +0.947211 0 0 —0.947211 | —0.947211 0
Cvele 7 €O +0.458187 0 0 +0.458187 | —0.458187 0 0 —0.458187
: Bal. —0.458187 0 0 0 0 0 0 F0.458187
Total Moments 0 364.371 | +364.370098 | —248.275661 | +248.275661 | —364.370008 | +364.371 0
TABLE 3. Model 3 for L = 10.00 m
Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor 4 4 4 4 4 4 4 4
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
vl FEM +286.125 | —286.125 +286.125 —286.125 1286.125 —286.125 +286.125 | —286.125
yele 1 —o7 9586.125 0 0 0 0 0 0 T286.1%5
co 0 —143.0625 0 0 0 0 +143.0625 0
Cyele 2 —x71 0 +71.53125 | +71.53125 0 0 —7153125 | —71.53125 0
Cvele 3 |__CO__ [ +35.765625 0 0 135.765625 | —35.765625 0 0 —35.765625
: Bal. | —35.765625 0 0 0 0 0 0 +35.765625
co 0 —17.882812 0 0 0 0 +17.882812 0
Cyele 41— 0 18941406 | +8.941406 0 0 5011406 | —8.941406 0
B co +4.470703 0 0 +4.470703 | —4.470703 0 0 —4.470703
Cyele 5 —7 —4.470703 0 0 0 0 0 0 +4.470703
co 0 —2.235352 0 0 0 0 +2.235352 0
Cycle 6 g, 0 +1.117676 | +1.117676 0 0 —1.117676 | —1.117676 0
| co +0.558838 0 0 +0.558838 | —0.558838 0 0 —0.558838
Cyele 71—, ~0.558838 0 0 0 0 0 0 +0.558838
Total Moments 0 367.715332 | +367.715332 | —245.320834 | +245.320834 | —367.715332 | +367.715332 0
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TABLE 4. Model 1 for L =7.50 m

Joint A B C E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.78280346 | 3.78289346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78289346

Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417
Cvel FEM +148.380 | —148.389 +148.389 —148.389 +148.389 —148.389 +148.380 | —148.389
yele I —o7 —T43.380 0 0 0 0 0 0 148389
cO 0 —69.936354 0 0 0 0 +69.936354 0
Cyele 2 —p 0 +34.968177 | +34.968177 0 0 —34.968177 | —34.968177 0
Cvele 3 |__CO__ [ +16.430678 0 0 +16.480678 | —16.430678 0 0 —16.480678
) Bal. | —16.480678 0 0 0 0 0 0 +16.480678
co 0 —7.767398 0 0 0 0 +7.767398 0
Cyele 4 —r 0 +3.883699 | +3.833699 0 0 —3.883699 | —3.883699 0
T coO +1.830404 0 0 +1.830404 | —1.830404 0 0 —1.830404
Cyele 5 —pr, —1.830404 0 0 0 0 0 0 +1.830404
Cuele 6 __CO 0 —0.862677 0 0 0 0 +0.862677 0
yele Bal. 0 $0.431338 | +0.431338 0 0 ~0.431338 | —0.431338 0
o7l CO +0.203292 0 0 1+0.203292 | —0.203292 0 0 —0.203292
Cycle 7 Bal. —0.203292 0 0 0 0 0 0 +0.203292
Total Moments 0 —187.672215 | +187.672215 | —129.874626 | +129.874626 | —187.672215 | +187.672215 0
TABLE 5. Model 2 for L =7.50 m
Joint A B C E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.78280346 | 3.78289346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78280346 | 3.78289346
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 047130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417 | 0.47130417
vl FEM +160.945 | —160.945 +160.945 —160.945 +160.945 —160.945 +160.945 | —160.945
yele I —77 —160.045 0 0 0 0 0 0 T160.045
co 0 —75.854050 0 0 0 0 +75.854050 0
Cyele 2 —p 0 +37.927025 | +37.927025 0 0 —37.927025 | —37.927025 0
CO | +17.875165 0 0 +17.875165 | —17.875165 0 0 —17.875165
Cycle 3 g1 —17.875165 0 0 0 0 0 0 +17.875165
co 0 —8.424640 0 0 0 0 +8.424640 0
Cyele 4 —r 0 1212320 | F4.212320 0 0 1219320 | —4.212320 0
_ co +1.985284 0 0 +1.085284 | —1.985284 0 0 —1.085284
Cyele 5 —pr, —1.085284 0 0 0 0 0 0 +1.985284
CcO 0 ~0.935673 0 0 0 0 +0.935673 0
Cycle 6 g1, 0 +0.467836 | +0.467836 0 0 —0.467836 | —0.467836 0
| co +0.220493 0 0 +0.220493 | —0.220493 0 0 —0.220493
Cycle 7 Bal. —0.220493 0 0 0 0 0 0 +0.220493
Total Moments 0 —203.552182 | +203.552182 | —140.864058 | +140.864058 | —203.552182 | +203.552182 0
TABLE 6. Model 3 for L = 7.50 m
Joint A B C E
Member AB BA BC CB CD DC DE ED
Stiffness Factor 4 4 4 4 4 4 4 4
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
vl FEM +160.945 | —160.945 +160.945 —160.945 +160.945 —160.945 +160.945 | —160.945
yele 1 —77 —160.045 0 0 0 0 0 0 T160.045
co 0 —80.4725 0 0 0 0 +80.4725 0
Cyele 2 —r 0 +40.23625 | +40.23625 0 0 —10.23625 | —40.23625 0
CO | +20.118125 0 0 +20.118125 | —20.118125 0 0 —20.118125
Cyele 3 g1 T—20.118125 0 0 0 0 0 0 +20.118125
co 0 —10.059062 0 0 0 0 +10.059062 0
Cyele 4 —p - 0 +5.029531 | +5.029531 0 0 —5.029531 | —5.029531 0
_ coO +2.514766 0 0 +2.514766 | —2.514766 0 0 —2.514766
Cyele 5 —pr, —2.514766 0 0 0 0 0 0 +2.514766
cO 0 —1.257383 0 0 0 0 +1.257383 0
Cycle 6 g1, 0 +0.628691 | +0.628691 0 0 —0.628691 | —0.628691 0
| co +0.314346 0 0 +0.314346 | —0.314346 0 0 —0.314346
Cycle 7 Bal. —0.314346 0 0 0 0 0 0 +0.314316
Total Moments 0 206.839473 | +206.839473 | —137.997763 | +137.997763 | —206.839473 | +206.839473 0
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TABLE 7. Model 1 for L =5.00 m

Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43604229 | 0.43694229 | 0.43694229
vl FEM 158075 | —58.975 +58.975 | —58975 | +58975 | —58.975 +58.975 | —58.975
yele 1i—pom —58.975 0 0 0 0 0 0 +538.975

co 0 —25.768672 0 0 0 0 +25.768672 0
Cyele 2 —p 0 +12.884336 | +12.884336 0 0 —12.884336 | —12.884336 0
Cvele 3 | CO +5.629711 0 0 15.620711 | —5.620711 0 0 5.629711
yele . Bal. | —5.620711 0 0 0 0 0 0 15.629711
, co 0 —2.459859 0 0 0 0 +2.459859 0
Cyele 4 — 0 1020020 | $1.220929 0 0 1520920 | —1.220929 0
| co +0.537408 0 0 10.537408 | —0.537408 0 0 —0.537408
Cyele 5 —pr, —0.537408 0 0 0 0 0 0 +0.537408
cO 0 —0.234816 0 0 0 0 10.234816 0
Cyele 6 —p,r, 0 +0.117408 | +0.117408 0 0 —0.117408 | —0.117408 0
co +0.051301 0 0 +0.051301 | —0.051301 0 0 —0.051301
Cyele T, —0.051301 0 0 0 0 0 0 +0.051301
Total Moments 0 —73.206674 | +73.206674 | —52.75658 | +52.75658 | —73.206674 | +73.206674 0
TABLE 8. Model 2 for L =5.00 m
Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378 | 3.55203378
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229 | 0.43694229
vl FEM | +71.53125 | —71.53125 | +71.53125 | —71.53125 | +71.53125 | —71.53125 | +71.53125 | —71.53125
yele 1 —g r—— 7153195 0 0 0 0 0 0 7153125
co 0 —31.255029 0 0 0 0 +31.255029 0
Cydle 2 —p 0 +15.627515 | +15.627515 0 0 —15.627515 | —15.627515 0
CcO 16.828322 0 0 +6.828322 | —6.828322 0 0 —6.828322
Cycle 3 g1, —6.828322 0 0 0 0 0 0 +6.828322
co 0 —2.083583 0 0 0 0 +2.983583 0
Cycle 4 — 0 1401701 | $1.401791 0 0 1491701 | —1.491701 0
| Co 10.651827 0 0 +0.651827 | —0.651827 0 0 —0.651827
Cycle 5 —pr —0.651827 0 0 0 0 0 0 +0.651827
cO 0 —0.284811 0 0 0 0 +0.284811 0
Cycle 6 g1 0 +0.142405 | +0.142405 0 0 ~0.142405 | —0.142405 0
CcO 10.062223 0 0 +0.062223 | —0.062223 0 0 —0.062223
Cyele T —p,1; —0.062223 0 0 0 0 0 0 +0.062223
Total Moments 0 —88.792962 | +88.792962 | —63.088878 | +63.988878 | —88.792962 | +88.792962 0
TABLE 9. Model 3 for L = 5.00 m
Joint A B C D E
Member AB BA BC CB CD DC DE ED
Stiffness Factor 4 4 4 4 4 4 4 4
Distribution Factor | 1.000 0.500 0.500 0.500 0.500 0.500 0.500 1.000
Carry-Over Factor | 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
vl FEM | +71.53125 | —71.53125 | +71.53125 | —71.53125 | +71.53125 | —71.53125 | +71.53125 | —71.53125
yele L —g 153195 0 0 0 0 0 0 53155
O 0 —35.765625 0 0 0 0 +35.765625 0
Cycle 2 —7r 0 +17.882812 | +17.882812 0 0 —17.882812 | —17.882812 0
CO | +8.941406 0 0 +8.941406 | —8.941406 0 0 —8.041406
Cycle 3 g1 —8.941406 0 0 0 0 0 0 +8.941406
[¢0) 0 —4.470703 0 0 0 0 +4.470703 0
Cycle 4 —p 0 12.235352 | +2.235352 0 0 T2.035352 | —2.235352 0
| €O [+1.117676 0 0 +1.117676 | —1.117676 0 0 —1.117676
Cycle 5 —g i T—1.117676 0 0 0 0 0 0 +1.117676
CcO 0 —0.558838 0 0 0 0 10.558838 0
Cycle 6 g, 0 +0.279619 | +0.279619 0 0 —0.279619 | —0.279619 0
| CO  [+0.139709 0 0 +0.139709 | —0.139709 0 0 —0.139709
Cycle 7 Bal. —0.139700 0 0 0 0 0 0 +0.139709
Total Moments 0 —91.028633 | +91.929033 | —61.332459 | +61.332459 | —91.929033 | +91.928633 0
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4. Results. Figure 6 shows diagram of typical shear forces and Figure 7 presents diagram
of typical bending moments.

The differences of the Models 2 and 3 with respect to the Model 1 are presented in
Tables 10 and 11, because the Model 1 is model proposed in this paper.

Table 10 presents the shear forces in the ends of the members for the three models; also
the differences are greater in short beams for all cases. The greatest difference is presented
in L = 5.00 m of a 6% in the support “A” of member “AB”, and in the support “E” of
member “ED”, being the Model 1 greater with respect to the Model 3. The smallest

TABLE 10. The shear forces in kN

Case 1 Case 2 Case 3
Shear L =10.00 m L=750m L =5.00m
M2 M3 M2 M3 M2(M3
M1 | M2 | M3 M1IM1 M1 | M2 | M3 MM M1 | M2 | M3 NEEYE)
Vap | +137 | +135| +135|0.99 | 0.99 | +104 | +102 | +101 | 0.98 | 0.97 | +71 | +68 | +67 | 0.96 | 0.94
Vea | —207 | =208 | —208 | 1.00 | 1.00 | —154 | —156 | —156 | 1.01 | 1.01 | =100 | —104 | —104 | 1.04 | 1.04
‘sc | +183 | +183 | +184 | 1.00 | 1.01 | +136 | +137 | +138 [ 1.01 | 1.01 | +90 | +91 | +92 |1.01 | 1.02
cp | —161 | —160 | —15910.99 10.99 | —121 | —120 | —120{0.99 1 0.99 | —82 | —81 | —80 | 0.99 | 0.98
‘cp | +161 | +160 | +159 | 0.99 | 0.99 | +121 | +120 | +120 [ 0.99 | 0.99 | +82 | +81 | +80 | 0.99 | 0.98
‘pc | —183 | =183 | —184 | 1.00 | 1.01 | =136 | =137 | =138 | 1.01 | 1.01 | =90 | =91 | —92 | 1.01 | 1.02
Voe | +207 | +208 | +208 | 1.00 | 1.00 | +154 | +156 | +156 | 1.01 | 1.01 | +100 | +104 | +104 | 1.04 | 1.04
Vep | —137| —-135|—135/0.99|0.99 | —104 | —102 | —101 | 0.98 | 0.97 | —71 | —68 | —67 |0.96 | 0.94

[1F931)

Vi; = Shear forces of the beam “ij” in end “/”

forces

[1F931)

Vj; = Shear forces of the beam “ij” in end “j”
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TABLE 11. The final moments in kN-m

Case 1 Case 2 Case 3

Final L=10.00 m L=750m L=500m
Moments | vy | wa | M3 [N NE ML [ M2 [ M3 |3 [yra M1 M2 | M3 ||
Mip | 0 | 0 | 0 [0 0] 0] 00 [0][0]0]0]0]0]0
N€.; | +273 | +266 | 1265 | 0.97 | 0.97 | +157 | +150 | +149 | 0.96 | 0.95 | +74 | 67 | 66 | 0.91 | 0.89
Mpa | 348 | —364 | —368 | 1.05 | 1.06 | —188 | —204 | —207 | 1.09 | 1.10| —73 | —89 | —92| 1.2 1.26
Mpc | +348 | —364 | —368 | 1.05 | 1.06 | +188 | 1204 | +207 | 1.09 | 1.10| +73 | —89 | +92 | 1.22 | 1.26
Mépc | +138 | +125 | +125 | 0.91 | 0.91 | +83 | +70 | +70 | 084|084 | +45 | +31 | +31 | 0.69 | 0.69
My | 237 —248| —245 | 1.05 | 1.03 | —130 | —141 | —138 | 1.08 | 1.06 | —53 | —64 | —61 | 1.21 | L.15
Mop | +237| —248 | —245 | 1.05 | 1.03 | 7130 | +141 | +138 | 1.08 | 1.06 | +53 | 64 | +61 | 121 | L.15
Mtop | 1138 | £125 | 7125001 001 | 483 | 170 | +70 | 0.84] 0.8 | +45 +31 | +31]0.69 | 0.60
Mpo | —348 | —364 | —368 | 1.05 | 1.06 | —188 | —204 | =207 | 1.09 | 1.10 | —73 | —89 | =92 | 1.22 | 1.26
Mpi | +348 | —364 | —368 | 1.05 | 1,06 | +188 | +204 | +207 | 1.09 | 110 | +73 | —89 | +92 | 1.22 | 1.26
Mep, | +273 | +266 | +265 | 0.7 097 | +157 | +150 | +149 | 0.96 | 0.95 | +74 +67 | +66 | 091 | 0.89
Mgp | 0 | 0 | 0 [0 0] 0 ] 0 [ 0 [0 000000

M;; = Negative moment of the beam “ij” in end “”
Ky n

M¢;; = Positive moment of the beam “ij
Mj; = Negative moment of the beam “j7” in end “j”

difference is shown: in the support “C” of members “CB” and “CD”, being the Model 1
greater with respect to the Model 2; in the support “B” of member “BC” and also in the
support “D” of member “DC”, being the Model 2 greater with respect to the Model 1,
this difference is the 1%.

Table 11 shows the negative moments and positive for the three models; also the differ-
ences in short members are considerable for all cases. The greatest difference is of a 31%
for member “BC” and “CD” in the center of the beam length, being the Model 1 greater
with respect to the Models 2 and 3. The smallest difference is for the member “AB” and
“DE” in the center of the beam length, being the Model 1 greater with respect to the
Model 2 of a 9%.

5. Conclusions. With regard to Table 10, which shows the shear forces at the ends of
the beams between the three models, the differences are larger between the Model 1 with
respect to Models 2 and 3, when the length between supports is reduced.

Finally, in Table 11 illustrating the final moments, both negative and positive, also
there are differences bigger in the Model 1 with respect to Models 2 and 3, when the
length between supports is reduced, and not all are the side of safety with respect to
Model 3 (moment-distribution classical method).

The shear forces and moments acting on the beams, these elements which are those
governing the design of a structure were studied for three different models. The results
showed differences between the three models, when members tend to be shorter, the
differences are increased of conservative side as the unsafe side in proposed model with
respect to the other two models.

On the other hand, when we design a structural member with materials of structural
steel or reinforced concrete which are obtained its dimensions with the maximum mo-
ments, and for this problem in case of L = 3.00 m will be: for the Model 1 is 74 kN-m, for
the Model 2 is 89 kN-m and for the Model 3 is 92 kN-m. Thus, using Model 1 (proposed
model), we will have a saving of a 20.27% with respect to Model 2 and of a 24.32% in
comparison to Model 3 (classical model, which is the moment-distribution method).

Therefore, for the normal practice of using the Model 2 and Model 3, this is not a
recommended solution, when lengths are short between supports.
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Then, the Model 1 (proposed model) passes to be the more appropriate model for
structural analysis of continuous beams and also is adjusted to the real conditions, since
the shear forces and moments are presented in any analysis of continuous beams and
therefore the bending deformations and shear are produced.
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